UNIVERSITI PUTRA MALAYSIA

IMPROVEMENT OF SALINITY TOLERANCE OF CITRUS SCION USING TOLERANT ROOTSTOCKS AND INTERSTOCKS

ALIREZA SHAFIEIZARGAR

FP 2014 23
IMPROVEMENT OF SALINITY TOLERANCE OF CITRUS SCION USING TOLERANT ROOTSTOCKS AND INTERSTOCKS

By

ALIREZA SHAFIEIZARGAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

March 2014
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use maybe made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To:

my wife, Mina

my son, Shayan

and

my daughter, Dorsa
Abstract of Thesis Presented to the Senate of Universiti Putra Malaysia in
Fulfillment of the Requirement for the Degree of Doctor of Philosophy

IMPROVEMENT OF SALINITY TOLERANCE OF CITRUS SCION USING
TOLERANT ROOTSTOCKS AND INTERSTOCKS

By

ALIREZA SHAFIEIZARGAR

March 2014

Chairman: Assoc. Prof. Yahya Awang, PhD
Faculty: Agriculture

Soil salinity is one of the most serious environmental threats, that extremely restricts
crop production. One of the most effective strategies to overcome salinity effects is
by growing salt tolerance plant species. Citrus is a commercial fruit crop and grown
exclusively in tropical and sub-tropical zones. It is a glycophyte. The objective of
this study was to evaluate the responses of citrus to salinity stress and to estimate
amelioration of salinity effects by using tolerant rootstocks, diploid and tetraploid
interstocks.

Salinity tolerance of five citrus rootstocks namely Cleopatra mandarin (Citrus reshni
Hort. Ex Tan.), Carrizo citrange [(Citrus sinensis (L.) Osbeck×Poncirus trifoliata
(L.) Raf.], Tiwanica (Citrus taiwanica Tan.& Shimada), Bacraii (Citrus limettioides
× Citrus reticulate) and Shaker [(Citrus limettioides × Citrus reticulate)× Citrus
reshni] during germination was tested at various NaCl concentrations. Salt stress
affected seed germination, emergence spread, percentage of final emergence and
percentage of seedlings survival. At germination stage, Cleopatra mandarin exhibited
higher salt-tolerance than other species. In the subsequent study, the growth
parameters, mineral concentration, physiological and biochemical traits of above-
mentioned citrus species were studied to estimate the degree of salt tolerance. The
results indicated that the lowest Na and Cl concentrations were observed in leaves of
Shaker rootstock. Also results obtained showed that Shaker and Cleopatra mandarin
rootstocks maintained higher RWC and proline content.

To allow the testing of resistant rootstock, a salt sensitive scion cultivar is needed.
For this purpose, salt sensitivity assessment of two locally available citrus cultivars,
Limau Nipis (Citrus aurantifolia Swingle) and Limau Kesturi (Citrus microcarpa
Bunge) were subjected to NaCl salinity. The results demonstrated that cv. Limau
Kesturi was more sensitive to salt stress than cv. Limau Nipis. Therefore, cv. Limau
Kesturi was used as a salinity susceptible cultivar in combination with citrus
rootstocks for further experimentation in determination of suitable rootstock that
could induce salt resistance of the scion. Evaluation of the level of salt tolerance of
Limau Kesturi plants budded on Cleopatra mandarin and Shaker rootstocks revealed
that salt stress decreased leaf N, P, K concentrations and RWC, while Na, Cl,
proline, MDA and H$_2$O$_2$ concentrations of budded Limau Kesturi increased on both
tested rootstocks. The results suggested that the Shaker exhibited higher tolerance to salt stress than the Cleopatra mandarin and therefore can be used as an appropriate rootstock. Based on the changes in leaf mineral contents and biochemical compositions in response of tetraploid and diploid Dez orange cultivars (*Citrus sinensis* (L.) Osbeck grown under saline condition, we noticed that tetraploid Dez orange had induced a higher level of salt tolerance in comparison to diploid Dez orange. Use of tetraploid Dez oranges as interstock for Limau Kesturi showed the tetraploid cultivar generate more tolerance plants against NaCl salt stress and the plant was able to keep acceptable concentrations of mineral contents, proline, MDA and H$_2$O$_2$.

