UNIVERSITI PUTRA MALAYSIA

THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

KHALED HAMOOD BAYAGOOB

FK 2007 74
THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

By

KHALED HAMOOD BAYAGOOB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2007
DEDICATION

To all Members of my Family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

By

KHALED HAMOOD BAYAGOOB

December 2007

Chairman: Associate Professor Jamaluddin Noorzaei, PhD

Faculty: Engineering

In the present study, a finite element computer code has been developed and is capable for simulating the sequence of construction of the roller compacted concrete dams taking into account the effects of the reservoir water temperature and climatic changes. The probability of cracking can be determined where the variation of the material mechanical properties with time are incorporated using the newly efficient experimental models found in literature.

The developed code has been validated first for some numerical examples found in literature. Then the code has been verified against the monitoring temperatures measured by the installed thermocouples in a real case study in Malaysia where good agreement has been obtained between the code predicted results and monitoring temperatures. Then the developed code has been applied for the simulation of sequence of construction and operation phase taking into account the reservoir water operation affects on the upstream dam side. Realistic and identical thermal and structural responses from both the two-dimensional and the three-dimensional models have been obtained. Thus the two-dimensional model can be sufficiently
used for the analysis of gravity roller compacted concrete dams without losing or sacrificing the accuracy level.

The capability of the developed code has been demonstrated by analyzing a large roller compacted concrete dam of 169 m in height where the impact of the placement schedule on the thermal and structural response has been investigated. The obtained results show that, the placement schedule has significant effect in reducing the tensile stresses at the critical zones of high foundation restraints.

Moreover, the developed code has been applied for the determination of the thermal and structural response of an unsymmetrical double curvature arch concrete dam as a general case. The roller compacted concrete technology has been tried as an alternative to the proposed conventional method utilizing the special code for the discretization of the arch dam gorges which was modified in the present study for roller compacted concrete arch dam problem. High tensile stresses at the dam bottom and the abutment boundaries in the upstream side have been observed. In addition to small regions of high compressive stresses near the abutment sides in the downstream side. Thus, a special attention should be paid to these regions in the design of roller compacted concrete arch dams.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS STRUKTUR DAN TERMA UNTUK EMPANAN KONKRIT TERMAMPAT GOLEK

Oleh

KHALED HAMOOD BAYAGOOB

Disember 2007

Pengerusi: Profesor Jamaluddin Noorzaei, PhD

Fakulti : Kejuruteraan

Dalam kajian ini, satu aturcara unsur-terhingga telah dibangunkan yang mampu melakukan simulasi turutan pembinaan empangan konrit termampat golek yang mengambilkira kesan suhu air takungan serta perubahan cuaca. Kemungkinan dimana retakan akan berlaku juga boleh diraml dimana variasi sifat mekanikal terhadap masa telah digunakan dalam aturcara ini mengambil kira model baru berasaskan kajian literatur.

Aturcara yang dibangunkan ini telah dipastikan ketepatannya dengan beberapa contoh numerikal yang terdapat dalam literatur. Kemudian aturcara ini telah disahkan dengan membandingkan suhu yang diambil di sebuah tapak pembinaan empangan di Malaysia. Keputusan yang memberangsangkan telah diperolehi antara nilai yang diambil di tapak serta nilai simulasi aturcara yang dibangunkan. Kemudian, aturcara yang dibagunkan ini telah digunakan untuk mensimulasi turutan pembinaan di tapak yang mengambilkira kesan kerj-operasi air di bahagian atas empangan. Kelakuan struktur yang tepat serta realistik telah diperolehi antara aturcara yang dibangunkan dengan suhu yang diambil melalui jangkasuhu di tapak pembinaan bagi model tiga-
dimensi serta dua-dimensi. Oleh itu, model dua-dimensi boleh digunakan secara efisien untuk analisis struktur empangan konkrit termampat golek tanpa menjejaskan ketepatan.

