

# **UNIVERSITI PUTRA MALAYSIA**

# OPTIMIZATION OF PROCESSING CONDITIONS AND ENHANCEMENT OF QUALITY AND STORAGE STABILITY OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICE

**SIN HWEE NEE** 

FSTM 2007 3



### OPTIMIZATION OF PROCESSING CONDITIONS AND ENHANCEMENT OF QUALITY AND STORAGE STABILITY OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICE

By

SIN HWEE NEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirements for the Degree of Master of Science

February 2007



Specially Dedicated To My Family



Abstract of thesis presented to the Senate of Universiti Putra of Malaysia in fulfilment of the requirement for the degree of Master Science

#### OPTIMIZATION OF PROCESSING CONDITIONS AND ENHANCEMENT OF QUALITY AND STORAGE STABILITY OF CLARIFIED SAPODILLA (ACHRAS ZAPOTA) JUICE

By

#### SIN HWEE NEE

February 2007

#### Chairman: Professor Salmah binti Yusof, PhD

Faculty : Food Science and Technology

This study was carried out to optimize conditions for hot water extraction (HWE) and enzymatic clarification in the production of clarified sapodilla juice. The effects of different level of fining treatment and storage condition on haze reduction of clarified sapodilla juice during storage were also investigated. The physico-chemical characteristics (physical measurement of fruits, total soluble solids, pH, titratable acidity, colour measurement, clarity and viscosity) of clarified sapodilla juice made from three fruit varieties were studied. The juice produced from the Subang variety possessed desirable lightness, clarity and viscosity and was therefore found to be suitable in the production of clarified sapodilla juice.

The optimum conditions of hot water extraction (HWE) for production of sapodilla juice were determined using Response Surface Methodology (RSM). Time and temperature combinations in the range of 30-120 min and 30-90°C were the



independent variables and their effects on juice yield, odour, taste and astringency were investigated. The results showed that extraction temperature was the most important factor that affected characteristics of the juice as it exerted a significant influence on all the dependent variables. Higher temperature increased juice yield, taste and odour but also showed an increased astringency, which affected the acceptability of the juice. The results implied that an optimum sapodilla juice extraction condition using HWE to be at 60°C for 120 min.

The optimum conditions for enzymatic clarification of clarified sapodilla juice were also determined using RSM. Sapodilla juice was treated with pectinase enzyme at different incubation times (30-120 min), temperature (30-50°C) and enzyme concentration (0.03-0.10%). These three factors were used as independent variables and their effects on turbidity, clarity, viscosity and colour (L values) of the juice were evaluated. Significant regression models describing the changes of turbidity, clarity, viscosity and colour (L values) with respect to the independent variables were established, with the coefficient of determination,  $R^2$ , greater than 0.8. The results indicated that enzyme concentration was the most important factor that affected characteristics of the juice as it exerted a significant influence on all the dependent variables. The recommended enzyme clarification condition was 0.1% enzyme concentration at 40°C for 120 min.

The clarified sapodilla juice was then subjected to different level of fining treatments namely bentonite at 0.25% (X), 0.10% (Y) and control (Z-without treatment) and stored at 4, 25 and 37°C. The effects of bentonite fining at different levels and storage temperature on haze reduction were monitored during 24 weeks of storage.



Haze reduction was notable for samples stored at 4°C with 0.25% bentonite treatment (X) followed by samples stored at 4°C with 0.10% bentonite treatment (Y). Lower temperature slowed down the physical chemical changes that took place in juice and helped retain the quality and colour of juice during storage, while higher temperature induced and accelerated the physical chemical changes during storage. Fining treatment significantly reduced the turbidity and browning index of the juice during storage compared to samples without fining. The appropriate level of fining treatment was important in haze reduction where samples treated with 0.25% bentonite treatment (Y). All the samples passed the microbial test and were safe for consumption at the end of the storage period. Samples stored at 4°C with 0.25% bentonite treatment (X) possessed the highest overall acceptability scores after 24 weeks storage, while samples stored at 37°C without treatment (Z) showed the lowest overall acceptability.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

#### PENGOPTIMALAN PEMPROSESAN DAN PENAMBAHBAIKAN KUALITI SERTA KESTABILAN PENYIMPANAN JUS JERNIH SAPODILLA (ACHRAS SAPOTA)