Overall, evidences recorded from this study proved that among the rootstocks tested, Shaker, and tetraploid interstocked plants are more tolerant to salinity stress and therefore can be introduced as new source of plant materials for salinity tolerance in the citrus industry.
MENINGKATKAN TOLERANSI SCION LIMAU TERHADAP KEMASINAN MENGGUNAKAN POKOK PENANTI DAN INTERSTOK

Oleh

ALIREZA SHAFIEIZARGAR

Mac 2014

Pengerusi: Prof. Madya. Yahya Awang, PhD
Fakulti: Pertanian

Kemasinan tanah adalah salah satu daripada ancaman alam sekitar yang paling serius dan telah menghadkan pengeluaran pertanian. Salah satu strategi yang paling berkesan untuk mengatasi masalah kemasinan ini ialah dengan menanam spesies tumbuhan yang tahan suasan masin. Limau ialah sejenis tanaman buah-buahan komersil dan lazimnya hidup dalam zon tropika dan sub-tropika. Tanaman ini ialah sejenis tumbuhan glikofit. Objektif kajian ini adalah untuk menilai gerak balas limau terhadap kemasinan dan untuk menganggarkan pemulihan scion terhadap kesan kemasinan dengan menggunakan pokok penanti diploid dan bahan interstok tetraploid.

Bagi membolehkan ujikaji untuk menentukan pokok penanti yang tahan kemasinan, satu kultivar scion diperlukan. Untuk ini, penilaian sensitiviti terhadap ketegasan garam dua kultivar tempatan, Limau Nipis (Citrus aurantifolia Swingle) dan Limau Kesturi (Citrus microcarpa Bunge) telah didedahkan kepada ketegasan garam NaCl. Keputusan menunjukkan bahawa Limau Kesturi adalah lebih sensitif berbanding dengan Limau Nipis. Oleh itu, Limau Kesturi telah digunakan sebagai bahan ujikaji...

Secara keseluruhannya, bukti yang direkodkan daripada kajian ini membuktikan bahawa antara pokok penanti limau yang telah diuji, pokok penanti Shaker, dan pokok yang di’intersto’kan dengan bahan tetraploid mempunyai tahap toleransi terhadap ketegasan garam yang lebih tinggi. Dengan itu, teknik dan bahan tanaman ini boleh diperkenalkan sebagai sumber baru untuk mengurangkan kesan kemasinan dalam industri limau.
ACKNOWLEDGEMENTS

First and foremost, I wish to express my utmost thanks and gratitude to the Almighty Allah for helping me to complete this work.

Finding adequate words is difficult for express my gratitude to my supervisor, Assoc. Prof. Dr. Yahya Awang, for his support, guidance, patience, and tenderness. He showed me how to go about doing research in a right way.

I wish to express my warm thanks to the members of my supervisory committee: Prof. Dr Abdul Shukor Juraimi, and Assoc. Prof. Dr. Radziah Othman for their kind encouragement, insightful comments and much useful advice.

I would particularly like to thank Mr. Mazlan Bangi for his help and his kind support throughout my study years. I am equally thankful to all the staff of UPM, especially those at the Faculty of Agriculture who contributed to my learning process, particularly Mr. Suhaimi Aman and Mr. Mohd. Khoiri Kandar for their invaluable assistance with lab equipments.

I also gratefully acknowledge:
- My best friend Dr. Rahim Eslamizadeh for supporting me and my family during our stay in Malaysia.
- My true friends Mr. Mohammad Pishdar, Ahmad Kalntar Ahmadi, Hossainiali Livani, Ali Baghdadi, Mohammad Ebrahim Farashiani and Manochehr Nobahar for their friendship.

