

UNIVERSITI PUTRA MALAYSIA

MODIFICATION OF SAGO STARCH AND POLYVINYL ALCOHOL BLENDS BY IRRADIATION FOR THE PRODUCTION OF BIODEGRADABLE FOAMS AND FOAM TRAYS

BENCHAMAPORN WONGSUBAN

@

BENCHAMAPORN PIMPA

FSTM 2007 5

MODIFICATION OF SAGO STARCH AND POLYVINYL ALCOHOL BLENDS BY IRRADIATION FOR THE PRODUCTION OF BIODEGRADABLE FOAMS AND FOAM TRAYS

By

BENCHAMAPORN WONGSUBAN @ BENCHAMAPORN PIMPA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

February 2007

Dedicated to my mother, my late father, brother and sister, my husband and my wonderful daughters for their love, patience and understanding.

MODIFICATION OF SAGO STARCH AND POLYVINYL ALCOHOL BLENDS BY IRRADIATION FOR THE PRODUCTION OF BIODEGRADABLE FOAMS AND FOAM TRAYS

BENCHAMAPORN WONGSUBAN @ BENCHAMAPORN PIMPA

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2007

Dedicated to my mother, my late father, brother and sister, my husband and my wonderful daughters for their love, patience and understanding.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MODIFICATION OF SAGO STARCH AND POLYVINYL ALCOHOL BLENDS BY IRRADIATION FOR THE PRODUCTION OF BIODEGRADABLE FOAMS AND FOAM TRAYS

By

BENCHAMAPORN WONGSUBAN @ BENCHAMAPORN PIMPA

February 2007

Chairman: Associate Professor Sharifah Kharidah Syed Muhammad, PhD

Faculty: Food Science and Technology

Electron beam irradiation induced cross-linking in aqueous PVA and PVP but caused degradation in aqueous sago starch. Sago starch/PVP blends were more readily cross-linked than sago starch/PVA blends. The gel strength of both blends was increased when the irradiation dose was increased due to the cross-linking. Sago starch was found to enhance the gel strength of the blends. An enhancement in storage modulus and tan δ with increment in irradiation dose further indicated the formation of irradiation-induced cross-linking. This confirmed that there was molecular interaction occurring in the sago starch/PVA and sago starch/PVP blends. Grafting might have also occurred in the irradiated sago starch/PVA and sago starch/PVP blends as can be observed from the shifting of the thermogravimetric analysis spectrum. The findings of electron microscopic studies on the fracture surface morphology of the blends gave further evidence on the occurrence of irradiation induced cross-linking in them.

The effects of the type and concentration of polymers, mixing temperature and electron beam irradiation dose on properties of foam were investigated. Blends of sago starch/polyvinyl alcohol (PVA) and sago starch/polyvinyl pyrrolidone (PVP) were mixed at 25°C and 80°C. They were then electron beam irradiated with doses ranging from 10 to

30 kGy. Foams were subsequently produced by puffing the irradiated blends in a microwave for 5 to 8 min. High linear expansion foams can be produced from 25:15 of sago starch:PVA, 30:10 of sago starch:PVA, 20:20 of sago starch:PVP and 25:15 of sago starch:PVP blends mixed at 80°C. Irradiation dose of 15 kGy was found to be suitable in the production of the sago starch/PVA foams with maximum linear expansion of the foams obtained while 10 kGy was suitable for the production of the sago starch/PVP foams. An increment of sago starch in the blends enhanced the linear expansion of the foams. Changes in blend morphology were observed when the blends were exposed to higher irradiation doses. Sago starch/PVA blend was suitable for foam production because it produced a flexible and glossy foam as compared to sago starch/PVP blend that produced a very rigid foam. The linear expansion ratio of foam from sago starch/PVA and corn starch/PVA blends.

