

UNIVERSITI PUTRA MALAYSIA

THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

KHALED HAMOOD BAYAGOOB

FK 2007 74

THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

By

KHALED HAMOOD BAYAGOOB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2007

DEDICATION

To all Members of my Family

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

THERMAL AND STRUCTURAL ANALYSES OF ROLLER COMPACTED CONCRETE DAMS

By

KHALED HAMOOD BAYAGOOB

December 2007

Chairman: Associate Professor Jamaluddin Noorzaei, PhD

Faculty : Engineering

In the present study, a finite element computer code has been developed and is capable for simulating the sequence of construction of the roller compacted concrete dams taking into account the effects of the reservoir water temperature and climatic changes. The probability of cracking can be determined where the variation of the material mechanical properties with time are incorporated using the newly efficient experimental models found in literature.

The developed code has been validated first for some numerical examples found in literature. Then the code has been verified against the monitoring temperatures measured by the installed thermocouples in a real case study in Malaysia where good agreement has been obtained between the code predicted results and monitoring temperatures. Then the developed code has been applied for the simulation of sequence of construction and operation phase taking into account the reservoir water operation affects on the upstream dam side. Realistic and identical thermal and structural responses from both the two-dimensional and the three-dimensional models have been obtained. Thus the two-dimensional model can be sufficiently

used for the analysis of gravity roller compacted concrete dams without losing or sacrificing the accuracy level.

The capability of the developed code has been demonstrated by analyzing a large roller compacted concrete dam of 169 m in height where the impact of the placement schedule on the thermal and structural response has been investigated. The obtained results show that, the placement schedule has significant effect in reducing the tensile stresses at the critical zones of high foundation restraints.

Moreover, the developed code has been applied for the determination of the thermal and structural response of an unsymmetrical double curvature arch concrete dam as a general case. The roller compacted concrete technology has been tried as an alternative to the proposed conventional method utilizing the special code for the discretization of the arch dam gorges which was modified in the present study for roller compacted concrete arch dam problem. High tensile stresses at the dam bottom and the abutment boundaries in the upstream side have been observed. In addition to small regions of high compressive stresses near the abutment sides in the downstream side. Thus, a special attention should be paid to these regions in the design of roller compacted concrete arch dams.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS STRUKTUR DAN TERMA UNTUK EMPANGAN KONKRIT TERMAMPAT GOLEK

Oleh

KHALED HAMOOD BAYAGOOB

Disember 2007

Pengerusi: Profesor Jamaluddin Noorzaei, PhD

Fakulti : Kejuruteraan

Dalam kajian ini, satu aturcara unsur-terhingga telah dibangunkan yang mampu melakukan simulasi turutan pembinaan empangan konrit termampat golek yang mengambilkira kesan suhu air takungan serta perubahan cuaca. Kemungkinan dimana retakan akan berlaku juga boleh diramal dimana variasi sifat mekanikal terhadap masa telah digunakan dalam aturcara ini mengambil kira model baru berasaskan kajian literatur.

Aturcara yang dibangunkan ini telah dipastikan ketepatannya dengan beberapa contoh numerikal yang terdapat dalam literatur. Kemudian aturcara ini telah disahkan dengan membandingkan suhu yang diambil di sebuah tapak pembinaan empangan di Malaysia. Keputusan yang memberangsangkan telah diperolehi antara nilai yang diambil di tapak serta nilai simulasi aturcara yang dibangunkan. Kemudian, aturcara yang dibagunkan ini telah digunakan untuk mensimulasi turutan pembinaan di tapak yang mengambilkira kesan kerj- operasi air di bahagian atas empangan. Kelakuan struktur yang tepat serta realistik telah diperolehi antara aturcara yang dibangunkan bagi model tiga-

dimensi serta dua-dimensi. Oleh itu, model dua-dimensi boleh digunakan secara efisyen untuk analisis struktur empangan konkrit termampat golek tanpa menjejaskan ketepatan.

Selain itu aturcara yang dibangunkan ini telah digunakan untuk menentukan kelakuan struktur serta terma sebuah empangan dua-lengkungan tidak-simetri sebagai sebuah contoh biasa. Teknologi konkrit termampat golek telah dikaji sebagai alternatif kepada konkrit biasa dengan menggunakan kaedah konvensional untuk diskretasi empangan gerbang dan mengubahsuaikannya untuk analisis empangan jenis konkrit termampat golek. Tegasan tegangan yang tinggi di bahagian bawah empangan serta di bahagian sempadan abutmen telah dikenalpasti.

