

UNIVERSITI PUTRA MALAYSIA

REGULATING THE DEGREE OF CONTRAST ENHANCEMENT IN GLOBAL HISTOGRAM EQUALIZATION-BASED METHOD FOR GRAYSCALE PHOTO PROCESSING

CHEN SOONG DER

FK 2007 75

REGULATING THE DEGREE OF CONTRAST ENHANCEMENT IN GLOBAL HISTOGRAM EQUALIZATION-BASED METHOD FOR GRAYSCALE PHOTO PROCESSING

CHEN SOONG DER

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2007

REGULATING THE DEGREE OF CONTRAST ENHANCEMENT IN GLOBAL HISTOGRAM EQUALIZATION-BASED METHOD FOR GRAYSCALE PHOTO PROCESSING

By

CHEN SOONG DER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the degree of Doctor of Philosophy

November 2007

DEDICATION

This thesis is dedicated to my parents whose selfless sacrifices and dedications have made it possible for me to reach this stage of my studies.

Abstract of thesis presented to the Senate of the Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

REGULATING THE DEGREE OF CONTRAST ENHANCEMENT IN GLOBAL HISTOGRAM EQUALIZATION-BASED METHOD FOR GRAYSCALE PHOTO PROCESSING

By

CHEN SOONG DER

November, 2007

Chairman: Associate Professor Abdul Rahman Ramli, PhD

Faculty: Engineering

Global Histogram equalization (GHE) is a popular image contrast enhancement method. However, it is rarely used on photo processing because it tends to create noise-artifacts, especially in simple-structure-image. A few GHE-based methods have been proposed to address this issue but whether they are noise-artifacts-proof remains questionable. This is because the methods are fully automatic and the evaluation conducted was not comprehensive.

A novel automatic GHE-based method called Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) has been proposed in this thesis. It has been evaluated thoroughly together with the existing automatic methods. The results have proven that none of the automatic GHE-based methods is noise-artifacts-proof. The

conclusion has motivated author to look into scalable GHE-based methods that allows user to regulate the degree of contrast enhancement.

A novel scalable GHE-based method called Recursive Mean-Separate Histogram Equalization (RMSHE) has been proposed in this thesis. It has been evaluated thoroughly together with other two existing scalable methods - Clip Limited Adaptive HE (CLAHE) and Stark's Adaptive HE (StarkAHE). The results of separate evaluations consistently showed that none of the three methods could effectively enhance the contrast of simple-structure-image without creating any noise-artifacts.

Another novel scalable GHE-based method called Scalable Global Histogram Equalization with Selective Enhancement (SGHESE) has been developed then to overcome the limitation of the existing methods. Evaluation results showed that SGHESE could enhance the image's contrast effectively without creating any noise-artifacts. The results of subjective evaluation involving human observer also showed that the preference level of SGHESE was significantly higher compared to those of other methods.

Finally, the thesis recommends extending the study of SGHESE to color image processing because majority of the images nowadays are color images.

Abstrak tesis yang dikemukakan kepada Senat Univeriti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYESUAIAN TAHAP PENINGKATAN KEJELASAN IMEJ DALAM TEKNIK YANG BERASASKAN PENYAMAAN HISTOGRAM GLOBAL BAGI PEMPROSESAN FOTO HITAM-PUTIH

Oleh

CHEN SOONG DER

November 2007

Pengerusi: Profesor Madya Abdul Rahman Ramli, PhD

Fakulti: Kejuruteraan

Penyamaan Histogram Global (GHE) adalah satu kaedah yang popular bagi meningkatkan kejelasan imej. Namun, ia jarang digunakan dalam pemprosesan foto kerana ia sering mendatangkan kesan hingar, terutama sekali dalam memproses fotoberstruktur-mudah. Beberapa kaedah yang berasaskan GHE telah dicadangkan sebelum ini, namun ia masih menjadi satu persoalan samada masalah kesan hingar telah diselesaikan. Ini kerana kaedah tersebut adalah automatik dan kajiannya tidak dijalankan secara menyeluruh.

Satu kaedah baru yang digelar Penyamaan Dwi-Histogram dengan Putra Ralat Kecerahan Minima (MMBEBHE) telah dibentangkan dalam tesis ini. Kaedah ini telah dikaji secara teliti bersama dengan kaedah automatik yang lain. Kajian telah membuktikan bahawa

tiada satu pun daripada kaedah automatik tersebut dapat menyelesaikan masalah kesan hingar secara menyeluruh. Keputusan yang sedemikian telah memberi motivasi supaya mengkaji kaedah berskala yang boleh dilaraskan tahap peningkatan-kejelasan-imej.

