UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF PROCESSING PARAMETERS FOR THE PRODUCTION AND STORAGE OF DRUM-DRIED JACKFRUIT (ARTOCARPUS HETEROPHYLLUS) POWDER

PUA CHUN KIAT

FSTM 2006 18
OPTIMIZATION OF PROCESSING PARAMETERS FOR THE PRODUCTION
AND STORAGE OF DRUM-DRIED JACKFRUIT (ARTOCARPUS
HETEROPHYLLUS) POWDER

By

PUA CHUN KIAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirement for the Degree of Master of Science

July 2006
ESPECIALLY DEDICATED TO MY BELOVED FAMILY
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

OPTIMIZATION OF PROCESSING PARAMETERS FOR THE PRODUCTION
AND STORAGE OF DRUM-DRIED JACKFRUIT (ARTOCARPUS
HETEROPHYLLUS) POWDER

By

PUA CHUN KIAT

July 2006

Chairman : Nazimah Sheikh Abdul Hamid, PhD
Faculty : Food Science and Technology

This study concerns with the optimization of formulation and processing parameters of
drum-dried jackfruit powder using response surface methodology (RSM). In formulating
the jackfruit powder, various concentrations of soy lecithin and gum arabic ranging from
1 to 5% and 5 to 15 %, respectively were tested. The optimum formulation for jackfruit
powder contained 2.65% of soy lecithin and 10.28% of gum arabic with 40% v/w water.
Soy lecithin and gum arabic significantly \((p<0.05)\) affected the moisture content, bulk
density, Hunter \(L, a, b\) values and hedonic scores of jackfruit powder with each response
following the second-order polynomial model.

Optimum processing parameters for drum drying were found when drum clearance of
drum dryer was set at 0.01 inch, pool level at 10 cm, and drum rotation speed of 1 to 3
rpm with 3.0 to 4.4 bars of steam pressure. The results showed that the moisture content,
water activity, solubility, Hunter L, a, b value, and sensory attributes of jackfruit powder were significantly ($p<0.05$) influenced by both steam pressure and rotation speed of the drum dryer. The optimum steam pressure and rotation speed of drum dryer were 3.36 bars and 1.2 rpm respectively with predetermined drum clearance of 0.01 inch and 10 cm of pool level.

Total colour difference (ΔE), moisture sorption rates and sensory attributes of drum-dried jackfruit powder packaged in aluminum laminated polyethylene (ALP) and metallized co-extruded biaxially oriented polypropylene (BOPP/MCPP) pouches stored at accelerated storage (38°C, with 50, 75 and 90% relative humidity (RH)) were determined over 12 weeks period. The changes in total colour followed zero order reaction kinetics. Packaging materials, storage temperature and RH values significantly ($p<0.05$) influenced the moisture sorption rates of jackfruit powder. There was a significant ($p<0.05$) decrease in the intensities of the fruity odour, taste and increase in the lumpiness of the jackfruit powder stored at 38°C with 90% RH. The shelf life of jackfruit powder stored at 38°C and 90% RH was limited by both overall acceptability and the three sensory attributes intensities at week 8 of storage. Jackfruit powder stored at 28°C remained stable and acceptable throughout the storage period for all RH values. The powder packaged in ALP significantly ($p<0.05$) reduced total colour change, moisture sorption rates, lumpiness intensity of jackfruit powder and was rated higher in terms of overall acceptability over BOPP/MCPP. Results of this study suggested that ALP packaging with storage conditions of 28°C and RH less than 75% was better suited for keeping jackfruit powder.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN PARAMETER PEMPROSESAN UNTUK PENGHASILAN DAN PENYIMPANAN SERBUK NANGKA (*Artocarpus heterophyllus*) YANG DIKERINGKAN SECARA DRAM