Julat serta kebolehan aturcara yang dibangunkan ini telah ditunjukkan dengan menganalisis sebuah empangan konkrit termampat golek besar dengan ketinggian 169 meter dimana kesan turutan letakan konkrit di tapak pembinaan terhadap kelakuan struktur serta terma telah dikaji secara mendalam. Keputusan kajian menunjukkan bahawa kesan turutan letakan konkrit di tapak pembinaan memainkan peranan penting dalam menurunkan tegasan tegangan di bahagian-bahagian kritikal seperti di bahagian asas empangan. Juga dilihat bahawa terdapat tegasan mampatan yang tinggi di beberapa kawasan abutmen bahagian bawah empangan. Oleh itu, perhatian yang lebih perlu diberikan oleh para jurutera empangan kepada bagahianbahagian tersebut dalam rekabentuk empangan konkrit termampat golek.

ACKNOWLEDGEMENTS

Praises and thanks for the Almighty Allah S. W. T. for giving me the strength, health and wisdom to complete this Degree successfully.

I would like to express my deepest gratitude to my supervisor Prof. Dr. Jamaluddin Noorzaei for his kind supervision, guidance, and valuable suggestions. I have learned a lot from his thorough and insightful review of this study and his dedication to achieve high quality and practical research.

I am grateful to all my supervisory committee members; Assoc. Prof. Dr. Mohd Saleh Jaafar and Prof. Dr. Waleed A. M. Thanoon for their advices and suggestions during this study.

I am grateful to Lembaga Air Perak and Angkasa GHD SDN Bhd in Malaysia for their encouragement and help in giving the data of Kinta RCC dam that have been used in the verification of the developed finite element code in the present study.

Also, I am gratefully acknowledge Hadhramout University for their financial support during the course of this study which gave me the opportunity to pursue my study in Malaysia.

I certify that an Examination Committee has met on 7th December 2007 to conduct the final examination of Khaled Hamood Bayagoob on his Doctor of Philosophy thesis entitled "Thermal and Structural Analyses of Roller Compacted Concrete Dams" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Mohd. Razali Abd. Kadir, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Bujang Kim Huat, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Abdul Halim Ghazali, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Abdallah I. Husein Malkawi, PhD

Professor Geotechnical and Dam Engineering Jordan University of Science and Technology (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21st February 2008

Saya mengesahkan bahawa satu Jawatankuasa Pemeriksa telah berjumpa pada 7 Disember 2007 untuk menjalankan peperiksaan akhir bagi Khaled Hamood Bayagoob untuk menilai tesis Doktor Falsafah beliau yang bertajuk "ANALISIS STRUKTUR DAN TERMA UNTUK EMPANGAN KONKRIT TERMAMPAT GOLEK" mengikut Akta Universiti Pertanian Malaysia (Ijazah Lanjutan) 1980 dan Peraturan Universiti Pertanian Malaysia (Ijazah Lanjutan) 1981. Jawatankuasa Pemeriksa tersebut telah memperakukan bahawa calon ini layak dianugerahi ijazah Doktor Falsafah.

Ahli Jawatankuasa Pemeriksa adalah seperti berikut:

Mohd. Razali Abd. Kadir, PhD

Profesor Madya Fakulti Kejuruteraan Universiti Putra Malaysia (Pengerusi)

Bujang Kim Huat, PhD

Profesor Fakulti Kejuruteraan Universiti Putra Malaysia (Pemeriksa Dalam)

Abdul Halim Ghazali, PhD

Profesor Madya Fakulti Kejuruteraan Universiti Putra Malaysia (Pemeriksa Dalam)

Abdallah I. Husein Malkawi, PhD

Profesor Fakulti Kejuruteraan Jordan University of Science and Technology (Pemeriksa Luar)

HASANAH MOHD. GHAZALI, PhD

Profesor dan Timbalan Dekan Sekolah Pengajian Siswazah Universiti Putra Malaysia

Tarikh: 21 Februari 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jamaloddine Noorzaei, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Saleh Jaafar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Waleed A. M. Thanoon, PhD Professor Faculty of Engineering Universiti Technology Petronas

(Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21st February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALED HAMOOD BAYAGOOB