Satu kaedah berskala baru yang digelar Penyamaan Histogram secara Pembahagian-Purata Berulang (RMSHE) telah dibentangkan dalam tesis ini. Ia telah dikaji secara teliti bersama dua kaedah berskala yang lain – Penyamaan Histogram Tempatan Berhad (CLAHE) dan Penyamaan Histogram Tempatan (StarkAHE). Keputusan daripada kajian berasingan secara konsistennya menunjukkan bahawa, tiada satu pun daripada kaedah berskala tersebut dapat meningkatkan kejelasan imej dengan berkesan tanpa mendatangkan kesan hingar.

Lanjutan daripada kajian di atas, satu lagi kaedah berskala baru yang digelar Penyamaan Histogram Berskala Terpilih (SGHESE) telah dicadangkan bagi mengatasi kelemahan kaedah berskala yang sedia ada. Kajian menunjukkan SGHESE berupaya meningkatkan kejelasan imej dengan berkesan tanpa mendatangkan kesan hingar. Kajian subjektif yang melibatkan pemerhatian manusia juga menunjukkan tahap kegemaran pemerhati terhadap SGHESE adalah jauh lebih tinggi berbanding kaedah-kaedah yang lain.

Dalam mengakhiri tesis ini, pengarang telah mengesyorkan supaya melanjutkan kajian terhadap SGHESE dalam pemprosesan imej berwarna kerana kebanyakan imej sekarang adalah imej berwarna.

ACKNOWLEDGEMENTS

I am very grateful to my supervisor Associate Professor Dr. Abdul Rahman Ramli for the technical and moral support he provided throughout my study. He has opened my mind to research in the field of image enhancement. I am also grateful to other member of the dissertation committee – Professor Mohd Khazani Abdullah for his support and feedback in many ways. I had the opportunity to work with them and it has helped my research work immensely. I also wish to thank all those who have volunteered to participate in the subjective evaluation conducted as part of the research work of this thesis. Last but not least, I wish to express my appreciation to College of IT, Universiti Tenaga Nasional that has supported my studies in many ways.

I certify that an Examination Committee has met on 28th Nov 2007 to conduct the final examination of Mr. Chen Soong Der on his PhD thesis entitled "REGULATING THE DEGREE OF CONTRAST ENHANCEMENT IN GLOBAL HISTOGRAM EQUALIZATION-BASED METHOD FOR GRAYSCALE PHOTO PROCESSING" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Abdul Rashid Mohamed Shariff, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohammad Hamiruce Marhaban, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Abdul Aziz Jaafar, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Kasmiran Jumari, PhD

Professor Faculty of Engineering Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 January 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Rahman Ramli, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd. Khazani Abdullah, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> **AINI IDERIS, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

CHEN SOONG DER

Date: 1 Dec 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
GLOSSARY OF TERMS	XX

CHAPTER

1	INTR	ODUCTIO)N	1
	1.1	Backgro	bund	2
	1.2	Problem	n Statement	3
	1.3	Motivati	ions	4
	1.4	Objectiv	ves	5
	1.5	Thesis S	Scope and Limitation	5
	1.6	Evaluati	ion Methodology	7
	1.7	Contribu	utions	8
	1.8	Thesis C	Organization	9
2	LITER	ATURE R	REVIEW	11
	2.1	Classific	cation of Contrast Enhancement Methods	11
		2.1.1	Intensity-based Methods	11
		2.1.2	Feature-based Methods	13
		2.1.3	Intensity-based vs. Feature-based Methods	14
		2.1.4	Global vs. Adaptive Intensity-based Methods	15
	2.2	Applicat	tion of HE	16
		2.2.1	HE in Medical Imaging	16
		2.2.2	HE in Satellite Imaging	21
		2.2.3	HE in Microscopic Imaging	24
		2.2.4	HE in Computer Vision	26
		2.2.5	HE in Image Processing	34
	2.3	Impleme	entation of HE	37
	2.4	HE in C	Color Image Processing	39
	2.5	Variants	s of HE	41
		2.5.1	Variants of AHE	41
		2.5.2	Variants of GHE	53
	2.6	Conclus	sion	57