The irradiated sago starch/PVA blend was moulded into trays by a hot and cold press machine. The physical characteristics of the trays such as tear resistance, water absorption capacity and moisture absorption isotherm were then determined. Irradiation or crosslinking of the sago starch/PVA blend increased the tear and moisture resistances of the foam trays produced from it. Results of the soil burial test showed that the sago starch/PVA foam trays were biodegradable with up to 40% of weight loss occurring in the first month of the burial period. This was accompanied by the growth of microbes, presumably fungi, which were observed on the foam trays under the scanning electron microscope.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGUBAHSUAIAN CAMPURAN KANJI SAGU DAN ALKOHOL POLIVINIL MELALUI IRRIDIASI UNTUK PENGHASILAN BUSA DAN DULANG BUSA MUDAH TERURAI

Oleh

BENCHAMAPORN WONGSUBAN @ BENCHAMAPORN PIMPA

Februari 2007

Pengerusi: Profesor Madya Sharifah Kharidah Syed Muhammad, PhD

Fakulti: Sains dan Teknologi Makanan

Irridiasi pancaran elektron menjana ikatan silang didalam akueus PVA dan PVP tetapi menyebabkan degradasi dalam akueus kanji sagu. Campuran kanji sagu/PVP lebih sedia diikat- silang daripada campuran kanji sagu/PVA. Kekuatan gel keduadua campuran meningkat apabila dos irradiasi ditingkatkan kerana ikatan silang tersebut. Kanji sagu didapati meningkatkan kekuatan gel campuran tersebut. Peningkatan modulus penyimpanan dan tan δ seiring dengan peningkatan dos irridiasi menujukkan pembentukan ikatan silang hasilan irridiasi. Ini mengesahkan bahawa interaksi molekul berlaku di dalam campuran kanji sagu/PVA dan kanji sagu/PVP. Percambahan mungkin berlaku dalam campuran kanji sagu/PVA dan kanji sagu/PVP seperti yang diperhatikan dalam pergerakan spektra analisis termogravimetrik. Penemuan hasil kajian mikroskopik elektron ke atas morfologi permukaan retak campuran telah membuktikan kewujudan ikatan silang hasil irridiasi.

Kesan jenis dan kepekatan polimer, suhu pencampuran, dos irridiasi pancaran elektron ke atas ciri busa telah diselidik. Campuran kanji sagu/alkohol polivinil (PVA) dan kanji sagu/pirolidon polivinil (PVP) dicampur pada suhu 25°C dan 80°C. Campuran tersebut kemudian diirradiasi dengan pancaran elektron berdos 10 hingga 30 kGy. Busa kemudian dihasilkan dengan mengembangkan campuran terirridiasi tadi didalam ketuhar gelombang mikro 5 hinnga 8 minit. Busa dengan pengembangan linear yang tinggi boleh dihasilkan daripada campuran 25:15 kanji sagu:PVA, 30:10 kanji sagu:PVA, 20:20 kanji sagu:PVP dan 25:15 kanji sagu:PVP yang dicampur pada 80°C. Dos irridiasi 15 kGy didapati sesuai untuk menghasilkan busa kanji sagu/PVA dengan pengembangan linear yang maksima, manakala 10 kGy pula sesuai untuk busa daripada kanji sagu/PVP. Penambahan kanji sagu dalam campuran meningkatkan pengembangan linear busa. Perubahan dalam morfologi campuran didapati apabila campuran dikenakan dos irridiasi yang lebih tinggi. Campuran kanji sagu/PVA sesuai untuk pengeluaran busa kerana ia menghasilkan busa yang fleksibel, licin dan berkilat jika dibandingkan dengan campuran kanji sagu/PVP yang menghasilkan busa yang lebih tegar. Nisbah pengembangan linear busa daripada campuran kanji sagu/PVA adalah lebih tinggi daripada yang diperolehi dengan campuran kanji ubi kayu/PVA, kanji gandum/PVA dan kanji jagung/PVA.

Campuran kanji sagu/PVA yang diirridiasi dibentuk menjadi dulang dengan mesin tekanan sejuk panas. Ciri fizikal dulang seperti ketahanan koyakan, kapasiti penyerapan air dan isoterma penyerapan kelembapan ditentukan. Irridiasi atau pengikatan silang campuran kanji sagu/PVA meningkatkan ketahanan koyakan dan

kelembapan dulang busa yang dihasilkan. Keputusan ujian penanaman dalam tanah menunjukkan dulang busa daripada kanji sagu/PVA boleh dibiodegradasi sehingga 40% daripada kehilangan berat berlaku pada bulan pertama tempoh penanaman. Ini diikuti dengan pertumbuhan mikrob, berkemungkinan kulat, yang dapat diperhatikan pada dulang busa dibawah mikroskop elektron imbasan.