Date: 1st February 2008

TABLE OF CONTENTS

Page

DEDICATIONiABSTRACTiiABSTRAKvACKNOWLEDGEMENTSviACKNOWLEDGEMENTSviAPPROVALviiDECLARATIONxLIST OF TABLESxvLIST OF FIGURESxvLIST OF NOTATIONS AND ABBREVIATIONSxxi			ii iii v viii viii xi xv xvi xvi xxii
CHAPTE	R		
1	INT	RODUCTION	1
2	LIT 2.1 2.2 2.3 2.4	ERATURE REVIEW General Thermal and Structural Analysis of RCC Gravity Dams Thermal and Structural Analysis of Arch RCC Dams Mechanical Properties and Constitutive Relationships of RCC Materials	9 9 10 25 27
	2.5	Concluding Remarks	34
3	ME 3.1 3.2	FHODOLOGY General Finite Element Formulation of the Continuum Mechanics 3.2.1 Conventional Isoperimetric Finite Elements	36 36 38 41 43
	3.3	 S.2.2 Interface Isoparametric Finite Element Formulation RCC Material Constitutive Relationship 3.3.1 Linear Elastic Constitutive Relationship 3.3.2 Elasto-plastic Constitutive Relationship 3.3.3 Interface Element Material Constitutive Relationship 	47 47 47 49 53
	3.4 3.5	Simplified Crack Analysis Finite Element Formulation of the Heat Transfer Problem	61 63
		3.5.1 Finite Element Solution of the Heat Transfer Problem3.5.2 Contact Resistance Element Formulation for Heat Transfer Problem	64 69
	3.6	 3.5.3 Time Step Solution of the Heat Equation 3.5.4 Initial Conditions in the Heat Transfer Problems 3.5.5 Simulation of the Boundary Conditions in RCC Dams 3.5.6 Heat of Hydration in <i>RCC</i>/Concrete 3.5.7 Convection Heat Transfer Coefficient <i>h</i> 3.5.8 Calculations of the Ambient Temperature 3.5.9 Water Structure Interaction Finite Element Idealization of the RCC Areh Dam 	73 74 76 77 80 80 81
	3.0	3.6.1 Arch Dam Body Idealization3.6.2 Arch Dam Foundation Modeling	84 84 87