3	A STU	JDY ON AUTOMATIC GHE-BASED METHODS	60
	3.1	Introduction	60
	3.2	Minimum Mean-Brightness Error Bi-Histogram Equalization	60
		3.2.1 Algorithm of MMBEBHE	61
		3.2.2 Fast Algorithm of MMBEBHE	61
	3.3	Evaluation Methodologies	64
		3.3.1 Test Images	64
		3.3.2 Algorithm Implementation	65
		3.3.3 Noise-artifacts Proof Test	66
		3.3.4 Background Contrast Change Measurement	66
	3.4	Results and Discussions	68
	3.5	Conclusions	70
4	A STU	JDY ON SCALABLE GHE-BASED METHODS	72
	4.1	Introduction	72
	4.2	Recursive Mean-Separate Histogram Equalization	73
		4.2.1 Algorithm of RMSHE	73
		4.2.2 Mathematical Analysis on RMSHE	76
	4.3	CLAHE and StarkAHE	80
	4.4	Evaluation Methodologies	80
		4.4.1 Test Images	81
		4.4.2 Algorithm Implementation	81
		4.4.3 Objective Evaluation	83
		4.4.3.1 Main-object Contrast Change Measurement	83
		4.4.3.2 Main-object Contrast Recovery Rate	84
		4.4.3.3 Structural-Similarity Index Measurement	85
		4.4.4 Selection of Parameters' Value	86
	4.5	Results and Discussions	86
		4.5.1 RMSHE	87
		4.5.2 CLAHE	89
		4.5.3 StarkAHE	92
	4.6	Conclusions	94
5	A STU	JDY ON NOVEL SCALABLE GLOBAL HISTOGRAM	0.5
		LIZATION WITH SELECTIVE ENHANCEMENT	95
	5.1	Introduction	95
	5.2	Analysis of Limitation in CLAHE and StarkAHE	95
		Scalable Global Histogram Equalization with Selective	
	5.3	Enhancement (SGHESE)	103
		5.3.1 Philosophy of SGHESE	103
		5.3.2 Design of SGHESE	106
		5.3.3 Algorithm of SGHESE	111
	5.4	Evaluation Methodologies	111
		5.4.1 Test Images	111
		5.4.2 Algorithm Implementation	112
		5.4.3 Objective Evaluation	113

	5.4.4 Subjective Evaluation	113
	5.4.5 Selection of Parameters' Value	115
5.5	Results and Discussions	115
	5.5.1 Objective Evaluation	116
	5.5.2 Subjective Evaluation	118
5.6	Conclusions	122
6 CO2	NCLUSIONS AND RECOMMENDATIONS	123
6.1	Introduction	123
6.2	Summary of Research Findings	123
	6.2.1 Study on Automatic GHE-based Methods	123
	6.2.2 Study on Scalable GHE-based Methods	124
	6.2.3 Study on SGHESE	125
6.3	Recommendation for Future Research	126
6.4	Summary of Contributions	126
BIBLIO	GRAGHY	128
APPEND	ICES	140
BIODAT	A OF THE AUTHOR	152
LIST OF	PUBLICATIONS	153

LIST OF TABLES

Table		Page
3.1	The results of visual inspection for noise-artifacts in the output images of various automatic GHE-based methods	68
3.2	BCGP of the output images of various automatic GHE-based methods	69
4.1	Value of parameters chosen to produce the respective output images of RMSHE, CLAHE and StarkAHE	87
4.2	MCRR of RMSHE's output image of RMSHE	88
4.3	MCRR of CLAHE's output images	90
4.4	MCRR of StarkAHE's output image	93
5.1	Value of parameters chosen to produce the output images of SGHESE	116
5.2	MCRR of SGHESE's output images	117

LIST OF FIGURES

Figure		Page
1.1	Worldwide revenue from digital photo prints, 2002-2008	1
1.2a	Original image, Girl	2
1.2b	After contrast enhancement	2
1.3	Result of GHE	3
2.1	A brain MRI image (Baudraa et al., 2000)	16
2.2	A portal image of a pelvis of a patient (Fielding et)	17
2.3	Tomography slices of teeth (Chai-U-Dom et al.)	17
2.4	Gastric sonogram image (Fu et al., 2000)	17
2.5	Cardiovascular MRI (Fu et al., 2000)	18
2.6	Cephalogram (Sanei et al., 1999)	18
2.7	Neural image (Blomstrand et al., 1999)	18
2.8	Sample medical image before (left) and after (right) HE (Pizer et al., 2003)	19
2.9	Sample cardiovascular image before (left) and after (right) HE (Fu et al., 2000)	19
2.10	Sample brain MRI image before (left) and after (right) HE (Baudraa et al., 2000)	20
2.11	Sample gastric sonogram image before (left) and after (right) HE (Fu et al., 2000)	20
2.12	Sample cephalogram image before (left) and after (right) HE (Sanei et al., 1999)	20
2.13	(Left) Original image (Right) Image after HE	21
2.14	Original (left) and HE enhanced (right) satellite image (Wan et al., 2002)	22