Oleh

#### SIN HWEE NEE

#### Februari 2007

#### Pengerusi : Profesor Salmah binti Yusof, PhD

#### Fakulti : Sains dan Teknologi Makanan

Kajian ini dijalankan untuk mengoptimumkan keadaan pengekstrakan air panas (HWE) dan penjernihan jus menggunakan enzim dalam penghasilan jus jernih sapodilla. Pengaruh rawatan 'fining' pada kadar berbeza serta keadaan penyimpanan jus terhadap pengurangan kekeruhan dalam jus jernih sapodilla semasa penyimpanan juga dikaji. Sifat-sifat fizikal dan kimia (pengukuran fizikal buah, kandungan pepejal terlarut, pH, keasidan titratan, pengukuran warna, kejernihan dan kelikatan) jus jernih sapodilla yang disediakan daripada tiga jenis buah dikaji. Jus yang disediakan daripada jenis Subang mempunyai nilai kecerahan, kejernihan dan kelikatan yang diperlukan dan dengan itu didapati sesuai dalam penghasilan jus jernih sapodilla.

Keadaan optima pengekstrakan air panas (HWE) untuk penghasilan jus sapodilla ditentukan dengan methodologi "Response Surface Methodology"(RSM). Kombinasi masa dan suhu dalam julat 30-120 minit dan 30-90°C merupakan variasi tak berubah dan kesannya ke atas perolehan jus, bau, rasa dan kekelatan telah ditentukan.



Keputusan menunjukkan suhu pengekstrakan merupakan faktor yang paling penting dalam mempengaruhi ciri-ciri jus di mana ia menunjukkan signifikasi pada semua variasi berubah. Suhu tinggi meninggikan perolehan jus, rasa dan bau tetapi juga meninggikan kekelatan yang boleh mempengaruhi penerimaan jus. Keputusan menunjukkan keadaan optima pengekstrakan jus sapodilla menggunakan kaedah HWE adalah pada suhu 60°C selama 120 minit.

Keadaan optima dalam penjernihan jus menggunakan enzim juga ditentukan dengan methodologi RSM. Jus sapodilla dirawatkan dengan enzim pektin pada tempoh (30-120 minit), suhu (30-50°C) dan kepekatan enzim (0.03-0.10%) yang berbeza. Ketiga-tiga faktor ini digunakan sebagai variasi tak berubah dan kesannya terhadap kekeruhan, kejernihan, kelikatan dan kecerahan warna (nilai L) jus telah ditentukan. Model regresi yang bererti pada perubahan kekeruhan, kejernihan, kelikatan dan kecerahan warna (L value) terhadap variasi tak berubah telah ditentukan dengan R<sup>2</sup> (coefficient of determination) lebih daripada 0.8. Keputusan menunjukkan kepekatan enzim adalah faktor utama mempengaruhi ciri jus jernih di mana ia menunjukkan signifikasi pada semua variasi berubah. Keadaan optima penjernihan jus menggunakan enzim adalah dicadangkan pada 0.1% kepekatan enzim pada 40°C selama 120 minit.

Jus jernih sapodilla seterusnya dijalankan rawatan 'fining' pada kadar berbeza iaitu bentonite pada 0.25% (X), 0.10% (Y), dan kawalan (Z- tanpa rawatan) serta disimpan pada suhu 4, 25 dan 37°C. Kesan rawatan bentonite pada kadar berbeza dan kesan suhu penyimpanan terhadap pengurangan kekeruhan diperhatikan selama 24 minggu tempoh penyimpanan. Pengurangan kekeruhan adalah ketara pada sampel



yang disimpan pada 4°C dengan 0.25% bentonite (X) diikuti dengan sampel yang disimpan pada 4°C dengan 0.1% bentonite (Y). Suhu yang rendah melambatkan perubahan fizikal dan kimia pada jus serta membantu mengekalkan kualiti dan warna jus semasa penyimpanan, manakala suhu yang tinggi menggalakkan dan mempercepatkan perubahan fizikal dan kimia semasa penyimpanan. Rawatan 'fining' mengurangkan kekeruhan dan index keperangan jus semasa penyimpanan dengan bererti berbanding dengan sampel tanpa rawatan. Kadar yang tepat dalam rawatan 'fining' adalah penting dalam pengurangan kekeruhan, di mana sampel yang dirawat dengan 0.25% bentonite (X) menunjukkan pengurangan kekeruhan yang ketara diikuti dengan sampel yang dirawat dengan 0.10% bentonite (Y). Semua sampel telah melepasi ujian mikrobiologi dan adalah selamat diminum sehingga akhir tempoh penyimpanan. Sampel yang disimpan pada 4°C dengan 0.25% bentonite (X) menunjukkan skor keterimaan keselurahan yang tertinggi selepas 24 minggu penyimpanan, manakala sampel yang disimpan pada suhu 37°C tanpa rawatan (Z) menunjukan skor keterimaan keseluruhan yang paling rendah.



