UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF PROCESSING CONDITIONS AND ENHANCEMENT OF QUALITY AND STORAGE STABILITY OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICE

SIN HWEE NEE

FSTM 2007 3
OPTIMIZATION OF PROCESSING CONDITIONS AND ENHANCEMENT OF QUALITY AND STORAGE STABILITY OF CLARIFIED SAPODILLA (*ACHRAS ZAPOTA*) JUICE

By

SIN HWEE NEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master of Science

February 2007
Specially Dedicated
To
My Family
This study was carried out to optimize conditions for hot water extraction (HWE) and enzymatic clarification in the production of clarified sapodilla juice. The effects of different levels of fining treatment and storage condition on haze reduction of clarified sapodilla juice during storage were also investigated. The physico-chemical characteristics (physical measurement of fruits, total soluble solids, pH, titratable acidity, colour measurement, clarity and viscosity) of clarified sapodilla juice made from three fruit varieties were studied. The juice produced from the Subang variety possessed desirable lightness, clarity and viscosity and was therefore found to be suitable in the production of clarified sapodilla juice.

The optimum conditions of hot water extraction (HWE) for production of sapodilla juice were determined using Response Surface Methodology (RSM). Time and temperature combinations in the range of 30-120 min and 30-90°C were the
independent variables and their effects on juice yield, odour, taste and astringency were investigated. The results showed that extraction temperature was the most important factor that affected characteristics of the juice as it exerted a significant influence on all the dependent variables. Higher temperature increased juice yield, taste and odour but also showed an increased astringency, which affected the acceptability of the juice. The results implied that an optimum sapodilla juice extraction condition using HWE to be at 60°C for 120 min.

The optimum conditions for enzymatic clarification of clarified sapodilla juice were also determined using RSM. Sapodilla juice was treated with pectinase enzyme at different incubation times (30-120 min), temperature (30-50°C) and enzyme concentration (0.03-0.10%). These three factors were used as independent variables and their effects on turbidity, clarity, viscosity and colour (L values) of the juice were evaluated. Significant regression models describing the changes of turbidity, clarity, viscosity and colour (L values) with respect to the independent variables were established, with the coefficient of determination, R^2, greater than 0.8. The results indicated that enzyme concentration was the most important factor that affected characteristics of the juice as it exerted a significant influence on all the dependent variables. The recommended enzyme clarification condition was 0.1% enzyme concentration at 40°C for 120 min.

The clarified sapodilla juice was then subjected to different level of fining treatments namely bentonite at 0.25% (X), 0.10% (Y) and control (Z-without treatment) and stored at 4, 25 and 37°C. The effects of bentonite fining at different levels and storage temperature on haze reduction were monitored during 24 weeks of storage.
Haze reduction was notable for samples stored at 4°C with 0.25% bentonite treatment (X) followed by samples stored at 4°C with 0.10% bentonite treatment (Y). Lower temperature slowed down the physical chemical changes that took place in juice and helped retain the quality and colour of juice during storage, while higher temperature induced and accelerated the physical chemical changes during storage. Fining treatment significantly reduced the turbidity and browning index of the juice during storage compared to samples without fining. The appropriate level of fining treatment was important in haze reduction where samples treated with 0.25% bentonite (X) showed greatly reduced haze formation followed by samples treated with 0.10% bentonite treatment (Y). All the samples passed the microbial test and were safe for consumption at the end of the storage period. Samples stored at 4°C with 0.25% bentonite treatment (X) possessed the highest overall acceptability scores after 24 weeks storage, while samples stored at 37°C without treatment (Z) showed the lowest overall acceptability.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PENGOPTIMALAN PEMPROSESAN DAN PENAMBAHBAIKAN KUALITI SERTA KESTABILAN PENYIMPANAN JUS JERNIH SAPODILLA (ACHRAS SAPOTA)

Oleh

SIN HWEE NEE

Februari 2007

Pengerusi : Profesor Salmah binti Yusof, PhD

Fakulti : Sains dan Teknologi Makanan

Kajian ini dijalankan untuk mengoptimumkan keadaan pengekstrakan air panas (HWE) dan penjernihan jus menggunakan enzim dalam penghasilan jus jernih sapodilla. Pengaruh rawatan ‘fining’ pada kadar berbeza serta keadaan penyimpanan jus terhadap pengurangan kekeruhan dalam jus jernih sapodilla semasa penyimpanan juga dikaji. Sifat-sifat fizikal dan kimia (pengukuran fizikal buah, kandungan pepejal terlarut, pH, keasidan titratan, pengukuran warna, kejernihan dan kelikatan) jus jernih sapodilla yang disediakan daripada tiga jenis buah dikaji. Jus yang disediakan daripada jenis Subang mempunyai nilai kecerahan, kejernihan dan kelikatan yang diperlukan dan dengan itu didapati sesuai dalam penghasilan jus jernih sapodilla.