I wish to express my thankfulness to my brother Mohammad Reza and my sisters for their love and encouragement and to my late father and mother who raised me with a love of science and supported me in all my pursuits.

Finally I would like to thank my family, my patient wife (Mina), my amiable children (Shayan and Dorsa) who were my spiritual supports during my study and struggle to make the best future for them.
I certify that a Thesis Examination Committee has met on 4 March 2014 to conduct the final examination of Alireza Shafieizargar on his thesis entitled “Improvement of salinity tolerance of citrus scion using tolerant rootstocks and interstocks” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Siti Aishah Binti Hassan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Ridzwan bin Abdul Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mahmud T.M Mohammed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Muhammad Ashraf, PhD
Professor
University of Agriculture Faisalabad
Pakistan
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 April 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Yahya B. Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Abdul Shukor Juraiimi, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Radziah Othman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 May 2014
DECLARATION

Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been dully referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual properly from the thesis and copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the University Putra Malaysia (Research) Rules 2012;
- Written permission must be obtain from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (research) Rules 2012. He thesis has undergone plagiarism detection software.

Signature: _______________ Date: 4 March 2014

Name and Matric No.: Alireza Shafieizargar, GS25231
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________ Signature: ___________________
Name of Chairman of Supervisory Committee: ___________________
Name of Member of Supervisory Committee: ___________________

Signature: ___________________ Signature: ___________________
Name of Member of Supervisory Committee: ___________________

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Objectives 2

2 REVIEW OF LITERATURE 3

2.1 Causes of salinity 3

2.1.1 Primary cause 3

2.1.2 Secondary salinization 3

2.1.3 Global warming and soil salinization 3

2.2 Salinity effects on plants 4

2.2.1 Effects of salinity on plant growth 5

2.2.2 Effects of salinity on plant mineral concentration 6

2.2.3 Effects of salinity on water relations 8

2.2.4 Effects of salinity on photosynthesis 9

2.2.5 Effects of salinity on chlorophyll content 10

2.2.6 Effects of salinity on seed germination 11

2.3 Salt tolerance in plants 12

2.3.1 Mechanisms of salt tolerance 12

2.4 Citrus 17

2.4.1 Taxonomy and morphology of citrus 17

2.4.2 Citrus cultivars 18

2.4.3 Citrus rootstocks 18

2.4.4 Citrus interstock 19

2.4.5 Citrus propagation 19

2.5 Effects of salinity on citrus 19

3 IMPACTS OF SALINITY ON SEEDLING EMERGENCE AND EARLY GROWTH OF CITRUS ROOTSTOCKS 24

3.1 Introduction 24

3.2 Materials and methods 25

3.2.1 Plant material and growth condition 25
3.2.2 Salinity treatments 25
3.2.3 Growth measurements 25
3.2.4 Experimental design and data analysis 26

3.3 Results 26
3.3.1 Emergence of the first seedlings 26
3.3.2 Emergence spread of citrus rootstocks seedlings 28
3.3.3 Percentage of final emergence of seedlings 28
3.3.4 Percentage of survival of seedlings 28
3.3.5 Effect of salinity on seedlings growth indices 31

3.4 Discussion 35
3.5 Conclusion 36

4 ASSESSING CITRUS ROOTSTOCKS FOR SALINITY TOLERANCE 38
4.1 Introduction 38
4.2 Materials and methods 39
4.2.1 Plant material and growth condition 39
4.2.2 Salinity treatments 41
4.2.3 Mineral contents 42
4.2.4 Vegetative growth parameters 42
4.2.5 Relative water content 42
4.2.6 Proline assay 43
4.2.7 Experimental design and data analyses 43
4.3 Results 43
4.3.1 Mineral contents 43
4.3.2 Leaf number 50
4.3.3 Shoot height 51
4.3.4 Root length 51
4.3.5 Relative water content 53
4.3.6 Proline 53
4.4 Discussion 54
4.5 Conclusion 58