2.15	Satellite image after lineament (white lines) detection (Raghavan et al., 1995)	23
2.16	Gray scale microscopic image and its histogram (Szmaja, 1998)	25
2.17	Image in fig. 2.16 after enhanced by HE (Szmaja, 1998)	26
2.18	Sample outputs of face detection algorithm developed by Heisele et al.(2003)	27
2.19	Eye image before (left column) and after (right column) HE (Li et al., 2001)	28
2.20	Process flow of face verification system developed by Bengio et. al. (2002)	28
2.21	(Left) Original image. (Right) After HE was applied to the bounded skin blobs. (Koh et al., 2002)	29
2.22	Sample face image before (left) and after (right) HE (Ayinde and Yang, 2002)	29
2.23	Ridge structures - an important feature in fingerprint matching (Greenberg et al., 2000)	31
2.24	Fingerprint image before (left) and after (right) histogram equalization. (Greenberg et al., 2000)	31
2.25	Process flow-chart of the algorithm to build panoramic image mosaic developed by Kim et al. (2003)	33
2.26	Sample radar image before (left) and after (right) HE (Olheoft, 2000)	35
2.27	Fringes images showing different mode shape of vibrating surface of computer hard disk. (Kumar et al., 2001)	36
2.28	Combination of sub-blocks	45
2.29	Processes of CLAHE	48
3.1	GUI of the window-based application used to test GHE, BBHE, DSIHE, Multi-peak HE and MMBEBHE	66
3.2	Log ₁₀ (BCGP) of the output images	70

3.3	Log ₁₀ (BCGP) of the output images	70
4.1	Histogram before and after GHE	75
4.2	Histogram before and after equalization with two segments	75
4.3	Histogram before and after equalization with four segments	75
4.4	Histogram before and after RMSHE with $r=0$ (equivalent to GHE)	76
4.5	Histogram before and after RMSHE with $r=1$ (equivalent to BBHE)	77
4.6	Histogram before and after RMSHE with $r=2$	78
4.7	GUI of window application used evaluate RMSHE	82
4.8	GUI of window application used evaluate CLAHE	82
4.9	GUI of window application used evaluate StarkAHE	83
4.10	MCGP of the RMSHE's output image vs. the MCGP of their respective original image	88
4.11	SSIM_CRI vs. SSIM_ORI of RMSHE's output images	89
4.12	MCGP of the CLAHE's output image vs. the MCGP of their respective original image	90
4.13	SSIM_CRI vs. SSIM_ORI of CLAHE's output images	91
4.14	MCGP of the StarkAHE's output image vs. the MCGP of their respective original image	92
4.15	SSIM_CRI vs. SSIM_ORI of StarkAHE's output images	94
5.1	Original image of <i>clock</i>	96
5.2	Histogram of original image <i>clock</i>	96
5.3	Gray level transformation function of conventional GHE	97

5.4	Image <i>clock</i> before (left) and after (right) conventional GHE	98
5.5	Histogram of image <i>clock</i> after conventional GHE	98
5.6	Gray level transformation function of CLAHE, clip limit $= 0.4$	99
5.7	Image <i>clock</i> before (left) and after (right) applying CLAHE, $clip = 0.4$	100
5.8	Histogram of image <i>clock</i> after applying CLAHE, clip $limit = 0.4$	101
5.9	Gray level transformation function of StarkAHE,	102
5.10	$\alpha = 0.65, \beta = 1$ Image <i>clock</i> before (left) and after (right) StarkAHE, $\alpha = 0.65, \beta = 1$	102
5.11	Histogram of image <i>clock</i> after applying StarkAHE, α =0.65, β =1	103
5.12	Gray level transformation function proposed by this thesis	104
5.13	Image clock before (left) and after (right) transformed by the function proposed by the thesis	105
5.14	Histogram of image <i>clock</i> after transformed by function proposed by the thesis	105
5.15	Transformation function after stretching with clipping at upper end	108
5.16	Transformation function after stretching with clipping at lower end	109
5.17	Transformation function after sliding upward	109
5.18	Transformation function after sliding downward	110
5.19	GUI of window application used to evaluate SGHESE	112
5.20	GUI used for the subjective evaluation	113
5.21	MCGP of the SGHESE's output images vs. the MCGP of respective original image	117