Keadaan optima pengekstrakan air panas (HWE) untuk penghasilan jus sapodilla ditentukan dengan methodologi “Response Surface Methodology”(RSM). Kombinasi masa dan suhu dalam julat 30-120 minit dan 30-90°C merupakan variasi tak berubah dan kesannya ke atas perolehan jus, bau, rasa dan kekelatan telah ditentukan.
Keputusan menunjukkan suhu pengekstrakan merupakan faktor yang paling penting dalam mempengaruhi ciri-ciri jus di mana ia menunjukkan signifikasi pada semua variasi berubah. Suhu tinggi meninggikan perolehan jus, rasa dan bau tetapi juga meninggikan kekelatan yang boleh mempengaruhi penerimaan jus. Keputusan menunjukkan keadaan optima pengekstrakan jus sapodilla menggunakan kaedah HWE adalah pada suhu 60°C selama 120 minit.

Keadaan optima dalam penjernihan jus menggunakan enzim juga ditentukan dengan methodologi RSM. Jus sapodilla dirawatkan dengan enzim pektin pada tempoh (30-120 minit), suhu (30-50°C) dan kepekatan enzim (0.03-0.10%) yang berbeza. Ketigatiga faktor ini digunakan sebagai variasi tak berubah dan kesannya terhadap kekeruhan, kejernihan, kelikatan dan kecerahan warna (nilai L) jus telah ditentukan. Model regresi yang bererti pada perubahan kekeruhan, kejernihan, kelikatan dan kecerahan warna (L value) terhadap variasi tak berubah telah ditentukan dengan R² (coefficient of determination) lebih daripada 0.8. Keputusan menunjukkan kepekatan enzim adalah faktor utama mempengaruhi ciri jus jernih di mana ia menunjukkan signifikasi pada semua variasi berubah. Keadaan optima penjernihan jus menggunakan enzim adalah dicadangkan pada 0.1% kepekatan enzim pada 40°C selama 120 minit.

Jus jernih sapodilla seterusnya dijalankan rawatan ‘fining’ pada kadar berbeza iaitu bentonite pada 0.25% (X), 0.10% (Y), dan kawalan (Z- tanpa rawatan) serta disimpan pada suhu 4, 25 dan 37°C. Kesaran rawatan bentonite pada kadar berbeza dan kesan suhu penyimpanan terhadap pengurangan kekeruhan diperhatikan selama 24 minggu tempoh penyimpanan. Pengurangan kekeruhan adalah ketara pada sampel
yang disimpan pada 4°C dengan 0.25% bentonite (X) diikuti dengan sampel yang
disimpan pada 4°C dengan 0.1% bentonite (Y). Suhu yang rendah melambatkan
perubahan fizikal dan kimia pada jus serta membantu mengekalkan kualiti dan warna
jus semasa penyimpanan, manakala suhu yang tinggi menggalakkan dan
mempercepatkan perubahan fizikal dan kimia semasa penyimpanan. Rawatan
‘fining’ mengurangkan kekeruhan dan index keperangan jus semasa penyimpanan
dengan bererti berbanding dengan sampel tanpa rawatan. Kadar yang tepat dalam
rawatan ‘fining’ adalah penting dalam pengurangan kekeruhan, di mana sampel yang
dirawat dengan 0.25% bentonite (X) menunjukkan pengurangan kekeruhan yang
ketara diikuti dengan sampel yang dirawat dengan 0.10% bentonite (Y). Semua
sampel telah melepasi ujian mikrobiologi dan adalah selamat diminum sehingga
akhir tempoh penyimpanan. Sampel yang disimpan pada 4°C dengan 0.25%
bentonite (X) menunjukkan skor keterimaan keseluruhan yang tertinggi selepas 24
minggu penyimpanan, manakala sampel yang disimpan pada suhu 37°C tanpa
rawatan (Z) menunjukan skor keterimaan keseluruhan yang paling rendah.
ACKNOWLEDGEMENTS

I wish to acknowledge generous individuals whose valuable support made this study a success and the completion of this thesis possible. I am immensely indebted to them and my only means of repaying them is to express a heartfelt gratitude and a sincere appreciation.