ACKNOWLEDGEMENTS

I would like to express my appreciation and deepest gratitude to Assoc. Prof. Dr. Sharifah Kharidah Syed Muhammad, the chairman of my supervisory committee for her guidance, constructive suggestions and comments in the preparation of this thesis. I am also very grateful for her patience and kindness, care and encouragement that she had generously offered during this study.

My deep appreciation is accorded to Dr. Zulkafli Ghazali, for his guidance, advice and support during my study. My appreciation and sincere thanks goes to Dr. Kamaruddin Hashim, Prof. Dr. Muhammad Ali Hassan and Encik Dzulkifly Mat Hashim. Their generous efforts, advice and suggestions in the preparation of this thesis are very deeply appreciated.

The authors acknowledged the support of the work by IRPA (Grant No. 01-02-04-0513) from the Ministry of Science and Technology, Malaysia. Acknowledgement is also due to all my Thai friends, Ko Hong family, Mama for their generous help, care, encouragement and warm friendship which had made my study in UPM a very pleasant and memorable experience.

Finally, I would like to express my deepest gratitude to my beloved parents, husband, daughters and baby sitters for their endless encouragement, patience and sacrifices which had helped me in undertaking and completing this research study.

I certify that an Examination Committee has met on 9th February, 2007 to conduct the final examination of Benchamaporn Wongsuban@Benchamaporn Pimpa on her Doctor of Philosophy thesis entitled "*Irradiation modification of sago starch and polyvinyl alcohol blends for production of biodegradable foams and foam trays*" in accordance with Universiti Pertanian Malaysia (Higher degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

BADLISHAH SHAM BAHARIN, M.Sc. Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

ROSELINA ABDUL KARIM, Ph.D. Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

MUHAMMAD ZAKI ABDUL RAHMAN, Ph.D. Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

ABDUL KARIM ALIAS, Ph.D. Associate Professor School of Industrial Technology Universiti Sains Malaysia (External Examiner)

> HASANAH MOHD GHAZALI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Sharifah Kharidah Syed Muhammad, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Zulkafli Ghazali, PhD

Research Officer Malaysian Institute for Nuclear and Technology Research (Member)

Kamaruddin Bin Hashim, PhD

Research Officer Malaysian Institute for Nuclear and Technology Research (Member)

Muhammad Ali Hassan, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 MAY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

BENCHAMAPORN WONGSUBAN @BENCHAMAPORN PIMPA

Date: 27 MARCH 2007

TABLE OF CONTENTS

Page
ii
iii
V
viii
ix
xi
xvi
xviii
xxii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	6
	Definition of foam	6
	Fundamental of foam formation	6
	Bubble formation	7
	Bubble growth	8
	Methods of foam production	9
	Foam production using cross-linking processes	10
	Radiation cross-linking process	11
	Chemical cross-linking process	12
	Comparison of radiation and chemical cross-linking	
	processes	13
	Biodegradable foam	14
	Definition	14
	Commercially available biodegradable foams	14
	Eco-foam	14
	Mater-Bi	15
	Biodegradable foam preparation	16
	Biodegradable foam composition	22
	Starch	22
	Starch composition and structure	22
	Starch granules and crystallinity	24
	Starch gelatinization/pasting	25
	Sago starch	28
	Physical properties of sago starch	30
	Polyvinyl alcohol (PVA)	31
	Polyvinyl pyrrolidone (PVP)	32
	Water	34
	Hydrogen bond	35
	Factors affecting quality of biodegradable foam	36