5.22	Readings of SSIM_CRI vs. SSIM_ORI of SGHESE's output images	118
5.23	Distribution of the observers' races	119
5.24	Distribution of the observers in group 1,2 and 3	120
5.25	OPL of the output images from all GHE-based methods in study	121
5.26	OPL of the output images from all GHE-based methods in study	121
5.27	AOPL of all the GHE-based methods in study	122

GLOSSARY OF TERMS

AHE	Adaptive Histogram Equalization
AMBE	Absolute Mean Brightness Error
BBHE	Brightness Preserving Bi-Histogram Equalization
BMA	Block Matching Algorithm
CDF	Cumulative Density Function
CLAHE	Clip Limited Adaptive Histogram Equalization
CRT	Cathode Ray Tube
СТ	Computed Tomography
DSIHE	Dualistic Sub-Image Histogram Equalization
DSPI	Digital Speckle Pattern Interferometry
FPGA	Field Programmable Gate Array
GHE	Global Histogram Equalization
GOES	Geostationary Operational Environmental Satellite
GUI	Graphical User Interface
HE	Histogram Equalization
LPF	Low Pass Filter
LRM	Local Range Modification
MaxBE	Maximum Brightness Error
MIDAG	Medical Image Display and Analysis Group
MLE	Multi Level Histogram Equalization
MMBEBHE	Minimum Mean Brightness Error Bi-Histogram Equalization
MRI	Magnetic Resonance Image

MSE	Mean Square Error
-----	-------------------

- PC Personal Computer
- PCA Principal Component Analysis
- PDF Probability Density Function
- POSHE Partially Overlapped Sub-Block HE
- PSNR Peak Signal to Noise Ratio
- RMSHE Recursive Mean-Separate Histogram Equalization
- SEM Scanning Electron Microscope
- SGHESE Scalable Global Histogram Equalization with Selective Enhancement
- SIMD Single Instruction Multiple Data
- SSIM Structural- Similarity-Based Image Assessment
- TIPS TM Image Processing Software

CHAPTER 1

INTRODUCTION

Figure 1.1 shows graph of the forecasted worldwide revenue from digital photo prints, 2002-2008 (Lyra Research Inc, 2004). The graph indicates that digital photo processing is getting more important as the demand for it is expanding rapidly. There are a few types of image processing methods used to process digital photo. One of them is image enhancement. Image enhancement aims to improve the detect-ability of important image details or objects by man or machine (Shapiro and Stockman, 2001). Contrast enhancement, image sharpening and image smoothing are among the most common type of enhancement (Gonzalez and Woods, 2002).

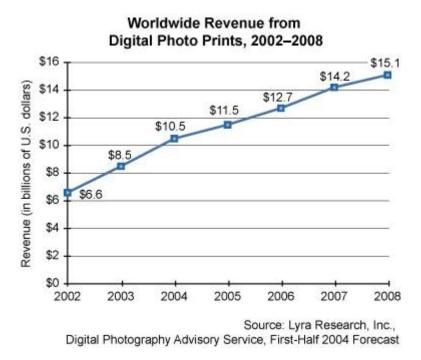


Figure 1.1: Worldwide revenue from digital photo prints, 2002-2008

1.1 Background

The purpose of image contrast enhancement is to increase the visibility of an image. Figure 1.2a and 1.2b show an image before and after contrast enhancement. Notice

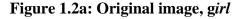


Figure 1.2b: after contrast enhancement

that the image shows better visibility after contrast enhancement. Many methods have been proposed and they can be generally classified into two main categories: intensity-based methods and feature-based methods (Zhu et al., 1999).

In feature-based methods, the ways to extract the feature components to be enhanced must be based on the knowledge about these features. So feature-based methods are often used in special applications such detecting tumor in medical imaging. On the other hand, the intensity-based methods are more general. They are widely used in the preprocessing of various types of image. One of the very popular intensity-based methods is histogram equalization (HE) (Zhu et al., 1999). Intensity-based methods can be further classified into two main categories: global and adaptive methods. In global methods, a single transformation of the image gray levels is applied to the