Foremost is to my supervisor, Prof. Salmah Yusof for her invaluable guidance, advice, encouragement and support. But most importantly, she gave me the necessary confidence from the very beginning to go through this graduate programme by believing in me.

Appreciation is also goes to Dr. Nazimah Sheikh Abdul Hamid, member of the Supervisory committee, for her valuable comments, ideas and for those precious words of encouragement which keeps me going when the progression becomes tough. Professor Dr. Russly Abdul Rahman, member of the Supervisory committee, was an invaluable resource in my research project and an enjoyable gentleman to work with. Special appreciations also go to Dr. Boo and Dr. Anuar Abdul Rahim, for their help, comments and guidance on the statistical analysis of the data.

I wish to express my gratitude to all my friends for their very generous help, cooperation, encouragement and warm friendship which made my work in the laboratory bearable and pleasant. Special appreciations also go to lab personnel, office staffs and faculty who help me in many ways during my research project. Thank you all and each of you.
Finally, but certainly not least, I wish to express my deepest appreciation to my beloved parents who had given me unconditional love and support and for their efforts in educating me. To my brothers, sister and Mr. Leong, for their patience and endurance and for standing by me through those difficult times. To them, I dedicate this work.
I certify that an Examination Committee has met on 22 February 2007 to conduct the final examination of Sin Hwee Nee on her Master of Science thesis entitled “Optimization of Processing Conditions for the Production of Quality Clarified Sapodilla (*Achras zapota*) Juice” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of Examination Committee are as follows:

Mohd. Yazid Abd Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Azis Ariffin, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Osman Hassan, PhD
Professor
School of Chemical Sciences and Food Technology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 JUNE 2007
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Salmah Yusof, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nazimah Sheikh Abdul Hamid, PhD
Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SIN HWEE NEE

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

II LITERATURE REVIEW

Sapodilla (*Achras zapota*)

- Origin and Distribution of Sapodilla 5
- Nomenclature 8
- Botanical Description 8
- Nutritional Composition 10

- Fruit Juice and Beverages 11
- Fruit Juice Extraction Methods 13
 - Milling 14
 - Pressing 15
 - Hot Water Extraction 16
 - Pre-treatment with Pectolytic Enzymes 16

- Pectic Substances 18
 - Pectic Enzymes 20
 - Industrial Enzymes 22

- Application of Enzymes in Fruit Juice Technology 26
 - Pulp Maceration 28
 - Juice clarification 30

- Use of Membrane Filtration in Clarified Juice 33

- Fining Agents 36
 - Bentonite 37
 - Gelatin 38

- Application of Fining Treatment in Fruit Juice Processing 40

- Haze and Precipitate Formation in Beverage 41
 - Formation of Haze During Storage 43
 - Interactions Between Haze-Active Proteins and Polyphenols 45

- Pattern of Haze Development 47
- Other Phenomena Involving Protein-Polyphenol Interaction 49

- Response Surface Methodology (RSM) 49

- Sensory Evaluation 51
 - Quantitative Descriptive Analysis (QDA) 52
III PART 1: PHYSICO-CHEMICAL CHARACTERISTICS OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICES PREPARED FROM THREE FRUIT VARIETIES

Introduction 54
Materials and Methods 55
 Materials 55
 Sample Preparation 55
 Determination of Weight, Width and Length 56
 Determination of Total Soluble Solid and pH 56
 Determination of Titratable Acidity 57
 Determination of Colour 57
 Determination of Clarity 57
 Determination of Viscosity 57
 Statistical Analysis 58
Results and Discussion 58
Conclusion 61

PART 2: OPTIMIZATION OF HOT WATER EXTRACTION FOR SAPODILLA JUICE USING RESPONSE SURFACE METHODOLOGY (RSM)

Introduction 63
Materials and Methods 65
 Fruits 65
 Sample Preparation 65
 Experimental Design 66
 Determination of Juice Yield 68
 Sensory Evaluation 68
Results and Discussion 70
 Model Fitting 70
 Effect of Extraction Time and Temperature 71
 Optimization of Extraction Condition 76
 Verification of the results 77
Conclusion 78

IV OPTIMIZATION OF ENZYMATIC CLARIFICATION OF SAPODILLA JUICE USING RESPONSE SURFACE METHODOLOGY (RSM)

Introduction 79
Materials and Methods 81
 Enzyme Source 81
 Fruits 81
 Juice Extraction 81
 Enzyme Treatment 82
 Determination of Turbidity 82
 Determination of Clarity, Viscosity and Colour Measurement 83
Experimental Design 83
Results and Discussions 85
 Turbidity 86
 Clarity 87
V EFFECTS OF FINING TREATMENT AND STORAGE TEMPERATURE ON THE QUALITY OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICE

Introduction 95
Materials and Methods 98
 Enzyme Source 98
 Chemicals 99
 Fruits 99
 Sample juice preparation 99
 Storage stability 101
 Determination of Browning index 102
 Determination of Turbidity 102
 Determination of Total Polyphenol 102
 Determination of Total Protein 102
 Determination of Clarity, Colour Measurement, pH, Total Soluble Solids Content and Titratable Acidity 103
 Microbiological Analysis 103
 Sensory Evaluation 103
 Statistical Analysis 105
Results and Discussions 105
 Changes in Browning index 105
 Changes in Turbidity 111
 Changes in Total Polyphenol Content 114
 Changes in Total Protein Content 116
 Changes in Clarity 118
 Changes in Colour Measurement 119
 Changes in Total Soluble Solids Content, pH and Titratable Acidity 121
 Microbiological Analysis 122
 Sensory Evaluation 122
Conclusion 129

VI GENERAL CONCLUSION AND RECOMMENDATIONS 131

BIBLIOGRAPHY 134
APPENDICES 153
BIODATA OF THE AUTHOR 202
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>6.</td>
</tr>
<tr>
<td>2.2</td>
<td>7.</td>
</tr>
<tr>
<td>2.3</td>
<td>11.</td>
</tr>
<tr>
<td>2.4</td>
<td>11.</td>
</tr>
<tr>
<td>2.5</td>
<td>20.</td>
</tr>
<tr>
<td>2.6</td>
<td>24.</td>
</tr>
<tr>
<td>2.7</td>
<td>25.</td>
</tr>
<tr>
<td>3.1</td>
<td>58.</td>
</tr>
<tr>
<td>3.2</td>
<td>61.</td>
</tr>
<tr>
<td>3.3</td>
<td>68.</td>
</tr>
<tr>
<td>3.4</td>
<td>71.</td>
</tr>
<tr>
<td>3.5</td>
<td>78.</td>
</tr>
<tr>
<td>3.6</td>
<td>84.</td>
</tr>
<tr>
<td>3.7</td>
<td>85.</td>
</tr>
<tr>
<td>3.8</td>
<td>94.</td>
</tr>
<tr>
<td>5.1</td>
<td>108.</td>
</tr>
<tr>
<td>5.2</td>
<td>109.</td>
</tr>
<tr>
<td>5.3</td>
<td>110.</td>
</tr>
<tr>
<td>5.4</td>
<td>111.</td>
</tr>
</tbody>
</table>
chemical attributes of clarified sapodilla juice

5.5 Main effects of storage treatment, storage temperature and storage time on sensory attributes of clarified sapodilla juice

5.6 Effects of storage temperature and storage time on sensory attributes of clarified sapodilla juice

5.7 Effects of storage treatment (trt) and storage time on sensory attributes of clarified sapodilla juice

5.8 Effects of storage temperature and treatment (trt) on sensory attributes of clarified sapodilla juice

B1 Main and interaction effects of storage treatment (trt), storage temperature (temp) and storage duration (week) on physical-chemical analyses of clarified sapodilla juice during storage

B2 Correlation analysis for clarified sapodilla juice during storage

B3 Main and interaction effects of storage treatment (trt), storage temperature (temp) and storage time (week) on sensory attributes of clarified sapodilla juice

B4 Changes in browning index of clarified sapodilla juice during storage

B5 Changes in turbidity of clarified sapodilla juice during storage

B6 Changes in total polyphenol of clarified sapodilla juice during storage

B7 Changes in total protein of clarified sapodilla juice during storage

B8 Changes in clarity of clarified sapodilla juice during storage

B9 Changes in L value of clarified sapodilla juice during storage

B10 Changes in a value of clarified sapodilla juice during storage

B11 Changes in b value of clarified sapodilla juice during storage

B12 Changes in pH of clarified sapodilla juice during storage

B13 Changes in total soluble solids of clarified sapodilla juice during storage

B14 Changes in titratable acidity of clarified sapodilla juice during storage

B15 Changes in clarity (sensory attribute) of clarified sapodilla juice during storage

B16 Changes in yellowness (sensory attribute) of clarified sapodilla juice
during storage

B17 Changes in odour (sensory attribute) of clarified sapodilla juice during storage 173

B18 Changes in taste (sensory attribute) of clarified sapodilla juice during storage 174