Selain itu aturcara yang dibangunkan ini telah digunakan untuk menentukan kelakuan struktur serta terma sebuah empangan dua-lengkungan tidak-simetri sebagai sebuah contoh biasa. Teknologi konkrit termampat golek telah dikaji sebagai alternatif kepada konkrit biasa dengan menggunakan kaedah konvensional untuk diskretasi empangan gerbang dan mengubahsuaikannya untuk analisis empangan jenis konkrit termampat golek. Tegasan tegangan yang tinggi di bahagian bawah empangan serta di bahagian sempadan abutmen telah dikenalpasti.

ACKNOWLEDGEMENTS

Praises and thanks for the Almighty Allah S. W. T. for giving me the strength, health and wisdom to complete this Degree successfully.

I would like to express my deepest gratitude to my supervisor Prof. Dr. Jamaluddin Noorzaei for his kind supervision, guidance, and valuable suggestions. I have learned a lot from his thorough and insightful review of this study and his dedication to achieve high quality and practical research.

I am grateful to all my supervisory committee members; Assoc. Prof. Dr. Mohd Saleh Jaafar and Prof. Dr. Waleed A. M. Thanoon for their advices and suggestions during this study.

I am grateful to Lembaga Air Perak and Angkasa GHD SDN Bhd in Malaysia for their encouragement and help in giving the data of Kinta RCC dam that have been used in the verification of the developed finite element code in the present study.

Also, I am gratefully acknowledge Hadhramout University for their financial support during the course of this study which gave me the opportunity to pursue my study in Malaysia.
I certify that an Examination Committee has met on 7th December 2007 to conduct the final examination of Khaled Hamood Bayagoob on his Doctor of Philosophy thesis entitled “Thermal and Structural Analyses of Roller Compacted Concrete Dams” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohd. Razali Abd. Kadir, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Bujang Kim Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdallah I. Husein Malkawi, PhD
Professor
Geotechnical and Dam Engineering
Jordan University of Science and Technology
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21st February 2008

Ahli Jawatankuasa Pemeriksa adalah seperti berikut:

Mohd. Razali Abd. Kadir, PhD
Profesor Madya
Fakulti Kejuruteraan
Universiti Putra Malaysia
(Pengerusi)

Bujang Kim Huat, PhD
Profesor
Fakulti Kejuruteraan
Universiti Putra Malaysia
(Pemeriksa Dalam)

Abdul Halim Ghazali, PhD
Profesor Madya
Fakulti Kejuruteraan
Universiti Putra Malaysia
(Pemeriksa Dalam)

Abdallah I. Husein Malkawi, PhD
Profesor
Fakulti Kejuruteraan
Jordan University of Science and Technology
(Pemeriksa Luar)

HASANAH MOHD. GHAZALI, PhD
Profesor dan Timbalan Dekan
Sekolah Pengajian Siswazah
Universiti Putra Malaysia

Tarikh: 21 Februari 2008
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jamaloddine Noorzaei, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Saleh Jaafar, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Waleed A. M. Thanoon, PhD
Professor
Faculty of Engineering
Universiti Technology Petronas
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21st February 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALED HAMOOD BAYAGOOB

Date: 1st February 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF NOTATIONS AND ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**
 2.1 General
 2.2 Thermal and Structural Analysis of RCC Gravity Dams
 2.3 Thermal and Structural Analysis of Arch RCC Dams
 2.4 Mechanical Properties and Constitutive Relationships of RCC Materials
 2.5 Concluding Remarks

3. **METHODOLOGY**
 3.1 General
 3.2 Finite Element Formulation of the Continuum Mechanics
 3.2.1 Conventional Isoperimetric Finite Elements
 3.2.2 Interface Isoparametric Finite Element Formulation
 3.3 RCC Material Constitutive Relationship
 3.3.1 Linear Elastic Constitutive Relationship
 3.3.2 Elasto-plastic Constitutive Relationship
 3.3.3 Interface Element Material Constitutive Relationship
 3.4 Simplified Crack Analysis
 3.5 Finite Element Formulation of the Heat Transfer Problem
 3.5.1 Finite Element Solution of the Heat Transfer Problem
 3.5.2 Contact Resistance Element Formulation for Heat Transfer Problem
 3.5.3 Time Step Solution of the Heat Equation
 3.5.4 Initial Conditions in the Heat Transfer Problems
 3.5.5 Simulation of the Boundary Conditions in RCC Dams
 3.5.6 Heat of Hydration in RCC/Concrete
 3.5.7 Convection Heat Transfer Coefficient h
 3.5.8 Calculations of the Ambient Temperature
 3.5.9 Water Structure Interaction
 3.6 Finite Element Idealization of the RCC Arch Dam
 3.6.1 Arch Dam Body Idealization
 3.6.2 Arch Dam Foundation Modeling
3.7 Concluding Remarks