5 EFFECTS OF SALINITY ON SOME PHYSIOLOGICAL AND NUTRITIONAL INDICATORS OF TWO MALAYSIAN CITRUS CULTIVARS 60
5.1 Introduction 60
5.2 Materials and methods 61
5.2.1 Plant material and growth condition 61
5.2.2 Salinity treatments 61
5.2.3 Mineral contents 61
5.2.4 Vegetative growth 61
5.2.5 Relative water content 61
5.2.6 Proline assay 62
5.2.7 Experimental design and data analyses 62
5.3 Results 62
5.3.1 Mineral contents 62
5.3.2 Vegetative growth 64
5.3.3 Relative water content 65
5.3.4 Proline content 66

5.4 Discussion 66
5.5 Conclusion 68

6 GROWTH AND PHYSIOLOGY OF LIMAU KESTURI ON CLEOPATRA MANDARIN AND SHAKER ROOTSTOCKS UNDER SALINE CONDITIONS 69

6.1 Introduction 69
6.2 Materials and methods 70
 6.2.1 Plant material and growth condition 70
 6.2.2 Salinity treatments 71
 6.2.3 Mineral contents 71
 6.2.4 Scion shoot length 71
 6.2.5 Relative water content 71
 6.2.6 Proline content 72
 6.2.7 MDA determination 72
 6.2.8 H2O2 determination 72
 6.2.9 Experimental design and data analysis 72

6.3 Results 73
 6.3.1 Leaf mineral contents of scion 73
 6.3.2 Scion shoot length 77
 6.3.3 Relative water content 78
 6.3.4 Proline content 78
 6.3.5 MDA content 79
 6.3.6 H2O2 content 80

6.4 Discussion 80
6.5 Conclusion 84

7 COMPARATIVE STUDIES BETWEEN DIPLOID AND TETRAPLOID DEZ ORANGE [CITRUS SINENSIS (L.)OSB.] UNDER SALINITY STRESS 85

7.1 Introduction 85
7.2 Materials and methods 86
 7.2.1 Plant materials and growth conditions 86
 7.2.2 Salinity treatments 87
 7.2.3 Mineral contents 87
 7.2.4 Proline content 87
 7.2.5 MDA determination 87
 7.2.6 H2O2 determination 88
 7.2.7 Experimental design and data analysis 88

7.3 Results 88
7.3.1 Mineral contents
7.3.2 Proline content
7.3.3 MDA content
7.3.4 H$_2$O$_2$ content

7.4 Discussion
7.5 Conclusion

8 EFFECT OF DEZ ORANGE [CITRUS SINENSIS (L.)OSB.] AS INTERSTOCK ON THE SALT TOLERANCE OF LIMAU KESTURI (CITRUS MICROCARPA BUNGE) UNDER SALINE CONDITION

8.1 Introduction
8.2 Materials and methods
8.2.1 Plant material and growth condition
8.2.2 Salinity treatments
8.2.3 Scion shoot length
8.2.4 Mineral contents
8.2.5 Net photosynthesis
8.2.6 Relative water content
8.2.7 Proline content
8.2.8 MDA determination
8.2.9 H$_2$O$_2$ determination
8.2.10 Experimental design and data analysis

8.3 Results
8.3.1 Mineral ion contents
8.3.2 Scion shoot length
8.3.3 Net photosynthesis
8.3.4 Relative water content
8.3.5 Proline content
8.3.6 MDA content
8.3.7 H$_2$O$_2$ content