#### ACKNOWLEDGEMENTS

I wish to acknowledge generous individuals whose valuable support made this study a success and the completion of this thesis possible. I am immensely indebted to them and my only means of repaying them is to express a heartfelt gratitude and a sincere appreciation.

Foremost is to my supervisor, Prof. Salmah Yusof for her invaluable guidance, advice, encouragement and support. But most importantly, she gave me the necessary confidence from the very beginning to go through this graduate programme by believing in me.

Appreciation is also goes to Dr. Nazimah Sheikh Abdul Hamid, member of the Supervisory committee, for her valuable comments, ideas and for those precious words of encouragement which keeps me going when the progression becomes tough. Professor Dr. Russly Abdul Rahman, member of the Supervisory committee, was an invaluable resource in my research project and an enjoyable gentleman to work with. Special appreciations also go to Dr. Boo and Dr. Anuar Abdul Rahim, for their help, comments and guidance on the statistical analysis of the data.

I wish to express my gratitude to all my friends for their very generous help, cooperation, encouragement and warm friendship which made my work in the laboratory bearable and pleasant. Special appreciations also go to lab personnel, office staffs and faculty who help me in many ways during my research project. Thank you all and each of you.



Finally, but certainly not least, I wish to express my deepest appreciation to my beloved parents who had given me unconditional love and support and for their efforts in educating me. To my brothers, sister and Mr. Leong, for their patience and endurance and for standing by me through those difficult times. To them, I dedicate this work.



I certify that an Examination Committee has met on 22 February 2007 to conduct the final examination of Sin Hwee Nee on her Master of Science thesis entitled "Optimization of Processing Conditions for the Production of Quality Clarified Sapodilla (*Achras zapota*) Juice " in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of Examination Committee are as follows:

#### Mohd.Yazid Abd Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

#### Jinap Selamat, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

### Azis Ariffin, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

### Osman Hassan, PhD

Professor School of Chemical Sciences and Food Technology Universiti Kebangsaan Malaysia (External Examiner)

#### HASANAH MOHD GHAZALI, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 JUNE 2007



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

#### Salmah Yusof, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

### Nazimah Sheikh Abdul Hamid, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

### Russly Abdul Rahman, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:



### DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

## SIN HWEE NEE

Date:



# TABLE OF CONTENTS

|                       | Page |
|-----------------------|------|
| DEDICATION            | ii   |
| ABSTRACT              | iii  |
| ABSTRAK               | vi   |
| ACKNOWLEDGEMENTS      | ix   |
| APPROVAL              | xi   |
| DECLARATION           | xiii |
| LIST OF TABLES        | xvii |
| LIST OF FIGURES       | XX   |
| LIST OF ABBREVIATIONS | xxiv |

# CHAPTER

| Ι  | INTRODUCTION                                              | 1           |
|----|-----------------------------------------------------------|-------------|
| II | LITERATURE REVIEW                                         | 5           |
|    | Sapodilla (Achras zapota)                                 | 5           |
|    | Origin and Distribution of Sapodilla                      | 5<br>5<br>8 |
|    | Nomenclature                                              |             |
|    | Botanical Description                                     | 8           |
|    | Nutritional Composition                                   | 10          |
|    | Fruit Juice and Beverages                                 | 11          |
|    | Fruit Juice Extraction Methods                            | 13          |
|    | Milling                                                   | 14          |
|    | Pressing                                                  | 15          |
|    | Hot Water Extraction                                      | 16          |
|    | Pre- treatment with Pectolytic Enzymes                    | 16          |
|    | Pectic Substances                                         | 18          |
|    | Pectic Enzymes                                            | 20          |
|    | Industrial Enzymes                                        | 22          |
|    | Application of Enzymes in Fruit Juice Technology          | 26          |
|    | Pulp Maceration                                           | 28          |
|    | Juice clarification                                       | 30          |
|    | Use of Membrane Filtration in Clarified Juice             | 33          |
|    | Fining Agents                                             | 36          |
|    | Bentonite                                                 | 37          |
|    | Gelatin                                                   | 38          |
|    | Application of Fining Treatment in Fruit Juice Processing | 40          |
|    | Haze and Precipitate Formation in Beverage                | 41          |
|    | Formation of Haze During Storage                          | 43          |
|    | Interactions Between Haze-Active Proteins and             | 45          |
|    | Polyphenols                                               |             |
|    | Pattern of Haze Development                               | 47          |
|    | Other Phenomena Involving Protein- Polyphenol             | 49          |
|    | Interaction                                               |             |
|    | Response Surface Methodology (RSM)                        | 49          |
|    | Sensory Evaluation                                        | 51          |
|    | Quantitative Descriptive Analysis (QDA)                   | 52          |