4 COMPUTATIONAL STRATEGIES, CODING AND VERIFICATION
4.1 General
4.2 Computational Strategies for Thermal Analysis
 4.2.1 Simulation of Sequence of Construction
 4.2.2 Solution steps and Algorithm for Thermal Analysis
4.3 Computational Strategies for Structural Analysis
 4.3.1 Linear Elastic Stress Analysis
 4.3.2 Elasto-Plastic Analysis
4.4 Host Finite Element Program
4.5 Development of the Finite Element Code
 4.5.1 Main Program
 4.5.2 Main Subroutines
 4.5.3 Auxiliary subroutines
4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses
 4.6.1 Verification of the Developed Code for Thermal Analysis
 4.6.2 Verification of the Developed Code for Structural Analysis
4.7 Conclusion

5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS
5.1 General
5.2 Analysis of Kinta RCC Dam
 5.2.1 Description of Kinta RCC Dam
 5.2.2 Problem Modeling
 5.2.3 Two-dimensional Thermal and Structural Analysis of Kinta Dam
 5.2.4 Three-dimensional Thermal and Structural Analysis
 5.2.5 Simplified crack analysis
5.3 Analysis of Roodbar RCC Dam
 5.3.1 Problem Definition
 5.3.2 Problem Modeling
 5.3.3 Thermal Analysis of Roodbar RCC Dam
 5.3.4 Structural Response of Roodbar
5.4 Summary and Conclusions
 5.4.1 Thermal Response of RCC Dams
 5.4.2 Structural Response of RCC Dams

6 THERMAL AND STRUCTURAL ANALYSIS OF RCC ARCH DAMS
6.1 General
6.2 Geometry of Ostour Dam
6.3 Finite Element Modeling
6.4 Material Properties and Site Condition
6.5 Construction Schedule
6.6 Simulation of the Initial Conditions
6.6.1 Determination of the Initial Foundation Temperature 216
6.6.2 RCC Placement Temperature 217
6.7 Thermal Response of Ostour RCC Arch Dam 218
6.8 Structural Response of Ostour RCC Arch Dam 221
6.9 Summary and Conclusions 234
6.9.1 Thermal Response of RCC Arch Dams 234
6.9.2 Structural Response of RCC Arch Dams 235