4 COMPUTATIONAL STRATEGIES, CODING AND 95 VERIFICATION 95 4.1 General 95 4.2 Computational Strategies for Thermal Analysis 95 4.2.1 Simulation of Sequence of Construction 95 4.2.2 Solution steps and Algorithm for Thermal Analysis 96 4.3 Computational Strategies for Structural Analysis 99 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.3.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 114 Structural Analyses 114 114 4.6.1 Verification of the Developed Code for Structural Analysis 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 <		3.7	Concluding Remarks	93
VERTICATION 4.1 General 95 4.2 Computational Strategies for Thermal Analysis 95 4.2.1 Solution steps and Algorithm for Thermal Analysis 96 4.3 Computational Strategies for Structural Analysis 97 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.4 Host Finite Element Program 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.6.1 Verification of the Developed FE Code for the Thermal and 114 Analysis 4.6.1 Verification of the Developed Code for Structural 126 Analysis 4.6.2 Verification of the Developed Code for Structural 126 GRAVITY DAMS 13 142 143 142 144 15.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 143 150 Results of Kinta Dam 150 S.2.3 Two-dimens	4	CON	APUTATIONAL STRATEGIES, CODING AND	95
4.1 Computational Strategies for Thermal Analysis 95 4.2.1 Simulation of Sequence of Construction 95 4.2.2 Solution steps and Algorithm for Thermal Analysis 96 4.3 Computational Strategies for Structural Analysis 97 4.3 Linear Elastic Stress Analysis 99 4.3.1 Linear Elastic Stress Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 101 4.6 Verification of the Developed FE Code for the Thermal and Structural Analysis 114 4.6.1 Verification of the Developed Code for Structural Analysis 126 4.6.2 Verification of the Developed Code for Structural Analysis 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 150 Results of Kinta Dam <td< th=""><th></th><th>V E K 4 1</th><th>General</th><th>05</th></td<>		V E K 4 1	General	05
4.2 Computation of Sequence of Construction 95 4.2.1 Simulation of Sequence of Construction 95 4.3.2 Computational Strategies for Structural Analysis 96 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.3.1 Linear Elastic Stress Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analysis 114 4.6.1 Verification of the Developed Code for Structural Analysis 126 Analysis 4.6.2 Verification of the Developed Code for Structural Analysis 142 5.1 General 143 143 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 150 145 152.2 141 5.2.4 Three-dimensional Thermal and Structural Analysi		4.1	Computational Stratagies for Thermal Analysis	95
4.2.1 Solution of by said Algorithm for Thermal Analysis 96 4.3 Computational Strategies for Structural Analysis 97 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Subroutines 105 4.5.2 Main Subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and 114 Analysis 4.6.1 Verification of the Developed Code for Structural 126 Analysis 4.6.2 Verification of the Developed Code for Structural 126 GRAVITY DAMS 5.1 General 143 142 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.2 Problem Modeling 145		4.2	4.2.1 Simulation of Sequence of Construction	95
4.3 Computational Strategies for Structural Analysis 90 4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analysis 114 5.1 Verification of the Developed Code for Structural Analysis 126 6.1 Verification of the Developed Code for Structural Analysis 143 5.2 Verification of the Developed Code for Structural Analysis 143 5.1 General 143 5.2 Problem Modeling 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 144 5.3.1 Problem Modeling 194 5.3.2 Simplified cra			4.2.2 Solution steps and Algorithm for Thermal Analysis	96
4.3.1 Linear Elastic Stress Analysis 99 4.3.2 Elasto-Plastic Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 101 4.6 Verification of the Developed FE Code for the Thermal and 114 Structural Analyses 4.6.1 Verification of the Developed Code for Structural Analysis 4.6.1 Verification of the Developed Code for Structural Analysis 126 Analysis 4.6.2 Verification of the Developed Code for Structural Analysis 142 5.1 General 143 143 144 126 GRAVITY DAMS 143 15.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 145 5.2.2 Problem Modeling 145 5.2.2 Problem Modeling 193 153 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling		43	Computational Strategies for Structural Analysis	97
4.3.2 Elasto-Plastic Analysis 99 4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and 114 Structural Analyses 4.6.1 Verification of the Developed Code for Thermal Analysis 4.6.2 Verification of the Developed Code for Structural 126 Analysis 4.6.2 Verification of the Developed Code for Structural 126 Analysis 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Modeling 195 5.3.3 Theread Response of Rodb		4.5	A 3.1 Linear Elastic Stress Analysis	00
4.4 Host Finite Element Program 104 4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analysis 114 4.6.1 Verification of the Developed Code for Structural Analysis 126 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.3.1 Problem Modeling 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Modeling 195 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Rood			4.3.2 Flasto-Plastic Analysis	90
4.5 Development of the Finite Element Code 104 4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subrottines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 114 4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.1 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC IA3 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 144 5.2.1 Problem Modeling 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.3 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.1 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 206		44	Host Finite Flement Program	104
4.5.1 Main Program 104 4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 114 4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 S.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of RCC Dams 206 5.4		45	Development of the Finite Element Code	104
4.5.2 Main Subroutines 105 4.5.3 Auxiliary subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 114 4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2.2 Problem Modeling 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 144 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 168 5.2.5 Simplified crack analysis 193 168 194 5.3.1 Problem Definition 194 194 194 5.3.2 Problem Definition 194 194 13.3 106 5.3.4 Structural Response of Roodbar 201 201 2.4 <td></td> <td>1.5</td> <td>4 5 1 Main Program</td> <td>104</td>		1.5	4 5 1 Main Program	104
4.5.3 Auxiliary subroutines 110 4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 114 4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2.1 Description of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 194 5.3.4 Structural Response of Roodbar 201 5.4 Thermal Response of Rocd Dams 206 5.4.1 Thermal Response of RCC Dams 206 5.4.1 Thermal Response of RCC Dams 207 207<			4.5.2 Main Subroutines	105