Oleh

PUA CHUN KIAT

Julai 2006

Pengerusi : Nazimah Sheikh Abdul Hamid, PhD

Fakulti : Sains dan Teknologi Makanan

Kajian ini berkenaan pengoptimuman rumusan dan parameter pemprosesan serbuk nangka yang dikeringkan secara dram dengan menggunakan metodologi respons permukaan (“Response Surface Methodology”, RSM). Dalam merumuskan serbuk nangka, pelbagai kepekatan lesitin soya dan gam arabic dalam lingkungan 1 hingga 5% dan 5 hingga 15%, masing-masing telah diuji. Rumusan yang optimum bagi serbuk nangka mengandungi 2.65% lesitin soya dan 10.28% gam arabic dengan 40% v/w air. Lesitin soya dan gam arabic mempengaruhi kandungan kelembapan, ketumpatan pukal, nilai Hunter L, a, b dan skor hedonik serbuk nangka secara bererti

(p<0.05) dengan setiap respons mengikuti model polinomial turutan kedua.

Parameter pemprosesan yang optimum bagi pengeringan dram didapati apabila jurang antara dram bagi pengering dram telah ditetapkan pada 0.25 mm, paras takungan pada
10 sm, dan kelajuan putaran dram pada 1 hingga 3 rpm dengan 3.0 hingga 4.4 bar
tekanan stim. Keputusan menunjukkan bahawa kandungan kelembapan, aktiviti air,
keterlarutan, nilai Hunter L, a, b dan ciri sensori serbuk nangka telah dipengaruhi oleh
kedua-dua tekanan stim dan kelajuan putaran pengerling dram secara bererti (p<0.05).
Tekanan stim dan kelajuan putaran pengerling dram yang optimum adalah 3.36 bar dan
1.2 rpm, masing-masing dengan jurang antara dram 0.25 mm dan paras takungan 10 sm
yang dipratentukan.

Jumlah perbezaan warna (ΔE), kadar penyerapan lembapan dan ciri sensori serbuk
nangka yang dikerkingkan secara dram telah dibungkus dengan beg polietilina yang
dilapis aluminium (ALP) dan beg polipropilena berarahkan dua-paksi yang disaluti
logam (BOPP/MCPP) yang disimpan pada keadaan penyimpanan yang dipercepatkan
(38°C, dengan 50, 75 dan 90% lembapan relatif (RH)) telah ditentukan selama 12
minggu. Perubahan pada jumlah warna mengikut tindakbalas kinetik turutan sifar. Jenis
bahan pembungkus, suhu penyimpanan dan nilai RH mempengaruhi kadar penyerapan
lembapan serbuk nangka secara bererti (p<0.05). Terdapat pengurangan yang bererti
(p<0.05) pada keamatan bau, rasa buah dan penambahan pada pengetulan serbuk
nangka yang disimpan pada suhu 38°C dengan 90% RH. Jangka hayat serbuk nangka
yang disimpan pada 38°C dan 90% RH telah dihadkan oleh kedua-dua kebolehterimaan
keseluruhan dan keamatan tiga ciri sensori pada minggu penyimpanan yang ke-lapan.
Serbuk nangka yang disimpan pada 28°C tetap stabil dan boleh diterima sepanjang
jangka masa penyimpanan untuk semua nilai RH. Serbuk yang dibungkus dengan ALP
menunjukkan jumlah perbezaan warna, kadar penyerapan lembapan, keamatan
pengetulan serbuk nangka yang rendah lagi bererti \(p<0.05 \) dan telah dinilai lebih tinggi dari segi penerimaan keseluruhan daripada BOPP/MCPP. Keputusan kajian ini mencadangkan bahawa pembungkusan ALP dengan keadaan penyimpanan 28°C dan RH kurang daripada 75% adalah sesuai untuk penyimpanan serbuk nangka.
ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude and appreciation to my supervisory committee chairman, Dr. Nazimah Sheikh Abdul Hamid, for her invaluable guidance, advice and constant encouragement throughout the course of my research study. Her constructive criticisms and suggestions provided me the strength and perseverance to complete this thesis despite several obstacles encountered throughout the course of this research, which at times seemed insurmountable. Appreciation also goes to the members of my supervisory committee, Professor Dr. Gulam Rusul Rahmat Ali and Professor Dr. Russly Abdul Rahman for their support and invaluable suggestions to guide me during my study.