B19 Changes in off-flavour (sensory attribute) of clarified sapodilla juice during storage 175

B20 Changes in astringency (sensory attribute) of clarified sapodilla juice during storage 176

B21 Changes in overall acceptability (sensory attribute) of clarified sapodilla juice during storage 177

B22 Results for hot water extraction of sapodilla juice as a function of extraction time and temperature 178

B23 Results for enzymatic clarification of sapodilla juice as a function of incubation time, temperature and enzyme concentration 179

B24 Effects of fining agents in clarified sapodilla juice 180
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagram of a Mature Parenchymatic Plant Cell Common to Many Fruits and Vegetables (Idealized)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Fragment of a Pectin Molecule and Points of Attack of Pectic Enzymes</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>The General Production Line for Production of Clarified Fruit Juices</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>A Suggested Theory of Floc Formation during Enzyme Treatment of the Juice</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Size Separation Capabilities of Different Membrane Systems</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>A Comparison of Cross-Flow Filtration with Depth Filtration</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Conceptual Mechanism of Protein-Polyphenol Interaction</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Possible Mechanisms Accounting for the Observed Pattern of Haze Development in Beer</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Contour Plots for Juice Yield as a Function of Extraction Time (min) and Temperature (ºC)</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Contour Plots for Odour as a Function of Extraction Time (min) and Temperature (ºC)</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>Contour Plots for Taste as a Function of Extraction Time (min) and Temperature (ºC)</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Contour Plots for Astringency as a Function of Extraction Time (min) and Temperature (ºC)</td>
<td>75</td>
</tr>
<tr>
<td>3.5</td>
<td>Contour Plots for Optimum Combined Condition as a Function of Extraction Time (min) and Temperature (ºC)</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Three-Dimensional Plots for Turbidity as a Function of Enzyme Concentration and Incubation Time at 41.88°C</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Three-Dimensional Plots for Clarity as a Function of Enzyme Concentration and Incubation Time at 50°C</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Three-Dimensional Plots for Viscosity as a Function of Enzyme Concentration and Incubation Time at 36.14°C</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Three-Dimensional Plots for L value as a Function of Enzyme Concentration and Incubation Time at 40°C</td>
<td>92</td>
</tr>
</tbody>
</table>
4.5 Contour Plots for Optimum Combine Condition as a Function of Enzyme Concentration and Incubation Time at 40°C

5.1 Processing Flow Chart of Clarified Sapodilla Juice

A1 Questionnaire for Sensory Evaluation of Sapodilla Juice Extract

A2 Quantitative Descriptive Analysis (QDA) Sheets for Sensory Evaluation of Clarified Sapodilla Juice

A3 Hedonic Scale for Sheet Sensory Evaluation of Clarified Sapodilla Juice

C1 Effects of Browning Index in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C2 Effects of Turbidity in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C3 Effects of Total Polyphenol in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C4 Effects of Total Protein in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C5 Effects of Clarity in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C6 Effects of L value in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C7 Effects of a value in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C8 Effects of b value in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C9 Effects of pH in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C10 Effects of Total Soluble Solid in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C11 Effects of Titratable Acidity in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C12 Effects of Clarity (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C13 Effects of Yellowness (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C14 Effects of Odour (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C15 Effects of Taste (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C16 Effects of Off-Flavour (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment

C17 Effects of Astringency (Sensory Attribute) in Clarified Sapodilla Juice
(a) Effect of Storage Temperature and Storage Time
(b) Effect of Storage Treatment and Storage Time
(c) Effect of Storage Temperature and Storage Treatment
C18 Effects of Overall Acceptability (Sensory Attribute) in Clarified Sapodilla Juice
 (a) Effect of Storage Temperature and Storage Time
 (b) Effect of Storage Treatment and Storage Time
 (c) Effect of Storage Temperature and Storage Treatment

C19 Standard Curve for Total Polyphenol

C20 Standard Curve for Total Protein

C21 Morphological Characteristics of Sapodilla Fruits

C22 Comparison Between Three Varieties of Clarified Sapodilla Juices

C23 Clarified Sapodilla Juices Prepared From Three Varieties of Sapodilla Fruits
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>QDA</td>
<td>Quantitative Descriptive Analysis</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric Turbidity Unit</td>
</tr>
<tr>
<td>PVPP</td>
<td>Polyvinylpolypyrrolidone</td>
</tr>
<tr>
<td>cp</td>
<td>Centipoise</td>
</tr>
<tr>
<td>x g</td>
<td>Times Gravity</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
</tr>
</tbody>
</table>