8.4 Discussion
8.5 Conclusion

9 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

9.1 Summary and conclusion
9.2 Recommendations for future research

REFERENCES
APPENDICES
APPENDIX A
A-1 Nutrient solution
APPENDIX B
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Effect of salinity levels and rootstocks on first seedlings, emergence spread, percentage of final emergence and percentage of seedlings survival</td>
<td>27</td>
</tr>
<tr>
<td>3-2</td>
<td>Effect of salinity levels and rootstocks on fresh plant weight, plant dry matter, shoot length, length of major root and stem diameter</td>
<td>31</td>
</tr>
<tr>
<td>4-1</td>
<td>Characteristics of the citrus rootstocks</td>
<td>40</td>
</tr>
<tr>
<td>4-2</td>
<td>Effect of rootstock and NaCl salinity on N, P, K, Na and Cl contents of leaves and roots</td>
<td>44</td>
</tr>
<tr>
<td>4-3</td>
<td>Effect of rootstock and NaCl salinity on leaf number, shoot height, root length, RWC and proline content</td>
<td>50</td>
</tr>
<tr>
<td>5-1</td>
<td>Mean square and significant levels of cultivar and NaCl salinity level on leaf K, Na, Cl, K/Na ratio, leaf number, shoot height, root length, RWC and proline content</td>
<td>63</td>
</tr>
<tr>
<td>6-1</td>
<td>Effect of rootstock and NaCl salinity on N, P, K, Na, Cl contents and K/Na ratio</td>
<td>73</td>
</tr>
<tr>
<td>6-2</td>
<td>Effect of rootstock and NaCl salinity on scion length, RWC, proline, MDA and H$_2$O$_2$ contents</td>
<td>78</td>
</tr>
<tr>
<td>7-1</td>
<td>Mean square and effect of rootstock and NaCl salinity level on N, P, K, Na, Cl, K/Na, proline, MDA and H$_2$O$_2$ contents</td>
<td>89</td>
</tr>
<tr>
<td>8-1</td>
<td>Grafted citrus plants used in the study</td>
<td>102</td>
</tr>
<tr>
<td>8-2</td>
<td>Effect of rootstock and NaCl salinity on contents of N, P, K, Cl, Na and K/Na ratio</td>
<td>105</td>
</tr>
<tr>
<td>8-3</td>
<td>Effect of rootstock and NaCl salinity on scion length, Net photosynthesis, RWC, Proline, MDA and H$_2$O$_2$ contents</td>
<td>108</td>
</tr>
<tr>
<td>A-1</td>
<td>Nutrients composition of the solution used in the study</td>
<td>139</td>
</tr>
<tr>
<td>B-1</td>
<td>ANOVA for first seedlings, emergence spread, percentage of final emergence, percentage of seedlings survival, fresh plant weight, plant dry matter, shoot length, length of major roots and stem diameter</td>
<td>140</td>
</tr>
<tr>
<td>B-2</td>
<td>ANOVA for N, P, K, Na and Cl contents of leaves and roots, leaf number, shoot height, root length, RWC</td>
<td>141</td>
</tr>
<tr>
<td>B-3</td>
<td>ANOVA for leaf K, Na, Cl, K/Na ratio, leaf number, shoot height, root length, RWC and proline content</td>
<td>143</td>
</tr>
<tr>
<td>B-4</td>
<td>ANOVA for N, P, K, Na, Cl contents, K/Na ratio, scion length, RWC, proline, MDA and H$_2$O$_2$ contents</td>
<td>144</td>
</tr>
<tr>
<td>B-5</td>
<td>ANOVA for N, P, K, Cl, Na and K/Na ratio, scion length, Net photosynthesis, RWC, Proline, MDA and H$_2$O$_2$ contents</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Experimental pots</td>
<td>26</td>
</tr>
<tr>
<td>3-2</td>
<td>Effect of salinity levels on seed germination</td>
<td>27</td>
</tr>
<tr>
<td>3-3</td>
<td>Interaction effects of salinity and rootstocks on emergence of the first seedling</td>
<td>28</td>
</tr>
<tr>
<td>3-4</td>
<td>Interaction effects of salinity and rootstocks on emergence spread (A), final percentage emergence (B) and seedling survival percentage (C)</td>