I wish to express my gratitude to all members of the Faculty of Food Science and Technology, UPM for providing the research facilities and technical assistance during my graduate study. Acknowledgement is also due to all my friends, Voon Yit Yang, Ong Bee Tein, Chin Sung Tong, Kuan Tuck Keong, Lee Wai Cheng; and those who have given me the moral encouragement and support to complete my graduate study.

I would like to thank Dr. Patrick Loi from Packaging Research Centre Sdn. Bhd. (Shah Alam, Selangor, Malaysia) for his valuable advice regarding packaging material and contributing the packaging materials used in my study. I would like to acknowledge the financial support provided by IRPA grant (03-02-04-0156-EA001) awarded to Dr. Nazimah Sheikh Abdul Hamid for this study. Acknowledgement is also due to the PASCA scholarship for granting me the opportunity to pursue my master degree.
I am also greatly indebted to my beloved parents and siblings, for their love, spiritual encouragement and support. I wish also to express my deepest appreciation to my girl friend, for her understanding, concern, faith and love.
I certify that an Examination Committee has met on 7 July 2006 to conduct the final examination of Pua Chun Kiat on his Master of Science thesis entitled "Optimization of Processing Parameters for the Production and Storage of Drum-Dried Jackfruit (Artocarpus heterophyllus) Powder" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Yaakob Bin Che Man, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jamilah Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Roselina Karim, PhD
Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Manjeet S. Chinnan, PhD
Professor
Faculty of Food Technology
Universiti of Georgia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Nazimah Sheikh Abdul Hamid, PhD
Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Gulam Rusul Rahmat Ali, PhD
Professor
School of Industrial Technology
Universiti Sains Malaysia
(Member)

Russly Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 NOVEMBER 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

PUA CHUN KIAT

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

I GENERAL INTRODUCTION 1

II LITERATURE REVIEW 5

Jackfruit (*Artocarpus heterophyllus*) 5

- Composition 6
- Flavour 8

Food Dehydration 8

- Drum Drying 11
- Drum Drying Operating Parameters 15
- Applications of Drum Dryers in the Food Industries 24
- Fruit Powder and Flakes 26

Food Emulsifiers 29

- Soy Lecithin 31
- Gum Arabic 32

Physical Properties of Food Powders 34

- Moisture Content 34
- Water Activity 34
- Colour 36
- Kinetics of Colour Degradation in Food Materials 37
- Bulk Density 39
- Hygroscopicity 39
- Caking Phenomena 40

Shelf Life and Storage Studies of Food Powders 40

Factors Influencing Shelf Life 46

- Packaging Material 46
- Temperature 50
- Moisture/Relative Humidity (RH) 51

Response Surface Methodology (RSM) 52
III PRODUCTION OF DRUM-DRIED JACKFRUIT (ARTOCARPUS HETEROPHYLLUS) POWDER WITH DIFFERENT CONCENTRATION OF SOY LECITHIN AND GUM ARABIC

Introduction 55
Materials and Methods 57
 Jackfruit 57
 Preparation of Jackfruit Puree for Drying 58
 Drum Drying Operation 58
 Physical and Instrumental Analyses 59
 Hedonic Test 61
 Experimental Design 61
Results and Discussion 62
 Model Fitting 62
 Effect of Soy Lecithin and Gum Arabic on Moisture Content and Water Activity 64
 Effect of Soy Lecithin and Gum Arabic on Bulk Density 69
 Effect of Soy Lecithin and Gum Arabic on Colour 69
 Effect of Soy Lecithin and Gum Arabic on Sensory Evaluation 70
 Optimization of Jackfruit Formulation to Produce Drum-Dried Fruit Powder 71
Conclusion 73

IV OPTIMIZATION OF DRUM DRYING PROCESSING PARAMETERS FOR PRODUCTION OF JACKFRUIT (ARTOCARPUS HETEROPHYLLUS) POWDER USING RESPONSE SURFACE METHODOLOGY