	Gelatinisation of starch	36
	Enhancement polymers	37
	Cross-linking of polymers through irradiation	38
	Kinetics of radiation cross-linking	43
	Effect of electron beam irradiation on aqueous PVA,	
	PVP and sago starch	45
	Irradiation sources	46
	Biodegradation mechanisms	49
	Factors affecting the biodegradation	51
	Organisms	52
	Photodegradation	53
	Chemical degradation	53
III	EFFECT OF ELECTRON BEAM IRRADIATION ON PHYSICOCHEMICAL PROPERTIES OF AQUEOUS SAGO STARCH, POLYVINYL ALCOHOL AND POLYVINYL PYRROLIDONE	55
	Introduction	55
	Materials and methods	55
	Materials	56
	Sample preparation	56
	Gel content determination	56
	Sol-gel analysis	57
	Gel strength determination	57
	Statistical analysis	57
	Results and discussion	58
	Gel content determination	58
	Sol-gel analysis	64
	Gel strength determination	65
	Conclusions	68
IV	THE EFFECT OF ELECTRON BEAM IRRADIATION ON AQUEOUS SAGO STARCH/POLYVINYL ALCOHOL AND SAGO STARCH/POLYVINYL PYRROLIDONE BLENDS	69
	Introduction	69
	Materials and methods	69
	Materials	69
	Blend preparation	70
	Gel content determination	70
	Sol-gel analysis	70
	Gel strength determination	70
	Dynamic mechanical analysis	71
	Thermogravimetric analysis	71
	Fourier transform infrared spectroscopy	71

Statistical analysis	72
Results and discussion	72
Gel content determination	72
Sol-gel analysis	73
Gel strength determination	70
Dynamic mechanical analysis	76
Thermogravimetric analysis	80
Fourier transform infrared spectroscopy	86
Conclusions	90
EFFECT OF MIXING TEMPERATURE,	
IRRADIATION DOSE, TYPE OF POLYMER, POLYMER CONCENTRATION ON FOAM	
PREPARATION	91
Introduction	91
Materials and Methods	92
Materials	92
Preparation of foam	92
Effects of PVA, PVP and sago starch concentration,	
mixing temperature and irradiation dose on foam	93
formation	
Effects of type of starch and irradiation dose on	
foam preparation	93
Linear expansion determination	95
Scanning electron microscopic studies on sago	
starch/PVA and sago starch/PVP blends and foams	95
Light microscopic studies on sago starch/PVA blends	95
Physical appearance of foams	96
Statistical analysis	96
Results and discussion	97
Effects of PVA/PVP concentration, irradiation dose and	
mixing temperature on linear expansion	97
Effects of starches and irradiation doses on foam	
preparation	102
Scanning electron microscopic studies on sago	
starch/PVA and sago starch/PVP blends	103
Light microscopic studies on sago starch/PVA blend	105
Scanning electron microscopic studies of foams	115
Physical characteristics of sago starch/PVA and sago	
starch/PVP foams	121
Properties of sago starch:PVA foam as compared to Eco-foam	122
Conclusions	122

V

VI	PROPERTIES OF FOAM TRAYS PREPARED USING	
	SAGO STARCH/POLYVINYL ALCOHOL BLENDS	123
	Introduction	123
	Materials and methods	125
	Foam preparation	125
	Tear test	125
	Water absorption capacity determination	126
	Moisture absorption isotherm determination	126
	Scanning electron microscopy	127
	Soil burial test	127
	Results and discussion	128
	Tear resistance of sago starch/PVA foam tray	128
	Water absorption capacity of sago starch/PVA foam tray	129
	Moisture absorption isotherm of sago starch/PVA foam	
	tray	130
	Fracture surface of sago starch/PVA foam tray	132
	Biodegradability of sago starch/PVA foam tray	135
	Morphology of buried sago starch/PVA foam tray	137
	Properties of 20:20 of sago starch: PVA foam tray and	
	polystyrene foam tray	149
	Conclusions	149
VII	CONCLUSIONS AND RECOMMENDATIONS	150
BIBL	IOGRAPHY	153
APPE	INDICES	166
BIOD	BIODATA OF THE AUTHOR LIST OF PUBLICATIONS	
LIST		