4.6 Verification of the Developed FE Code for the Thermal and Structural Analyses 114 4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 150 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 193 5.3 Thereal Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Response of Roodbar RCC Dam 209 206 5.4.1 Thermal Response of RCC Dams 206			453 Auxiliary subroutines	110
Structural Analyses 4.6.1 Verification of the Developed Code for Thermal Analysis 4.6.2 Verification of the Developed Code for Structural Analysis 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 5.2 Thermal Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209		4.6	Verification of the Developed FE Code for the Thermal and	114
4.6.1 Verification of the Developed Code for Thermal Analysis 114 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam 168 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 <t< td=""><td></td><td>1.0</td><td>Structural Analyses</td><td>111</td></t<>		1.0	Structural Analyses	111
Analysis 4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 GRAVITY DAMS 144 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 153 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 206 5.4.2 Structural Response of RCC Dams 206 5.4.1 Thermal Response of RCC Dams 207 207 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC			4.6.1 Verification of the Developed Code for Thermal	114
4.6.2 Verification of the Developed Code for Structural Analysis 126 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 15.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Structural Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 206 207 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 209 6.2 Geometry of Ostou			Analysis	111
Analysis 120 4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC 143 GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 168 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Structural Response of RCC Dams 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 ARCH DAMS 210 211			4.6.2 Verification of the Developed Code for Structural	126
4.7 Conclusion 142 5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam 150 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 <t< td=""><td></td><td></td><td>Analysis</td><td>120</td></t<>			Analysis	120
5 THERMAL AND STRUCTURAL ANALYSIS OF RCC GRAVITY DAMS 143 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 144 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam 168 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition 213		4.7	Conclusion	142
GRAVITY DAMS 5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4	5	THE	CRMAL AND STRUCTURAL ANALYSIS OF RCC	143
5.1 General 143 5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition		GRA	VITY DAMS	
5.2 Analysis of Kinta RCC Dam 144 5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition 213 6.5 Construc		5.1	General	143
5.2.1 Description of Kinta RCC Dam 145 5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis 150 Results of Kinta Dam 145 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 ARCH DAMS 210 211 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition 213 6.5 Const		5.2	Analysis of Kinta RCC Dam	144
5.2.2 Problem Modeling 145 5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam 150 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 206 5.4.2 Structural Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 ARCH DAMS 210 211 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition 213 6.5 Construction Schedule 214 6.6 Simulation of the Initial Conditions 215 </td <td></td> <td></td> <td>5.2.1 Description of Kinta RCC Dam</td> <td>145</td>			5.2.1 Description of Kinta RCC Dam	145
5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam 150 5.2.4 Three-dimensional Thermal and Structural Analysis 168 5.2.5 Simplified crack analysis 193 5.3 Analysis of Roodbar RCC Dam 194 5.3.1 Problem Definition 194 5.3.2 Problem Modeling 195 5.3.3 Thermal Analysis of Roodbar RCC Dam 199 5.3.4 Structural Response of Roodbar 201 5.4 Summary and Conclusions 206 5.4.1 Thermal Response of RCC Dams 207 6 THERMAL AND STRUCTURAL ANALYSIS OF RCC 209 6.1 General 209 6.2 Geometry of Ostour Dam 210 6.3 Finite Element Modeling 211 6.4 Material Properties and Site Condition 213 6.5 Construction Schedule 214 6.6 Simulation of the Initial Conditions 215			5.2.2 Problem Modeling	145
5.2.4Three-dimensional Thermal and Structural Analysis1685.2.5Simplified crack analysis1935.3Analysis of Roodbar RCC Dam1945.3.1Problem Definition1945.3.2Problem Modeling1955.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2106.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.2.3 Two-dimensional Thermal and Structural Analysis Results of Kinta Dam	150
5.2.5Simplified crack analysis1935.3Analysis of Roodbar RCC Dam1945.3.1Problem Definition1945.3.2Problem Modeling1955.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2106.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.2.4 Three-dimensional Thermal and Structural Analysis	168
5.3Analysis of Roodbar RCC Dam1945.3.1Problem Definition1945.3.2Problem Modeling1955.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2106.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.2.5 Simplified crack analysis	193
5.3.1Problem Definition1945.3.2Problem Modeling1955.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215		5.3	Analysis of Roodbar RCC Dam	194
5.3.2Problem Modeling1955.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.3.1 Problem Definition	194
5.3.3Thermal Analysis of Roodbar RCC Dam1995.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.3.2 Problem Modeling	195
5.3.4Structural Response of Roodbar2015.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS6.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.3.3 Thermal Analysis of Roodbar RCC Dam	199
5.4Summary and Conclusions2065.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.3.4 Structural Response of Roodbar	201
5.4.1Thermal Response of RCC Dams2065.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS6.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215		5.4	Summary and Conclusions	206
5.4.2Structural Response of RCC Dams2076THERMAL AND STRUCTURAL ANALYSIS OF RCC209ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.4.1 Thermal Response of RCC Dams	206
6THERMAL AND STRUCTURAL ANALYSIS OF RCC ARCH DAMS2096.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215			5.4.2 Structural Response of RCC Dams	207
6.1General2096.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215	6	THI AR(ERMAL AND STRUCTURAL ANALYSIS OF RCC	209
6.2Geometry of Ostour Dam2106.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215		6.1	General	209
6.3Finite Element Modeling2116.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215		6.2	Geometry of Ostour Dam	210
6.4Material Properties and Site Condition2136.5Construction Schedule2146.6Simulation of the Initial Conditions215		6.3	Finite Element Modeling	211
6.5Construction Schedule2146.6Simulation of the Initial Conditions215		6.4	Material Properties and Site Condition	213
6.6 Simulation of the Initial Conditions 215		6.5	Construction Schedule	214
		6.6	Simulation of the Initial Conditions	215