<td>30</td>
</tr>
<tr>
<td>3-5</td>
<td>Interaction effects of salinity and rootstocks on fresh weight (A) and dry weight (B)</td>
<td>32</td>
</tr>
<tr>
<td>3-6</td>
<td>Interaction effects of salinity and rootstocks on shoot length (A), length of major root (B) and stem diameter (C)</td>
<td>34</td>
</tr>
<tr>
<td>4-1</td>
<td>Fruits of tested citrus rootstocks used in the study</td>
<td>41</td>
</tr>
<tr>
<td>4-2</td>
<td>Young seedlings in nursery bed at TPU.</td>
<td>41</td>
</tr>
<tr>
<td>4-3</td>
<td>Interaction effects of salinity and rootstocks on leaf nitrogen (A), root nitrogen (B), and leaf phosphorus (C) content (Mean ± S.E.; n = 4)</td>
<td>45</td>
</tr>
<tr>
<td>4-4</td>
<td>Interaction effects of salinity and rootstocks on root phosphorus (A), leaf potassium (B), and root potassium (C) content (Mean ± S.E.; n = 4)</td>
<td>47</td>
</tr>
<tr>
<td>4-5</td>
<td>Interaction effects of salinity and rootstocks on leaf sodium (A), root sodium (B), and leaf chloride (C) content (Mean ± S.E.; n = 4)</td>
<td>49</td>
</tr>
<tr>
<td>4-6</td>
<td>Interaction effects of salinity and rootstocks on root chloride content (A), shoot height (B), and root length (C) (Mean ± S.E.; n = 4)</td>
<td>52</td>
</tr>
<tr>
<td>4-7</td>
<td>Interaction effects of salinity and rootstocks on RWC (A) and proline content (B)</td>
<td>54</td>
</tr>
<tr>
<td>4-8</td>
<td>Leaf necrosis caused by NaCl salinity</td>
<td>56</td>
</tr>
<tr>
<td>5-1</td>
<td>Interaction effects of salinity and cultivars on leaf potassium content (A), leaf chloride content (B), and leaf K/Na ratio (C) (Mean ± S.E.; n = 4)</td>
<td>64</td>
</tr>
<tr>
<td>5-2</td>
<td>Interaction effects of salinity and cultivars on leaf number (A) and shoot height (B) (Mean ± S.E.; n = 4)</td>
<td>65</td>
</tr>
<tr>
<td>5-3</td>
<td>Interaction effects of salinity and cultivars on RWC (A) and proline content (B) (Mean ± S.E.; n = 4)</td>
<td>66</td>
</tr>
<tr>
<td>5-4</td>
<td>Effect of salinity on plant growth at 30 days after stress initiation</td>
<td>67</td>
</tr>
<tr>
<td>6-1</td>
<td>Method of creating a budded tree. Placing a scion bud on the rootstock (A), joining of rootstock and scion bud (B), growth of scion bud (C&D) and schema a grown budded tree (D)</td>
<td>71</td>
</tr>
<tr>
<td>6-2</td>
<td>Effects of salinity and rootstocks on N (A), P (B) and K (C) contents (Mean ± S.E.; n = 4)</td>
<td>75</td>
</tr>
<tr>
<td>6-3</td>
<td>Effects of salinity and rootstocks on Na (A), Cl (B) contents and K/Na ratio (C) (Mean ± S.E.; n = 4)</td>
<td>77</td>
</tr>
<tr>
<td>6-4</td>
<td>Effects of salinity and rootstocks on relative water content (A) and proline content (B) (Mean ± S.E.; n = 4)</td>
<td>79</td>
</tr>
<tr>
<td>6-5</td>
<td>Effects of salinity and rootstocks on MDA (A) and H₂O₂ (B) contents (Mean ± S.E.; n = 4)</td>
<td>80</td>
</tr>
<tr>
<td>7-1</td>
<td>Dez orange Cultivars: Tetraploid (A) and Diploid (B)</td>
<td>87</td>
</tr>
<tr>
<td>7-2</td>
<td>Effects of salinity and Dez orange cultivars on leaf nitrogen (A), root nitrogen (B), leaf phosphorus (C) and root phosphorus (D) content (Mean ± S.E.; n = 4)</td>
<td>91</td>
</tr>
<tr>
<td>7-3</td>
<td>Interaction effects of salinity and Dez orange cultivars on leaf potassium</td>
<td>93</td>
</tr>
</tbody>
</table>
(A), root potassium (B), leaf sodium (C) and root sodium (D) content (Mean ± S.E.; n = 4)