LIST OF TABLES

Table		Page
2.1	Summary of production and application of synthetic polymer foams	10
2.2	Commercial process for cross-linking of polyethylene foam sheet	11
2.3	Comparison of chemical and radiation cross-linking	13
2.4	Summary of research on biodegradable foam production	21
2.5	Amylose and amylopectin content of starches	25
2.6	Structure and physicochemical properties of starch polymers	28
2.7	Export and import of flour and meal of sago	29
2.8	Manufacturers, capacity and cost of biodegradable polymers	39
2.9	Effect of radiation on polymers	39
2.10	Summary of effect of irradiation on polyvinyl alcohol, polyvinyl pyrrolidone and starch	47
3.1	Gelation dose, D_g and p_o/q_o of electron beam irradiated aqueous sago starch, PVA and PVP	65
4.1	Gelation dose, D_g and p_o/q_o of electron beam irradiated PVA, PVP, 20:20 of sago starch:PVA and 20:20 of sago starch:PVP	75
4.2	Characteristics of FTIR spectra of PVA, PVP and sago starch (Naganishi and Solomon, 1977)	87
5.1	Formulation of blends to produce foams with different ratio of PVA or PVP and sago starch at 25°C or 80°C	94
5.2	Formulations of blends to produce foams with different ratio of sago, tapioca, wheat or corn starch	94
5.3	Linear expansion (%) of sago starch/PVA blends prepared at 25°C	97
5.4	Linear expansion (%) of sago starch/PVA blends prepared at 80°C	98
3.5	Linear expansion (%) of sago starch/PVP blends prepared at 25°C	99
5.6	Linear expansion (%) of sago starch/PVP blends prepared at 80°C	100

5.7	Linear expansion (%) of 20:20 starch:PVA blends prepared at 80°C	102
5.8	Physical and chemical characteristics of selected starches	103
5.9	Properties of 20:20 of sago starch: PVA foam and eco-foam	122
6.1	Properties of 20:20 of sago starch:PVA foam tray and polystyrene foam tray	149

LIST OF FIGURES

Figure		Page
2.1	Flow diagram of radiation cross-linking of polyolefin foam sheet	12
2.2	Flow diagram of chemical cross-linking of polyolefin foam sheet	12
2.3	Cost comparison of chemical and radiation cross-linking	13
2.4	Starch components	23
2.5	Representation of A, B and C chains in amylopectin	24
2.6	Changes in traditional native starch during processing	26
2.7	Simplest fundamental unit of polyvinyl alcohol	31
2.8	Hydrolysis or alcoholysis of polyvinyl acetate	31
2.9	Simplest fundamental unit of polyvinyl pyrrolidone	32
2.10	Synthesis of vinyl pyrrolidone	33
2.11	Water molecule as an electric dipole	35
2.12	Two water molecules connected by hydrogen bond	36
2.13	Characteristic of granular and gelatinised starch as blending material for polymer blends	38
2.14	Flow diagram of foaming of radiation cross-linked polymer blend	38
2.15	Initiation reactions in a polymer from electron beam irradiation and the subsequent reactions of cross-linking, scission and molecular rearrangement	41
2.16	Major products of gamma radiolysis of glucose in aqueous solution	46
2.17A	Electron beam irradiation machine	48
2.17B	Electron beam irradiation unit (accelerator)	48
2.18	Penetration depth of electron beam	49
2.19	Biodegradation step of polymers	51

2.20	Key element to the biodegradation process	52
3.1	Effect of electron beam irradiation on gel content of sago starch paste	60