| III | PART 1: PHYSICO- CHEMICAL CHARACTERISTICS OF                                                                    | 54       |
|-----|-----------------------------------------------------------------------------------------------------------------|----------|
|     | CLARIFIED SAPODILLA ( <i>ACHRAS ZAPOTA</i> ) JUICES<br>PREPARED FROM THREE FRUIT VARIETIES                      |          |
|     | Introduction                                                                                                    | 54       |
|     | Materials and Methods                                                                                           | 55       |
|     | Materials                                                                                                       | 55       |
|     | Sample Preparation                                                                                              | 55       |
|     | Determination of Weight, Width and Length                                                                       | 56       |
|     | Determination of Total Soluble Solid and pH                                                                     | 56       |
|     | Determination of Titratable Acidity                                                                             | 57       |
|     | Determination of Colour                                                                                         | 57       |
|     | Determination of Clarity                                                                                        | 57       |
|     | Determination of Viscosity                                                                                      | 57       |
|     | Statistical Analysis                                                                                            | 58       |
|     | Results and Discussion                                                                                          | 58       |
|     | Conclusion                                                                                                      | 61       |
|     | PART 2: OPTIMIZATION OF HOT WATER EXTRACTION<br>FOR SAPODILLA JUICE USING RESPONSE SURFACE<br>METHODOLOGY (RSM) | 63       |
|     | Introduction                                                                                                    | 63       |
|     | Materials and Methods                                                                                           | 65       |
|     | Fruits                                                                                                          | 65       |
|     | Sample Preparation                                                                                              | 65       |
|     | Experimental Design                                                                                             | 66       |
|     | Determination of Juice Yield                                                                                    | 68       |
|     | Sensory Evaluation                                                                                              | 68       |
|     | Results and Discussion                                                                                          | 70       |
|     | Model Fitting                                                                                                   | 70       |
|     | Effect of Extraction Time and Temperature                                                                       | 71       |
|     | Optimization of Extraction Condition                                                                            | 76       |
|     | Verification of the results<br>Conclusion                                                                       | 77<br>78 |
|     |                                                                                                                 |          |
| IV  | OPTIMIZATION OF ENZYMATIC CLARIFICATION OF<br>SAPODILLA JUICE USING RESPONSE SURFACE<br>METHODOLOGY (RSM)       | 79       |
|     | Introduction                                                                                                    | 79       |
|     | Materials and Methods                                                                                           | 81       |
|     | Enzyme Source                                                                                                   | 81       |
|     | Fruits                                                                                                          | 81       |
|     | Juice Extraction                                                                                                | 81       |
|     | Enzyme Treatment                                                                                                | 82       |
|     | Determination of Turbidity                                                                                      | 82       |
|     | Determination of Clarity, Viscosity and Colour<br>Measurement                                                   | 82       |
|     | Experimental Design                                                                                             | 83       |
|     | Results and Discussions                                                                                         | 85       |
|     | Turbidity                                                                                                       | 86       |
|     | Clarity                                                                                                         | 87       |
|     |                                                                                                                 |          |