7 SUMMARY AND CONCLUSION 237

REFERENCES 244
APPENDICES 251
BIODATA OF STUDENT 256
LIST OF PUBLICATIONS 257
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Material Properties of the RCC Model Block</td>
<td>122</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of Vertical Deflections (in mm)</td>
<td>128</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of Bending Stresses σ_x (N/mm2)</td>
<td>129</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of Vertical Deflections (in mm)</td>
<td>129</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of Bending Stresses σ_x (N/mm2)</td>
<td>129</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of Bending Stresses along the Inner Beam Radius</td>
<td>131</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of Shear Stresses along the Outer Beam Radius</td>
<td>132</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of Deflection (x-displacement) at the Free End (mm)</td>
<td>132</td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison of Bending Stresses along the Upper Outer Radius</td>
<td>132</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of Shear Stresses along the Lower Outer Radius</td>
<td>133</td>
</tr>
<tr>
<td>4.11</td>
<td>Comparison of Displacements along the Upper Outer Radius</td>
<td>133</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison of Normal Stresses along the Inner Radius</td>
<td>134</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of Shear Stresses along the Outer Beam Radius</td>
<td>134</td>
</tr>
<tr>
<td>4.14</td>
<td>Comparison of Displacements along the Upper Outer Radius</td>
<td>134</td>
</tr>
<tr>
<td>5.1</td>
<td>Thermal and structural properties of Kinta dam</td>
<td>149</td>
</tr>
<tr>
<td>5.2</td>
<td>Elasto-plastic RCC Material Properties</td>
<td>186</td>
</tr>
<tr>
<td>5.3</td>
<td>Max. and Min. Elasto-plastic stresses due to L.F 0.5, 0.75, and 1.0</td>
<td>191</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of linear and elasto-plastic stresses</td>
<td>192</td>
</tr>
<tr>
<td>6.1</td>
<td>Material Properties for Ostour Arch Dam</td>
<td>213</td>
</tr>
<tr>
<td>6.2</td>
<td>Average Monthly Recorded Temperatures Close to Ostour Dam Site (Mianeh City - www.weather.ir)</td>
<td>214</td>
</tr>
<tr>
<td>6.3</td>
<td>Predicted Minimum and Maximum Principal Stresses from Linear Analysis</td>
<td>233</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Distribution of RCC Dams throughout the World at the End of 2002 (Completed and Under Construction, Dunstan 2003)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of Thermal Study Process (Tatro and Schrader, 1992)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Reservoir water temperature approximation (Koga et al. 2003)</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Temporal Development of the RCC Static Elastic Modulus (Conrad, et. al. 2003)</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>RCC Shear test result (Filho et al. 2003)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Study Methodology Flow Chart</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Three-dimensional Body under the Action of Different Loads</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Geometry of the Interface Element</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Vertical Contraction Joints in an Arch RCC Dam</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Kinds of Contraction Joints in Arch Dams</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Constitutive Relationships for the Interface Element</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>Thermal Boundary Conditions</td>
<td>66</td>
</tr>
<tr>
<td>3.8</td>
<td>Foundation Block Modeling</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Creation of the Convection Boundaries</td>
<td>77</td>
</tr>
<tr>
<td>3.10</td>
<td>Adiabatic Temperature Rise of Mass Concrete (ACI, 207-1R)</td>
<td>79</td>
</tr>
<tr>
<td>3.11</td>
<td>Willow Creek dam RCC Mixes Adiabatic Temperature Rise (ACI, 207-5R)</td>
<td>79</td>
</tr>
<tr>
<td>3.12</td>
<td>Water-Structure Interaction Idealization</td>
<td>83</td>
</tr>
<tr>
<td>3.13</td>
<td>Water Structure Interaction Convection Boundaries</td>
<td>83</td>
</tr>
<tr>
<td>3.14</td>
<td>ADAP Code Idealization of Concrete Arch Dam Body</td>
<td>85</td>
</tr>
<tr>
<td>3.15</td>
<td>Arch dam body modeling</td>
<td>86</td>
</tr>
<tr>
<td>3.16</td>
<td>Modified arch dam body idealization</td>
<td>87</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.18</td>
<td>Curved cantilever beam</td>
<td>130</td>
</tr>
<tr>
<td>4.19</td>
<td>FE Discretization of the Curved Cantilever Beam</td>
<td>131</td>
</tr>
<tr>
<td>4.20</td>
<td>Comparison of Elasto-plastic Response of a Curved Beam</td>
<td>136</td>
</tr>
<tr>
<td>4.21</td>
<td>Comparison of Elasto-plastic Stress at the Fixed End for the Inner</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Surface of a Curved Beam in Plan</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Cantilever beam FE Modelling with Interface Element at Different</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Deflection of a Cantilever Beam with IE under Point Load</td>
<td>139</td>
</tr>
<tr>
<td>4.24</td>
<td>Deflection of a cantilever beam with IE due to moment at the Free</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>End</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Deflection of a Cantilever Beam with IE due to varying Normal</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Stiffness kn</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Deflection of a Cantilever Beam due to Shear Stiffness ks Variation</td>
<td>142</td>
</tr>
<tr>
<td>5.1</td>
<td>Typical Cross Section of Kinta Dam</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Site Plan of Kinta Dam</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Thermocouples Locations of the Kinta Dam Deepest Block</td>
<td>151</td>
</tr>
<tr>
<td>5.4</td>
<td>Kinta Dam Construction Progress up to Stage No. 10</td>
<td>151</td>
</tr>
<tr>
<td>5.5</td>
<td>2-D Finite Element Mesh for Stage No. 10 under Construction</td>
<td>152</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of Predicted and Monitoring Temperatures at Level</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>169 m</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of Predicted and Monitoring Temperatures at Level</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>179m</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Temperatures Distributions (in °C) for Stage No.10</td>
<td>155</td>
</tr>
<tr>
<td>5.9</td>
<td>Construction Schedule of Kinta Dam</td>
<td>156</td>
</tr>
<tr>
<td>5.10</td>
<td>Monthly and Average Recorded Daily Temperatures at the Kinta Dam</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Temperature Distribution after Completing the Dam Construction</td>
<td>157</td>
</tr>
<tr>
<td>5.12</td>
<td>Water Interaction FE Idealization</td>
<td>159</td>
</tr>
</tbody>
</table>
5.13 Temperature Distribution after the Complete Filling the Dam Reservoir