7-4 Interaction effects of salinity and Dez orange cultivars on leaf chloride (A), root chloride content (B), leaf K/Na ratio (C) and root K/Na ratio (D) (Mean ± S.E.; n = 4).

7-5 Interaction effects of salinity and Dez orange cultivars on proline (A), MDA (B) and H₂O₂ content (D) (Mean ± S.E.; n = 4)

8-1 Technique of creating an interstocked citrus plant. Preparation of interstock (A), inserting of interstock into rootstock (B), graft wrapping (C) and joining of rootstock and interstock (D).

8-2 Longitudinal and transverse incision of joining of cambium layers (A and B) photographed by stereomicroscope, scion growth on interstock (C), grown interstocked citrus (D).

8-3 Effects of salinity and Dez orange interstocks on nitrogen (A), phosphorus (B) and potassium (C) content of leaves of interstocked Limau Kesturi (Mean ± S.E.; n = 4)

8-4 Effects of salinity and Dez orange interstocks on chloride (A) and sodium (B) contents of leaf of interstocked Limau Kesturi (Mean ± S.E.; n = 4)

8-5 Effects of salinity and Dez orange interstocks on scion length (A), net photosynthesis (B) and RWC (C) of interstocked Limau Kesturi (Mean ± S.E.; n = 4)

8-6 Interaction effects of salinity and Dez orange interstocks on proline (A), MDA (B) and H₂O₂ (C) contents of interstocked Limau Kesturi (Mean ± S.E.; n = 4)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>Abscisic acid</td>
</tr>
<tr>
<td>DM</td>
<td>Dray matter</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole acetic acid</td>
</tr>
<tr>
<td>K/Na</td>
<td>Potassium to sodium ratio</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>nmol</td>
<td>Nanomole</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RWC</td>
<td>Relative water content</td>
</tr>
<tr>
<td>TW</td>
<td>Turgid weight</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromole</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

All the environmental stresses such as extreme temperatures, mineral deficiency, salinity and low water availability induce potential injuries on plant species (Langridge et al., 2006). Two types of environmental stresses are biotic (infection and/or competition by other organisms) and abiotic (light, high and low temperature, drought, salinity, radiation, etc.) that change the normal physiological function of plants (Khayatnezhad et al., 2011). Salinity is one of the major important abiotic stresses, limiting crop production in arid and semi-arid regions, where soil salt content is naturally high and precipitation can be insufficient for leaching (Asghari, 2008). The USDA Salinity Laboratory defines a saline soil as having an electrical conductivity of the saturation extract (ECe) of 4 dS m\(^{-1}\) (1 dS m\(^{-1}\) is approximately equal to 10 mM NaCl) or more. ECe is the electrical conductivity of the ‘saturated paste extract’, that is, of the solution extracted from a soil sample after being mixed with sufficient water to produce a saturated paste (Yadav et al., 2011). High concentrations of soluble salts such as chlorides of sodium, calcium and magnesium contribute to the high electrical conductivity of saline soils. NaCl contributes to most of the soluble salts in saline soil (Chinnusamy et al., 2006). Various ions such as Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), Cl\(^-\), SO\(_4^{2-}\), HCO\(_3^-\), CO\(_3^{2-}\) and NO\(_3^-\) are involved in soil salinization but most commonly, the stress is caused by high Na and Cl concentrations in the soil solution. Na ion particularly causes the dispersion of the soil and Cl ion causes high toxicity and nutrient imbalances in plants (Hasegawa et al., 2000). However, the severity of salt damage has been found to be dependent on the meteorological conditions, soil type, species and cultivar, growth stages of the plant, time interval between irrigations, amount of water distributed and time of exposure to saline water (Parida and Das, 2005; Munns and Tester, 2008).