|                          | Viscosity                                                                        | 89  |
|--------------------------|----------------------------------------------------------------------------------|-----|
|                          | Colour                                                                           | 90  |
|                          | Optimization                                                                     | 92  |
|                          | Verification of the results                                                      | 93  |
|                          | Conclusion                                                                       | 94  |
| V                        | EFFECTS OF FINING TREATMENT AND STORAGE                                          | 95  |
|                          | TEMPERATURE ON THE QUALITY OF CLARIFIED SAPODILLA ( <i>ACHRAS ZAPOTA</i> ) JUICE |     |
|                          | Introduction                                                                     | 95  |
|                          | Materials and Methods                                                            | 98  |
|                          | Enzyme Source                                                                    | 98  |
|                          | Chemicals                                                                        | 99  |
|                          | Fruits                                                                           | 99  |
|                          | Sample juice preparation                                                         | 99  |
|                          | Storage stability                                                                | 101 |
|                          | Determination of Browning index                                                  | 102 |
|                          | Determination of Turbidity                                                       | 102 |
|                          | Determination of Total Polyphenol                                                | 102 |
|                          | Determination of Total Protein                                                   | 102 |
|                          | Determination of Clarity, Colour Measurement, pH,                                | 103 |
|                          | Total Soluble Solids Content and Titratable Acidity                              |     |
|                          | Microbiological Analysis                                                         | 103 |
|                          | Sensory Evaluation                                                               | 103 |
|                          | Statistical Analysis                                                             | 105 |
|                          | Results and Discussions                                                          | 105 |
|                          | Changes in Browning index                                                        | 105 |
|                          | Changes in Turbidity                                                             | 111 |
|                          | Changes in Total Polyphenol Content                                              | 114 |
|                          | Changes in Total Protein Content                                                 | 116 |
|                          | Changes in Clarity                                                               | 118 |
|                          | Changes in Colour Measurement                                                    | 119 |
|                          | Changes in Total Soluble Solids Content, pH and                                  | 121 |
|                          | Titratable Acidity                                                               |     |
|                          | Microbiological Analysis                                                         | 122 |
|                          | Sensory Evaluation                                                               | 122 |
|                          | Conclusion                                                                       | 129 |
| VI                       | GENERAL CONCLUSION AND RECOMMENDATIONS                                           | 131 |
| BIB                      | LIOGRAPHY                                                                        | 134 |
| APP                      | ENDICES                                                                          | 153 |
| BIODATA OF THE AUTHOR 20 |                                                                                  |     |



# LIST OF TABLES

| Table | e                                                                                                                                       | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Hectares of fruit plantation in Peninsular Malaysia from 1992 to 2001                                                                   | 6    |
| 2.2   | Export of sapodilla from 1992 to 2001                                                                                                   | 7    |
| 2.3   | Nutrition value of sapodilla                                                                                                            | 11   |
| 2.4   | Vitamin and mineral content of sapodilla and imported fruits                                                                            | 11   |
| 2.5   | Percentage of pectin in some raw materials                                                                                              | 20   |
| 2.6   | Technology roles and applications of pectic enzymes                                                                                     | 24   |
| 2.7   | Characterization of microbial pectinases                                                                                                | 25   |
| 3.1   | Morphological characteristics of sapodilla fruits                                                                                       | 58   |
| 3.2   | Physico-chemical characteristics of clarified sapodilla juices                                                                          | 61   |
| 3.3   | The central composite experimental design employed for hot water extraction of sapodilla juice                                          | 68   |
| 3.4   | Regression coefficients, $R^2$ , adjusted $R^2$ and $p$ or probability values for four dependent variables for sapodilla juice extract  | 71   |
| 3.5   | Predicted and experimental value for the response at optimum condition<br>for hot water extraction of sapodilla juice                   | 78   |
| 4.1   | The central composite experimental design employed for enzymatic clarification of sapodilla juice                                       | 84   |
| 4.2   | Regression coefficients and R <sup>2</sup> value for four dependent variables for enzymatic clarified sapodilla juices                  | 85   |
| 4.3   | Predicted and experimental value for the response at optimum condition<br>for enzymatic clarification of clarified sapodilla juice      | 94   |
| 5.1   | Main effects of storage treatment, storage temperature and storage time<br>on physical chemical attributes of clarified sapodilla juice | 108  |
| 5.2   | Effects of storage temperature and storage time on physical chemical attributes of clarified sapodilla juice                            | 109  |
| 5.3   | Effects of storage treatment and storage time on physical chemical attributes of clarified sapodilla juice                              | 110  |
| 5.4   | Effects of storage temperature and storage treatment on physical                                                                        | 111  |
|       |                                                                                                                                         |      |