5.14 Reservoir Operation

5.15 Water- Dam Body Interaction Thermal Responses for Five Years of Reservoir Operation

5.16 Distributions of Principal Stresses at the End of Dam Construction

5.17 Distributions of Principal Stresses after Reservoir Complete Filling

5.18 Distributions of Principal Stresses after Dam Construction by Five Years

5.19 Variation of the Crack Index at the Dam Bottom using 2-D model

5.20 3-D Finite Element Mesh for Stage No. 10

5.21 Comparison of Predicted and Monitoring Temperatures at Level 169 m

5.22 Comparison of predicted and Monitoring Temperatures at Level 179 m

5.23 Comparison between 2D and 3D predicted temperatures at level 169 m

5.24 3-D Temperature Distribution after Completing the Dam Construction

5.25 3-D Water Interaction Idealization

5.26 3-D Temperature Distribution after the Complete Filling the Dam Reservoir

5.27 3-D Water- Dam Body Interaction Thermal Responses After Five Years of Reservoir Operation

5.28 3-D Principal Stresses Distributions after End of Construction

5.29 3-D Principal Stresses Distributions after 5 Years of Dam Construction

5.30 Variation of the Crack Index at the Dam Bottom using 3-D model

5.31 2-D and 3-D Upstream Displacements

5.32 3-D Elasto-Plastic Principal Stresses Distributions after 5-Years of Dam Construction Due to 0.5 Load Factor
5.33 3-D Elasto-Plastic Principal Stresses Distributions after 5 Years of Dam Construction Due to 0.75 Load Factor

5.34 3-D Elasto-Plastic Principal Stresses Distributions after 5 Years of Dam Construction Due to 1.0 Load Factor

5.35 No. of Yielded Nodes per Load Increments due to Elasto-plastic Analysis

5.36 Elasto-plastic Yielded Contours

5.37 Roodbar Dam Cross Section

5.38 2-D Finite Element Idealization of the RCC Roodbar Dam

5.39 Roodbar Construction Progress

5.40 Average Monthly Air Temperatures at Roodbar Dam Site

5.41 Temperature Variations along the Depth of the Foundation Block for July and December Schedules

5.42 Temperature Distributions for Stage 25th

5.43 Temperature Distributions at the End of Construction

5.44 Distributions of Principal Stresses at the End of Construction of Stage No. 61 For July Starting Schedule

5.45 Distributions of Principal Stresses at the End of Construction of Stage No. 61 for December Starting Schedule

5.46 Variation of the Crack Index for July Schedule

5.47 Variation of the Crack Index for December Schedule

6.1 Ostour Original Gorge View

6.2 Finite Element Modeling of the Block Foundation of Ostour Dam

6.3 Finite Element Modeling of the Ostour Dam Body

6.4 Finite Element Modeling of the Ostour Dam

6.5 Ostour Dam Construction Schedule

6.6 Foundation Block Initial Temperature Distributions

6.7 Temperatures Distribution Through the Crown Cantilever and different Horizontal Sections at the End of Construction
6.8 Temperatures distribution through the crown cantilever and different levels after five year of the end of construction