Introduction 74
Materials and Methods 76
 Jackfruit 76
 Preparation of Jackfruit Puree for Drying 76
 Drum Drying Operation 77
 Physical and Instrumental Analyses 77
 Sensory Evaluation 79
 Experimental Design 80
Results and Discussion 81
 Model Fitting 81
 Moisture Content and Water Activity 81
 Hunter L, a, b Value 87
 Quantitative Descriptive Analysis (QDA) and Hedonic Test 88
 Optimization of Drum Drying Processing Parameters to Produce Jackfruit Powder 90
Conclusion 92
V STORAGE STABILITY OF JACKFRUIT (*ARTOCARPUS HETEROPHYLLUS*) POWDER PACKAGED IN TWO DIFFERENT PACKAGING MATERIALS DURING ACCELERATED STORAGE (38°C, WITH 50, 75 AND 90% RH)

<table>
<thead>
<tr>
<th>Introduction</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and Methods</td>
<td>95</td>
</tr>
<tr>
<td>Preparation of Jackfruit Powder</td>
<td>95</td>
</tr>
<tr>
<td>Packaging Materials</td>
<td>95</td>
</tr>
<tr>
<td>Assessment of Stability of Jackfruit Powder</td>
<td>96</td>
</tr>
<tr>
<td>Colour Measurement</td>
<td>97</td>
</tr>
<tr>
<td>Kinetics of Total Colour Change During Storage</td>
<td>97</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>98</td>
</tr>
<tr>
<td>Sensory Evaluation</td>
<td>99</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>100</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>100</td>
</tr>
<tr>
<td>Total Colour Difference (ΔE)</td>
<td>100</td>
</tr>
<tr>
<td>Kinetics of Total Colour Difference Change in Jackfruit Powder During Storage</td>
<td>107</td>
</tr>
<tr>
<td>Moisture Uptake of Jackfruit Powder During Storage</td>
<td>109</td>
</tr>
<tr>
<td>Sensory Quality of Jackfruit Powder during Storage</td>
<td>112</td>
</tr>
<tr>
<td>Shelf Life Prediction</td>
<td>121</td>
</tr>
<tr>
<td>Conclusion</td>
<td>122</td>
</tr>
</tbody>
</table>

VI GENERAL CONCLUSION AND RECOMMENDATIONS

REFERENCES	126
APPENDICES	138
BIODATA OF THE AUTHOR	146
LIST OF PUBLICATIONS	147
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Chemical composition of ripe jackfruits from different regions of India (g per 100g fresh edible portion)</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Mineral and vitamin composition of ripe jackfruit (mg per 100g edible portion)</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Volatile constituents of two fruit varieties of Artocarpus heterophyllus</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Summary of novel and conventional drying techniques for food</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Drum drying processing parameters employed by some researchers</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>The effect of water activity (a_w) on the growth of microorganisms</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>Storage studies of food powders, flakes and paste</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
</tr>
<tr>
<td>Independent variables and their levels for central composite design in optimization of jackfruit powder formulation</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>63</td>
</tr>
<tr>
<td>Central composite design and experimental result of response functions for the optimization of jackfruit powder formulation</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>Analysis of variance on the jackfruit powder formulation as linear, quadratic and interaction terms on the response variables</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>67</td>
</tr>
<tr>
<td>Regression coefficients of the second-order polynomial for the response variables in optimization of jackfruit powder formulation</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Independent variables and their levels for central composite design in optimization of drum drying processing parameters</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>82</td>
</tr>
<tr>
<td>Central composite design and experimental results of response function for the optimization of drum drying processing parameters</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>83</td>
</tr>
<tr>
<td>Analysis of variance on the drum drying processing conditions as linear, quadratic and interaction terms on the response variables</td>
<td>83</td>
</tr>
<tr>
<td>15</td>
<td>84</td>
</tr>
<tr>
<td>Regression coefficients of the second-order polynomial for the response variables in optimization of drum drying processing parameters</td>
<td>84</td>
</tr>
</tbody>
</table>
16 Effect of interaction of storage period, temperature, relative humidity and packaging material on physicochemical changes of drum dried jackfruit powders