3.2	The radiolytic end products of starch	61
3.3	Effect of electron beam irradiation on gel content of PVA	62
3.4	Plausible attack points of PVA	63
3.5	Effect of electron beam irradiation on gel content of PVP	63
3.6	Plausible attack point of PVP	64
3.7	Effect of electron beam irradiation on gel strength of sago starch paste	66
3.8	Effect of electron beam irradiation on gel strength of PVA	67
3.9	Effect of electron beam irradiation on gel strength of PVP	67
4.1	Effect of electron beam irradiation on gel content of 20% sago starch, 20% PVA, 20% PVP, 20:20 of sago starch:PVA and 20:20 of sago starch:PVP blends	73
4.2	Chalesby-Pinner plot of (A) PVA	74
4.2	Chalesby-Pinner plot of (B) PVP	74
4.2	Chalesby-Pinner plot of (C) sago starch/PVA blend	74
4.2	Chalesby-Pinner plot of aqueous (D) sago starch/PVP blend	74
4.3	Effect of irradiation doses on gel strength of 20% sago starch, 20% PVA, 20% PVP, 20:20 of sago starch:PVA and 20:20 of sago starch:PVP blends	75
4.4	Effect of irradiation doses on tan δ of 20:20 of sago starch:PVA blends	78
4.5	Effect of irradiation doses on tan δ of 20:20 of sago starch:PVP blends	79
4.6	TGA thermogram of sago starch	81
4.7	TGA thermogram of polyvinyl alcohol (PVA)	82
4.8	TGA thermogram of irradiated (15 kGy) 20:20 of sago starch:PVA blend	83
4.9	TGA thermogram of polyvinyl pyrrolidone (PVP)	85
4.10	TGA thermogram of irradiated (15 kGy) 20:20 of sago starch:PVP blend	86
4.11	FTIR spectra of sago starch, PVA and 20:20 of sago starch:PVA blend	89

4.12	FTIR spectra of sago starch, PVP and 20:20 of sago starch:PVP blend	89
6.1	Tear resistance of foam trays prepared from non-irradiated and irradiated sago starch/PVA blends	129
6.2	Water absorption capacity of foam trays prepared from non- irradiated and irradiated sago starch/PVA blends	130
6.3	Moisture absorption isotherm of foam trays prepared from non- irradiated and irradiated sago starch/PVA blends	131
6.4	Weight loss of foam trays sheets prepared from irradiated 20:20 of sago starch:PVA blend	136

Plate		Page
2.1	Growth ring of sago starch	30
5.1	SEM micrographs of 20:20 of sago starch:PVA (A) and 20:20 of sago starch:PVP (P) blends irradiated at 10 kGy (A1, P1), 20 kGy (A2, P2) and 30 kGy (A3,P3)	104
5.2	Light photomicrographs of sago starch/PVA blends	106
5.3	Light photomicrographs of sago starch:PVA blends mixed at 80°C and irradiated at (A)10, (B) 15, (C) 20, (D) 25 and (E) 30 kGy	109
5.4	Light photomicrographs of sago starch gel	112
5.5	Scanning electron micrographs of 20:20 of sago starch:PVA foams prepared from blends mixed at 80°C and irradiated at (A) 10, (B) 15, (C) 20, (D) 25 and (E) 30 kGy	116
5.6	Scanning electron micrographs of 20:20 of sago starch:PVP foams prepared from blends mixed at 80°C and irradiated at (A) 10, (B) 15, (C) 20, (D) 25 and (E) 30 kGy	119
6.1	Fracture surface of foam trays prepared from sago starch/PVA blends	133
6.2	Physical appearance of buried foam tray sheets prepared from irradiated 20:20 of sago starch:PVA blend	135
6.3	Scanning electron micrographs of buried irradiated sago starch gel, irradiated PVA gel and foam tray prepared from irradiated 20:20 of sago starch:PVA blend	139

LIST OF PLATES

LIST OF ABBREVIATIONS

ATR	Attenuated total reflectance
CA	Cellulose acetate
CFC	Chlorofluorocarbon
DMA	Dynamic mechanical analyser
DP	Degree of polymerisation
EPS	Extruded polystyrene
Μ	Molarity
FTIR	Fourier transform infrared spectroscopy
MW	Molecular weight
РВ	Paperboard
PCL	Polycaprolactone
PHBV	Polyhydroxybutyrate-co-valerate
PHEE	polyhydroxyesterether
PLC	Polylactic acid
PVA	Polyvinyl alcohol
PVP	Polyvinyl pyrrolidone
\mathbf{R}^2	Coefficient of determination
SCFs	Starch-based composite foams
T _m	Melting temperature
TGA	Thermogravimetric analyser
USA	The United States of America