chemical attributes of clarified sapodilla juice

- 5.5 Main effects of storage treatment, storage temperature and storage time 126 on sensory attributes of clarified sapodilla juice
- 5.6 Effects of storage temperature and storage time on sensory attributes of 127 clarified sapodilla juice
- 5.7 Effects of storage treatment (trt) and storage time on sensory attributes of 128 clarified sapodilla juice
- 5.8 Effects of storage temperature and treatment (trt) on sensory attributes of 129 clarified sapodilla juice
- B1 Main and interaction effects of storage treatment (trt), storage 157 temperature (temp) and storage duration (week) on physical-chemical analyses of clarified sapodilla juice during storage
- B2 Correlation analysis for clarified sapodilla juice during storage 158
- B3 Main and interaction effects of storage treatment (trt), storage 159 temperature (temp) and storage time (week) on sensory attributes of clarified sapodilla juice
- B4 Changes in browning index of clarified sapodilla juice during storage 160
- B5 Changes in turbidity of clarified sapodilla juice during storage 161
- B6 Changes in total polyphenol of clarified sapodilla juice during storage 162
- B7 Changes in total protein of clarified sapodilla juice during storage 163
- B8 Changes in clarify of clarified sapodilla juice during storage 164
- B9Changes in L value of clarified sapodilla juice during storage165
- B10 Changes in a value of clarified sapodilla juice during storage 166
- B11 Changes in b value of clarified sapodilla juice during storage 167
- B12 Changes in pH of clarified sapodilla juice during storage 168
- B13 Changes in total soluble solids of clarified sapodilla juice during storage 169
- B14 Changes in titratable acidity of clarified sapodilla juice during storage 170
- B15 Changes in clarity (sensory attribute) of clarified sapodilla juice during 171 storage
- B16 Changes in yellowness (sensory attribute) of clarified sapodilla juice 172

during storage

- B17 Changes in odour (sensory attribute) of clarified sapodilla juice during 173 storage
- B18 Changes in taste (sensory attribute) of clarified sapodilla juice during 174 storage
- B19 Changes in off-flavour (sensory attribute) of clarified sapodilla juice 175 during storage
- B20 Changes in astringency (sensory attribute) of clarified sapodilla juice 176 during storage
- B21 Changes in overall acceptability (sensory attribute) of clarified sapodilla 177 juice during storage
- B22 Results for hot water extraction of sapodilla juice as a function of 178 extraction time and temperature
- B23 Results for enzymatic clarification of sapodilla juice as a function of 179 incubation time, temperature and enzyme concentration
- B24 Effects of fining agents in clarified sapodilla juice 180



# LIST OF FIGURES

| Figu | re                                                                                                            | Page |
|------|---------------------------------------------------------------------------------------------------------------|------|
| 2.1  | Diagram of a Mature Parenchymatic Plant Cell Common to Many<br>Fruits and Vegetables (Idealized)              | 19   |
| 2.2  | Fragment of a Pectin Molecule and Points of Attack of Pectic Enzymes                                          | 21   |
| 2.3  | The General Production Line for Production of Clarified Fruit Juices                                          | 27   |
| 2.4  | A Suggested Theory of Floc Formation during Enzyme Treatment of the Juice                                     | 33   |
| 2.5  | Size Separation Capabilities of Different Membrane Systems                                                    | 34   |
| 2.6  | A Comparison of Cross- Flow Filtration with Depth Filtration                                                  | 35   |
| 2.7  | Conceptual Mechanism of Protein-Polyphenol Interaction                                                        | 47   |
| 2.8  | Possible Mechanisms Accounting for the Observed Pattern of Haze Development in Beer                           | 48   |
| 3.1  | Contour Plots for Juice Yield as a Function of Extraction Time (min) and Temperature (°C)                     | 74   |
| 3.2  | Contour Plots for Odour as a Function of Extraction Time (min) and Temperature (°C)                           | 74   |
| 3.3  | Contour Plots for Taste as a Function of Extraction Time (min) and Temperature (°C)                           | 75   |
| 3.4  | Contour Plots for Astringency as a Function of Extraction Time (min) and Temperature (°C)                     | 75   |
| 3.5  | Contour Plots for Optimum Combined Condition as a Function of Extraction Time (min) and Temperature (°C)      | 77   |
| 4.1  | Three-Dimensional Plots for Turbidity as a Function of Enzyme<br>Concentration and Incubation Time at 41.88°C | 87   |
| 4.2  | Three-Dimensional Plots for Clarity as a Function of Enzyme<br>Concentration and Incubation Time at 50°C      | 89   |
| 4.3  | Three-Dimensional Plots for Viscosity as a Function of Enzyme<br>Concentration and Incubation Time at 36.14°C | 90   |
| 4.4  | Three-Dimensional Plots for L value as a Function of Enzyme Concentration and Incubation Time at 40°C         | 92   |