17 Kinetic parameters from zero and first order reaction kinetics of total colour difference of jackfruit powder stored under different storage conditions

18 Variation in QDA scores for the intensity of fruity odour of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 28°C, and at humidity levels of 50, 75 and 90% RH

19 Variation in QDA scores for the intensity of fruity odour of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 38°C, and at humidity levels of 50, 75 and 90% RH

20 Variation in QDA scores for the intensity of fruity taste of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 28°C, and at humidity levels of 50, 75 and 90% RH

21 Variation in QDA scores for the intensity of fruity taste of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 38°C, and at humidity levels of 50, 75 and 90% RH

22 Variation in QDA scores for the intensity of lumpiness of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 28°C, and at humidity levels of 50, 75 and 90% RH

23 Variation in QDA scores for the intensity of lumpiness of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 38°C, and at humidity levels of 50, 75 and 90% RH

24 Variation in hedonic scores for the overall acceptability of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 28°C, and at humidity levels of 50, 75 and 90% RH

25 Variation in hedonic scores for the overall acceptability of jackfruit powder packaged in ALP and BOPP/MCPP pouches during storage at 38°C, and at humidity levels of 50, 75 and 90% RH
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The contour plots of moisture content, bulk density, Hunter L, a, b value and hedonic score of drum dried jackfruit powder as affected by the percentages of soy lecithin and gum arabic incorporated</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>Superimposed contour plot of significant response variables in optimization of jackfruit powder formulation</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>The surface plots of (a) moisture content, (b) water activity, (c) Hunter L-value, (d) Hunter b-value, (e) QDA-yellowness, (f) QDA-Fruitiness, (g) QDA-Processed flavour and (h) hedonic test of drum-dried jackfruit powder as affected by the drum drying processing conditions</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Superimposed contour plot of significant (p \leq 0.05) response variables in optimization of drum drying processing parameters</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>Total colour difference (\Delta E) of jackfruit powder packed in ALP and BOPP/MCPP pouches during storage at 28 and 38°C and (a) 50%RH, (b) 75%RH, (c) 90%RH</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>Moisture content changes of jackfruit powder packed in ALP and BOPP/MCPP pouches during storage at 28 and 38°C and (a) 50%RH, (b) 75%RH, (c) 90%RH</td>
<td>110</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ΔE Total Colour Difference
ANOVA Analysis Of Variance
ALP Aluminum Laminated Polyethylene
aw Water Activity
BOPP/MCPP Biaxially Oriented Polypropylene laminated with
 Metallized Cast Polypropylene
FFA Free Fatty Acid
HDPE High Density Polyethylene
HDPP High Density Polypropylene
HMF Hydroxymethyl Furfural
IR Infra Red
LDPE Low Density Polyethylene
LLDPE Linear Low Density Polyethylene
MPP Metallized Polyester/Polyethylene
OTR Oxygen Transmission Rate
PET Polyethylene Terephthalate
PP Polypropylene
ppm Part Per Million
psi Pound Per Square Inch
Q Quality Attribute
QDA Quantitative Descriptive Analysis
RH Relative Humidity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>Revolution Per Minute</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric Acid</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>v/w</td>
<td>Volume Over Weight</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight Over Volume</td>
</tr>
<tr>
<td>WVTR</td>
<td>Water Vapour Transmission Rate</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight Over Weight</td>
</tr>
</tbody>
</table>
CHAPTER I

GENERAL INTRODUCTION

Jackfruit (*Artocarpus heterophyllus*) belongs to the family of *Moraceae*. The genus *Artocarpus* contains about 50 species; most are native to Asia and jackfruit is one of the 15 species that produce edible starchy fruits (Nakasone & Paull, 1998). The jackfruit bulbs are normally eaten fresh but also processed into various products such as canned jackfruit juice (Seow & Shanmugam, 1992), jackfruit leather (Che Man & Sin, 1997) and carbonated beverage (John and Narasimham, 1993). In a mature state, the water content of jackfruit makes it more susceptible to decomposition by microorganisms, chemical and enzymatic reactions. As a climacteric fruit, jackfruit is extremely perishable and cannot be marketed or exported as fresh produce. The development of a shelf stable product from fresh fruit is an important consideration to reduce post-harvest losses.