		6.6.1	Determination of the Initial Foundation Temperature	216	
		6.6.2	RCC Placement Temperature	217	
	6.7	Therma	al Response of Ostour RCC Arch Dam	218	
	6.8	Structur	ral Response of Ostour <i>RCC</i> Arch Dam	221	
	6.9	Summa	ary and Conclusions	234	
		6.9.1	Thermal Response of RCC Arch Dams	234	
		6.9.2	Structural Response of RCC Arch Dams	235	
7	SUM	MARY	AND CONCLUSION	237	
REFERENCES 244			244		
APPENI	APPENDICES 25			251	
BIODA	FA OF S	STUDEN	BIODATA OF STUDENT 256		

BIODATA OF STUDENT LIST OF PUBLICATIONS

257

LIST OF TABLES

Table		Page
4.1	Material Properties of the RCC Model Block	122
4.2	Comparison of Vertical Deflections (in mm)	128
4.3	Comparison of Bending Stresses $\sigma_x (N/mm^2)$	129
4.4	Comparison of Vertical Deflections (in mm)	129
4.5	Comparison of Bending Stresses $\sigma_x (N/mm^2)$	129
4.6	Comparison of Bending Stresses along the Inner Beam Radius	131
4.7	Comparison of Shear Stresses along the Outer Beam Radius	132
4.8	Comparison of Deflection (x-displacement) at the Free End (mm)	132
4.9	Comparison of Bending Stresses along the Upper Outer Radius	132
4.10	Comparison of Shear Stresses along the Lower Outer Radius	133
4.11	Comparison of Displacements along the Upper Outer Radius	133
4.12	Comparison of Normal Stresses along the Inner Radius	134
4.13	Comparison of Shear Stresses along the Outer Beam Radius	134
4.14	Comparison of Displacements along the Upper Outer Radius	134
5.1	Thermal and structural properties of Kinta dam	149
5.2	Elasto-plastic RCC Material Properties	186
5.3	Max. and Min. Elasto-plastic stresses due to L.F 0.5, 0.75, and 1.0	191
5.4	Comparison of linear and elasto-plastic stresses	192
6.1	Material Properties for Ostour Arch Dam	213
6.2	Average Monthly Recorded Temperatures Close to Ostour Dam Site (Mianeh City - www.weather.ir)	214
6.3	Predicted Minimum and Maximum Principal Stresses from Linear Analysis	233

LIST OF FIGURES

Figure Pag		
1.1	Distribution of RCC Dams throughout the World at the End of 2002 (Completed and Under Construction, Dunstan 2003)	3
2.1	Summary of Thermal Study Process (Tatro and Schrader, 1992)	11
2.2	Reservoir water temperature approximation (Koga et al. 2003)	22
2.3	Temporal Development of the <i>RCC</i> Static Elastic Modulus (Conrad, et. al. 2003)	28
2.4	RCC Shear test result (Filho et al. 2003)	31
3.1	Study Methodology Flow Chart	37
3.2	Three-dimensional Body under the Action of Different Loads	40
3.3	Geometry of the Interface Element	45
3.4	Vertical Contraction Joints in an Arch RCC Dam	54
3.5	Kinds of Contraction Joints in Arch Dams	56
3.6	Constitutive Relationships for the Interface Element	61
3.7	Thermal Boundary Conditions	66
3.8	Foundation Block Modeling	75
3.9	Creation of the Convection Boundaries	77
3.10	Adiabatic Temperature Rise of Mass Concrete (ACI, 207-1R)	79
3.11	Willow Creek dam RCC Mixes Adiabatic Temperature Rise (ACI, 207-5R)	79
3.12	Water-Structure Interaction Idealization	83
3.13	Water Structure Interaction Convection Boundaries	83
3.14	ADAP Code Idealization of Concrete Arch Dam Body	85
3.15	Arch dam body modeling	86
3.16	Modified arch dam body idealization	87