One strategy to overcome problem of salinity is by selecting salt tolerant genotypes. For this, researchers require an understanding of relative tolerance of crops and their sensitivity, morphological and physiological traits that contribute to salinity tolerance; the ameliorative effects of nutrition and other treatments on growth, mineral uptake, photosynthesis and active constituents of salt-stressed plants; alleviate the mechanisms of salt resistance in different plants (Omami, 2005; Said-Al Ahl and Omer, 2011). For many fruit tree plants such as grapevine and citrus, chloride ion is more toxic than sodium ion, because Na is maintained in the tissue of roots while chloride ion accumulated in aerial organs of plant, negatively impacting on photosynthesis (Asghari, 2008). The osmotic part of salinity is produced by excess ions such as sodium and chloride in the medium that decrease the osmotic potential of soil and hence water absorption by root of plant. Excessive uptake ions reduces the osmotic potential of the plant (Parida and Das, 2005). To escape with the damage of ion toxicity, the plants generally compartmentalized harmful ions in their vacuole and/or in less salt sensitive tissues. Parallel to this, adjustment of the cytoplasmic compartment is accomplished through production of compatible osmolytes such as proline (Ghotb Abadi et al., 2010).
Citrus belongs to the genus *Citrus* L. and *Rutaceae* family, originating in tropical and subtropical Southeast Asia. These fruits are economically important in a large scale production for both fresh fruit and processed products. Although Citrus (*Citrus spp.*) is classified as salt-sensitive, there is great variation in the ability of citrus trees to tolerate salinity depending on rootstock, thus selection among the rootstocks should lead to increasing salt tolerance. Among a very limited study, a few reports showed that there is a lack of positive effects of natural rootstocks and interstocks on citrus grown under saline conditions. A more extensive study is therefore necessary especially when it involves citrus species or cultivars that are unique for a particular country or region. Information generated through such studies on the effects of salinity on physiological and biochemical aspects of citrus could lead to identification of salt tolerant cultivars and rootstocks. Polyploid interstocks may increase salinity tolerance of sensitive citrus cultivars. Because the tree breeding is a time-consuming process, interstocking technique could be an efficient and effective alternative to improve citrus productivity. Thus, the primary objective of the present study was to assess the significance of tolerant rootstocks and tetraploid interstocks in ameliorating the adverse effects of salt stress on citrus scions. The results obtained could be beneficial in improving citrus production practices, as well as in giving new directions in citrus research in the future.

1.2 Objectives

The objective of this study was:

i. To determine differences in salinity tolerance among citrus rootstocks at seed germination stage.

ii. To characterize the growth and physiological responses of citrus rootstocks and cultivars to different levels of NaCl salinity.

iii. To evaluate the role of citrus rootstocks in alleviating salinity effects on citrus scions.

iv. To explore the growth and physiological responses of diploid and tetraploid of Dez orange to different levels of NaCl salinity.

v. To determine whether the use of salt tolerant rootstock and interstock can alleviate the problem of salinity of salt intolerant scion.
REFERENCES

Melon Varieties After Short Exposure to Calcium and Potassium Chloride Salts. *Journal of Plant Nutrition* 15 (6-7), 959-975.