6.9 Principal Stress Distribution (σ_1) at the End of Dam Construction

6.10 Principal Stress Distribution (σ_2) at the End of Dam Construction

6.11 Principal Stress Distribution (σ_3) at the End of Dam Construction

6.12 Principal Stress Distribution (σ_1) after five years of the Dam Construction

6.13 Principal Stress Distribution (σ_2) after five years of the Dam Construction

6.14 Principal Stress Distribution (σ_3) after five years of the Dam Construction
LIST OF NOTATIONS AND ABBREVIATIONS

Latin Upper Case

\(A \) area
\(B_w \) block width of the dam
\(\overline{B} \) strain-displacement matrix
\([B] \) strain-displacement matrix
\([C] \) capacitance matrix
\(C_1, C_2, C_3 \) elasto-plastic yield surface constants
\([D] \) global element elastic rigidity matrix
\(\overline{D} \) local elastic rigidity matrix for joint element
\(D_{ep} \) elasto-plastic rigidity matrix
\(E \) material elastic modulus
\(E_c \) concrete elastic modulus
\(\{ F \} \) vector of equilibrated nodal force
\(I_1 \) first stress invariant tensor
\(J \) Jacobian matrix
\(J_2 \) second stress invariant tensor
\(J_3 \) third stress invariant tensor
\(K_f \) foundation restraint factor
\(K_R \) structure restraint factor
\([K] \) element stiffness matrix
\(L \) loading criterion for a joint element
\(N_i \) shape function at node \(i \)
\(Q \) heat transfer rate per unit area
\(\dot{Q} \)
heat of hydration rate per unit volume

\(\{R\} \)
nodal point applied external load vector

\(\{R\} \)
unbalanced (residual) nodal load vector

\(\{T\}^e \)
vector of element nodal temperatures

\(T \)
temperature

\(T_{\text{ad}} \)
adiabatic temperature rise

\(T_f \)
the temperature of the fluid surface

\(T_{\text{max}} \)
maximum adiabatic temperature rise

\(T_s \)
the temperature of the solid surface

\(\{T\}^e \)
vector of element nodal temperatures variation with time

\(V \)
winds speed

\(W_{cr} \)
permissible dam crack width

Latin Lower Case

\(a \)
Plastic flow vector

\(a_1, a_2, a_3 \)
Plastic flow subvectors

\(c \)
specific heat coefficient

\(c \)
Cohesion coefficient

\(\{d\delta\} \)
virtual displacement vector

\(dV \)
elemental volume

\(f_c \)
compression strength

\(f_t \)
tensile strength

\(h \)
convection heat transfer coefficient

\(h_c \)
concrete convection heat transfer coefficient

\(h_f \)
wind convection heat transfer coefficient
\(k_n \) normal stiffness of the joint element
\(k_s \) shear stiffness of the joint element
\(k_{x}, k_{y}, k_{z} \) thermal conductivity coefficients in \(x, y, \) and \(z \) direction
\(l_{x}, l_{y}, l_{z} \) direction cosines of the outward surface normal in \(x, y, \) and \(z \) respectively
\(q \) heat flux
\(q_c \) convection heat transfer rate
\(q_r \) radiation heat transfer rate
\(t \) time
\(u \) tangential and normal displacements respectively
\(v \) tangential and normal displacements respectively
\(w \) tangential and normal displacements respectively
\(x, y, z \) cartesian coordinate system
\{p\} surface traction forces
\{g\} distributed body forces

Greek Upper Case

\{\Delta F\} incremental load vector
\{\Delta \delta\} incremental nodal displacements vector
\{\Delta \varepsilon\} incremental strains vector
\{\Delta \sigma\} incremental stress vector

Greek Lower Case

\(\alpha \) hydration heat rate parameter
\(\beta \) shear modulus reduction factor