Food dehydration is a process particularly important for fruit and vegetables, which contain a large proportion of water, and their preservation becomes critical (Tsami et al., 1999). According to Fitzpatrick and Ahrné (2005), the development of formulation engineering concepts in food manufacturing and the demand for diversity in food products have driven a substantial market increase for food ingredients. Drum drying is extensively used in commercial drying of a variety of foodstuffs such as yeast creams, fruit purees, baby foods, mashed potatoes, dry soup mixtures and pregelatinized starches (Bonazzi et al., 1996; Moore, 1995). The main advantage of drum dryers compared to
other continuous flow dryers is their much shorter retention time and their ability to maintain a high drying capacity even when the initial moisture of the product is extremely high (Kristensen et al., 2005).

Emulsifiers are widely used in foods in order to improve texture, reduce crumb firmness, and complex with starches (baked goods); to improve the shelf life of flavours; and to increase stability and prevent phase separation in food emulsions (Stauffer, 1996). Lecithin is used in many food products, such as chocolate, confectionery products, margarines, bakery goods and pasta products. Many of these applications are still active today for its emulsifying, wetting, colloidal, antioxidant, and physiological properties. Gum arabic is a hydrocolloid emulsifier and exists in nature as a neutral or slightly acidic salt of a complex polysaccharide. Its major use as a food additive is to provide desirable properties that affect viscosity, body, and texture of foods (Enriquez et al., 1989). It is used as an emulsifier in beverages for citrus oil and flavours, as a crystallization retarder and emulsifier in confectioneries, and as a stabilizer in dairy and bakery products (Somogyi, 2005).

The major food powder issue with regard to food ingredient powders is maintaining the stability of ingredient functionality from production right through to final powder application. Environmental factors such as temperature, humidity, oxygen, and light can trigger several reaction mechanisms that may lead to food degradation. Maintaining the quality of the dehydrated product during storage will depend on the choice of packaging material capable of preventing or retarding deteriorative reactions such as, loss of

2
nutrients, non-enzymatic browning, lipid oxidation, discolouration and increase of moisture to critical levels (Labuza, 1982).

There is considerable evidence in the literature that temperature plays a major role in causing changes in food quality during storage. Higher storage temperatures generally lead to increased quality deterioration. Some researchers have done extensive studies on the quality changes of mango powder during storage. Kumar and Mishra (2004) reported that colour change in mango soy fortified yoghurt powder was affected by both storage time and packaging material under accelerated storage condition (38±1°C, 90% RH). Jaya and Das (2005) predicted the shelf life of vacuum-dried mango powder to be 114.68 days and reported that the colour change of powder followed first order reaction kinetics under accelerated storage condition (38±2°C, 90% RH). Hymavathi and Khader (2005) reported that physicochemical and nutrient changes were less pronounced in the mango powders packaged in metallized polyester/polyethylene than the powders in the polypropylene packaging. According to Esse and Saari (2004), many manufactured food products are adversely affected by moisture changes which directly impact their shelf-life and quality. These foods will lose desirable texture characteristics if allowed to lose or gain excessive moisture.

Therefore, the objectives of this study were:

1. To determine the optimum concentration of soy lecithin and gum arabic in producing drum-dried jackfruit powder.
2. To determine the optimum drum drying processing parameters for jackfruit powder production.
3. To study the stability of jackfruit powder packaged in aluminium laminated polyethylene (ALP) and metallized co-extruded biaxially oriented polypropylene (BOPP/MCPP) pouches during accelerated storage (38°C, with 50, 75 and 90% RH).