3.17	ADAP Idealization for the Block Foundation	88
3.18	Basic Sub-blocks of the Foundation Block Idealization	89
3.19	Extreme Boundaries of the Foundation Block along the z-axis	90
3.20	Sub-blocks of the lower part of the foundation block	91
3.21	Sub-blocks of the right abutment of the foundation block	92
3.22	Sub-blocks of the left abutment of the foundation block	92
3.23	Final Finite Element Discretization of the Foundation Block	93
4.1	Birth and Death of Elements Technique	96
4.2	Program Flow Chart for Thermal Analysis	98
4.3	Linear and Elasto-plastic Structural Analysis Algorithm	103
4.4	General Program Flow Chart	109
4.5	A wall 30 cm Thick under Temperature 100 °C from both Sides	115
4.6	Finite element mesh idealization of the wall 30 cm thick	116
4.7	Temperature Distribution across 30 cm Wall Thick	117
4.8	FE idealization and Material Properties of the Copper Slab	118
4.9	FE and Analytical Solution Comparison	119
4.10	3-D FE Mesh of the Copper Slab with Contact Resistance Element	119
4.11	Comparisons of the Analytical and the FE Solution without and with Contact Resistance Element	120
4.12	Finite element idealization of a concrete block model	121
4.13	Adiabatic temperature rise of a concrete block	123
4.14	Nonadiabatic Temperature Rise of RCC Block Model	124
4.15	Nonadiabatic Temperature Rise and Concreting phase Effect on the Thermal Response of an RCC Block	125
4.16	Geometry and material properties of a cantilever beam	127
4.17	FE Discretization of a Cantilever Beam	128

4.18	Curved cantilever beam	130
4.19	FE Discretization of the Curved Cantilever Beam	131
4.20	Comparison of Elasto-plastic Response of a Curved Beam	136
4.21	Comparison of Elasto-plastic Stress at the Fixed End for the Inner Surface of a Curved Beam in Plan	136
4.22	Cantilever beam FE Modelling with Interface Element at Different Location	138
4.23	Deflection of a Cantilever Beam with IE under Point Load	139
4.24	Deflection of a cantilever beam with IE due to moment at the Free End	140
4.25	Deflection of a Cantilever Beam with IE due to varying Normal Stiffness kn	141
4.26	Deflection of a Cantilever Beam due to Shear Stiffness ks Variation	142
5.1	Typical Cross Section of Kinta Dam	146
5.2	Site Plan of Kinta Dam	147
5.3	Thermocouples Locations of the Kinta Dam Deepest Block	151
5.4	Kinta Dam Construction Progress up to Stage No. 10	151
5.5	2-D Finite Element Mesh for Stage No. 10 under Construction	152
5.6	Comparison of Predicted and Monitoring Temperatures at Level 169 m	153
5.7	Comparison of Predicted and Monitoring Temperatures at Level 179m	155
5.8	Temperatures Distributions (in °C) for Stage No.10	155
5.9	Construction Schedule of Kinta Dam	156
5.10	Monthly and Average Recorded Daily Temperatures at the Kinta Dam Site	157
5.11	Temperature Distribution after Completing the Dam Construction	157
5.12	Water Interaction FE Idealization	159

5.13	Temperature Distribution after the Complete Filling the Dam Reservoir	159
5.14	Reservoir Operation	160
5.15	Water- Dam Body Interaction Thermal Responses for Five Years of Reservoir Operation	163
5.16	Distributions of Principal Stresses at the End of Dam Construction	164
5.17	Distributions of Principal Stresses after Reservoir Complete Filling	165
5.18	Distributions of Principal Stresses after Dam Construction by Five Years	166
5.19	Variation of the Crack Index at the Dam Bottom using 2-D model	167
5.20	3-D Finite Element Mesh for Stage No. 10	168
5.21	Comparison of Predicted and Monitoring Temperatures at Level 169m	170
5.22	Comparison of predicted and Monitoring Temperatures at Level 179 m	171
5.23	Comparison between 2D and 3D predicted temperatures at level 169m	173
5.24	3-D Temperature Distribution after Completing the Dam Construction	174
5.25	3-D Water Interaction Idealization	175
5.26	3-D Temperature Distribution after the Complete Filling the Dam Reservoir	176
5.27	3-D Water- Dam Body Interaction Thermal Responses After Five Years of Reservoir Operation	179
5.28	3-D Principal Stresses Distributions after End of Construction	181
5.29	3-D Principal Stresses Distributions after 5 Years of Dam Construction	183
5.30	Variation of the Crack Index at the Dam Bottom using 3-D model	185
5.31	2-D and 3-D Upstream Displacements	185
5.32	3-D Elasto-Plastic Principal Stresses Distributions after 5-Years of Dam Construction Due to 0.5 Load Factor	188