| 4.5 | Contour Plots for Optimum Combine Condition as a Function of Enzyme Concentration and Incubation Time at 40°C                                                                                                                 | 93  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.1 | Processing Flow Chart of Clarified Sapodilla Juice                                                                                                                                                                            | 101 |
| A1  | Questionnaire for Sensory Evaluation of Sapodilla Juice Extract                                                                                                                                                               | 153 |
| A2  | Quantitative Descriptive Analysis (QDA) Sheets for Sensory<br>Evaluation of Clarified Sapodilla Juice                                                                                                                         | 155 |
| A3  | Hedonic Scale for Sheet Sensory Evaluation of Clarified Sapodilla<br>Juice                                                                                                                                                    | 156 |
| C1  | Effects of Browning Index in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment   | 181 |
| C2  | Effects of Turbidity in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment        | 182 |
| C3  | Effects of Total Polyphenol in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment | 183 |
| C4  | Effects of Total Protein in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment    | 184 |
| C5  | Effects of Clarity in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment          | 185 |
| C6  | Effects of L value in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment          | 186 |
| C7  | Effects of a value in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment          | 187 |
| C8  | Effects of b value in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time                                                                                                                         | 188 |



|     | <ul><li>(b) Effect of Storage Treatment and Storage Time</li><li>(c) Effect of Storage Temperature and Storage Treatment</li></ul>                                                                                                           |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| C9  | Effects of pH in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment t                            | 189 |
| C10 | Effects of Total Soluble Solid in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment             | 190 |
| C11 | Effects of Titratable Acidity in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment              | 191 |
| C12 | Effects of Clarity (Sensory Attribute) in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment     | 192 |
| C13 | Effects of Yellowness (Sensory Attribute) in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment  | 193 |
| C14 | Effects of Odour (Sensory Attribute) in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment       | 194 |
| C15 | Effects of Taste (Sensory Attribute) in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment       | 195 |
| C16 | Effects of Off-Flavour (Sensory Attribute) in Clarified Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment | 196 |
| C17 | Effects of Astringency (Sensory Attribute) in Clarified Sapodilla Juice.<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time                                                           | 197 |

(c) Effect of Storage Temperature and Storage Treatment



| C18 | Effects of Overall Acceptability (Sensory Attribute) in Clarified<br>Sapodilla Juice<br>(a) Effect of Storage Temperature and Storage Time<br>(b) Effect of Storage Treatment and Storage Time<br>(c) Effect of Storage Temperature and Storage Treatment | 198 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| C19 | Standard Curve for Total Polyphenol                                                                                                                                                                                                                       | 199 |
| C20 | Standard Curve for Total Protein                                                                                                                                                                                                                          | 199 |
| C21 | Morphological Characteristics of Sapodilla Fruits                                                                                                                                                                                                         | 200 |
| C22 | Comparison Between Three Varieties of Clarified Sapodilla Juices                                                                                                                                                                                          | 200 |
| C23 | Clarified Sapodilla Juices Prepared From Three Varieties of Sapodilla Fruits                                                                                                                                                                              | 201 |



# LIST OF ABBREVIATIONS

| ANOVA | Analysis of Variance              |
|-------|-----------------------------------|
| SAS   | Statistical Analysis System       |
| RSM   | Response Surface Methodology      |
| CCD   | Central Composite Design          |
| QDA   | Quantitative Descriptive Analysis |
| NTU   | Nephelometric Turbidity Unit      |
| PVPP  | Polyvinylpolypyrolidone           |
| ср    | Centipoise                        |
| x g   | Times Gravity                     |
| ppm   | Part per million                  |
| rpm   | Revolution per minute             |
| μ     | Micro                             |