5.33	3-D Elasto-Plastic Principal Stresses Distributions after 5 Years of Dam Construction Due to 0.75 Load Factor	189
5.34	3-D Elasto-Plastic Principal Stresses Distributions after 5Years of Dam Construction Due to 1.0 Load Factor	191
5.35	No. of Yielded Nodes per Load Increments due to Elasto-plastic Analysis	192
5.36	Elasto-plastic Yielded Contours	193
5.37	Roodbar Dam Cross Section	195
5.38	2-D Finite Element Idealization of the RCC Roodbar Dam	196
5.39	Roodbar Construction Progress	196
5.40	Average Monthly Air Temperatures at Roodbar Dam Site	197
5.41	Temperature Variations along the Depth of the Foundation Block for July and December Schedules	199
5.42	Temperature Distributions for Stage 25 th	200
5.43	Temperature Distributions at the End of Construction	201
5.44	Distributions of Principal Stresses at the End of Construction of Stage No. 61 For July Starting Schedule	202
5.45	Distributions of Principal Stresses at the End of Construction of Stage No. 61 for December Starting Schedule	203
5.46	Variation of the Crack Index for July Schedule	204
5.47	Variation of the Crack Index for December Schedule	205
6.1	Ostour Original Gorge View	210
6.2	Finite Element Modeling of the Block Foundation of Ostour Dam	211
6.3	Finite Element Modeling of the Ostour Dam Body	212
6.4	Finite Element Modeling of the Ostour Dam	212
6.5	Ostour Dam Construction Schedule	215
6.6	Foundation Block Initial Temperature Distributions	217
6.7	Temperatures Distribution Through the Crown Cantilever and different Horizontal Sections at the End of Construction	219

6.8	Temperatures distribution through the crown cantilever and different levels after five year of the end of construction	220
6.9	Principal Stress Distribution (σ_1) at the End of Dam Construction	223
6.10	Principal Stress Distribution (σ_2) at the End of Dam Construction	225
6.11	Principal Stress Distribution (σ_3) at the End of Dam Construction	227
6.12	Principal Stress Distribution (σ_1) after five years of the Dam Construction	229
6.13	Principal Stress Distribution (σ_2) after five years of the Dam Construction	231
6.14	Principal Stress Distribution (σ_3) after five years of the Dam Construction	233

LIST OF NOTATIONS AND ABBREVIATIONS

Latin Upper Case

A	area
B_w	block width of the dam
$\left[\overline{B}\right]$	strain-displacement matrix
[<i>B</i>]	strain-displacement matrix
[<i>C</i>]	capacitance matrix
C_1, C_2, C_3	elasto-plastic yield surface constants
[<i>D</i>]	global element elastic rigidity matrix
$\left[\overline{D} ight]$	local elastic rigidity matrix for joint element
D_{ep}	elasto-plastic rigidity matrix
E	material elastic modulus
E_c	concrete elastic modulus
$\{F\}$	vector of equilibrated nodal force
I_1	first stress invariant tensor
J	Jacobian matrix
J_2	second stress invariant tensor
J_3	third stress invariant tensor
K_{f}	foundation restraint factor
K_R	structure restraint factor
[<i>K</i>]	element stiffness matrix
L	loading criterion for a joint element
N_i	shape function at node <i>i</i>
Q	heat transfer rate per unit area

Ż	heat of hydration rate per unit volume
{ <i>R</i> }	nodal point applied external load vector
{ <i>R</i> }	unbalanced (residual) nodal load vector
$\{T\}^{e}$	vector of element nodal temperatures
Т	temperature
T_{ad}	adiabatic temperature rise
T_f	the temperature of the fluid surface
T_{max}	maximum adiabatic temperature rise
T_s	the temperature of the solid surface
$\left\{ \dot{T} ight\} ^{e}$	vector of element nodal temperatures variation with time
V	wind speed
W _{cr}	permissible dam crack width

Latin Lower Case

a	Plastic flow vector
a_1, a_2, a_3	Plastic flow subvectors
С	specific heat coefficient
С	Cohesion coefficient
$\{d\delta\}$	virtual displacement vector
dV	elemental volume
$\dot{f_c}$	compression strength
$\dot{f_t}$	tensile strength
h	convection heat transfer coefficient
h_c	concrete convection heat transfer coefficient
h_{f}	wind convection heat transfer coefficient

normal stiffness of the joint element
shear stiffness of the joint element
thermal conductivity coefficients in x, y. and z direction
direction cosines of the outward surface normal in x, y, and z
respectively
heat flux
convection heat transfer rate
radiation heat transfer rate
time
tangential and normal displacements respectively
tangential and normal displacements respectively
tangential and normal displacements respectively
cartesian coordinate system
surface traction forces
distributed body forces

Greek Upper Case

$\{\Delta F\}$	incremental load vector
$\{\Delta\delta\}$	incremental nodal displacements vector
$\{\Delta \varepsilon\}$	incremental strains vector
$\{\Delta\sigma\}$	incremental stress vector

Greek Lower Case

α	hydration heat rate parameter
β	shear modulus reduction factor

