UNIVERSITI PUTRA MALAYSIA

MOTORCYCLE CRASH PATTERNS ALONG
EXCLUSIVE MOTORCYCLE LANES IN MALAYSIA

TUNG SOW HOONG

FK 2007 50
MOTORCYCLE CRASH PATTERNS ALONG EXCLUSIVE MOTORCYCLE LANES IN MALAYSIA

TUNG SOW HOONG

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2007
MOTORCYCLE CRASH PATTERNS ALONG EXCLUSIVE MOTORCYCLE LANES IN MALAYSIA

By

TUNG SOW HOONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

June 2007
This work is specially dedicated to

My beloved family, friends and teachers…
Motorcycle crashes are being notified as the main contributor to road fatality in our country. Motorcyclists, as the vulnerable road user, are not protected while traveling along the traffic. The exclusive motorcycle lanes have been introduced to tackle the problem by segregating the motorcycle from the main traffic. However, motorcycle accident are still occurring on the exclusive motorcycle lanes. In this study, motorcycle crashes occurred along the exclusive motorcycle lanes in Malaysia was investigated. This study has been focusing on crashes which are roadside object related. The motorcyclists are exposed to roadside hazards while travelling along the pathways. The study has been focused to determine possible risk factors causing fatalities in motorcycle crashes along exclusive motorcycle lanes, to identify the harmful roadside objects to motorcyclist along exclusive motorcycle lanes and to determine the multivariate relationships between the injury severity and other factors of motorcycle crashes along the exclusive motorcycle lanes. The study unveiled that the fatality risk factors for overall motorcycle crashes along exclusive motorcycle lanes in Malaysia are the road geometry of the crash location, the brightness
condition during the crash and finally, the roadside object involvement in the crashes. Fatality risk is found to be higher while colliding with roadside objects, at straight section on the lanes, and crashing during night-time. Furthermore, roadside object is approximately 2.0 times more likely to cause fatality in motorcycle crashes along the exclusive motorcycle lanes. Guardrail has recorded as the most being struck object which represented 20.6% of all roadside object related crashes and 23.5% of all fatal cases were guardrail related. However, narrow surface objects, (e.g. tree trunks, traffic sign posts, streetlighting poles) were determined 2.3 times more likely to cause severe injury compared to non-narrow surface objects (e.g. guardrails, tunnel walls). Therefore, guardrail should be provided to protect the motorcyclist from colliding narrow surface object as initial impact. The study further established that guardrail as one of the factors to cause fatality. Thus, a new guardrail design should be introduced to the exclusive motorcycle lane. Lateral offsets of the collided objects were found to be correlated to injury severity (p < 0.10). From the overall roadside object related motorcycle crashes, 85% involved object planted at an offset distance 155 cm or less from the roadside. Furthermore, multivariate analysis has verified that a higher injury severity if motorcycle crashes involved narrow surface object occurred at location where the lane width is more than 300 cm and the narrow object is planted at the offset distance 151.3 cm or less from roadside. Another multivariate analysis performed on wide surface object crashes has shown that higher injury severity to motorcyclist if crashes involved guardrail, crashes during night-time, involved wide surface object that planted at offset distance 75 cm or less from roadside and it is a single motorcycle crash.
Therefore, the existing design criteria of roadside object needed to be reviewed and improved in order to achieve a safer exclusive motorcycle lane in Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

BENTUK PELANGGARAN KEMALANGAN MOTOSIKAL YANG BERLAKU DI SEPAJANG LORONG MOTOSIKAL DI MALAYSIA

Oleh

TUNG SOW HOONG

Jun 2007

Pengerusi: Profesor Madya Wong Shaw Voon, PhD

Fakulti: Kejuruteraan

yang terlibat dalam kemalangan motosikal yang berlaku di atas lorong motosikal. Secara keseluruhan, kajian ini telah membuktikan bahawa risiko kematian penunggang motosikal adalah bergantung kepada faktor-faktor seperti bentuk geometri jalan di mana kemalangan berlaku, keadaan cahaya semasa kemalangan dan penglibatan objek tepi jalan. Kecenderungan berlakunya kematian adalah bagi kemalangan motosikal melibatkan objek tepi jalan, di kawasan lurus sepanjang lorong motosikal dan dalam keadaan gelap. Kemalangan yang melibatkan objek di tepi jalan adalah 2.0 kali lebih cenderung menyebabkan kematian jika dibandingkan dengan kemalangan motosikal yang tidak melibatkan objek di tepi jalan. Oleh itu, satu panduan rekabentuk perkakas tepi jalan yang lebih selamat adalah diperlukan bagi menjamin keselamatan penggunaan lorong motosikal di Malaysia. Kajian ini mendapati bahawa, penghadang jalan merupakan objek yang mencatatkan jumlah kemalangan tertinggi (20.6%). Sementara itu, 23.5% daripada jumlah kemalangan maut merupakan kemalangan yang menglibatkan penghadang jalan. Walaupun begitu, objek-objek berpermukaan sempit (cth. pohon pokok, tiang besi isyarat jalan, tiang lampu jalan) didapati 2.3 kali lebih cenderung menyebabkan kecederaan parah (termasuk kematian) jika dibandingkan dengan jenis objek-objek berpermukaan luas (cth. penghadang jalan, dinding terowong). Oleh itu, penghadang jalan adalah sesuai disediakan untuk melindungi penunggang motosikal daripada melanggar objek-objek berpermukaan sempit yang berada di sepanjang tepi lorong motosikal. Walaupun begitu, penghadang jalan masih merupakan salah satu faktor utama menyebabkan kematian penunggang motosikal. Oleh itu, rekabentuk baru khas penghadang jalan adalah penting diperkenalkan ke dalam rekabentuk lorong motosikal di Malaysia. Ofset sisi bagi objek-objek yang dilanggar didapati
berkorelasikan dengan tahap kecederaan (p < 0.10). Secara keseluruhan daripada kematangan-kematangan motosikal yang melibatkan objek tepi jalan, 85% daripada jumlah kes didapati melibatkan objek-objek yang diletakkan pada ofset 155 cm atau kurang dari tepi jalan. Analisa multivariasi menunjukkan bahawa kematangan-kematangan motosikal yang melibatkan objek-objek berpermukaan sempit adalah cenderung melibatkan kecederaan parah apabila berlaku di lokasi jalan yang berkelebaran 300 cm atau lebih dan objek-objek tersebut diletakkan pada ofset sejauh 152 cm daripada tepi lorong. Satu lagi analisa multivariasi telah menunjukkan tahap kecederaan adalah lebih tinggi bagi kematangan-kematangan motosikal yang melibatkan objek-objek berpermukaan luas dan melibatkan penghadang jalan, dalam keadaan kurang bercahaya, kematangan motosikal tunggal dan objek-objek yang dilanggar diletakkan pada jarak ofset 75 cm atau kurang dari tepi lorong. Oleh itu, reka bentuk perkakas tepi jalan bagi lorong motosikal sekarang perlulah diimbias kembali dan diperbaharui bagi menjamin keselamatan lorong motosikal di Malaysia.
ACKNOWLEDGEMENTS

My sincere gratitude goes to my supervisory committee chairman, Associate Professor Dr. Wong Shaw Voon, Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), for his patient supports in guiding and providing constructive advices in completing my study. Besides that, I would like to express my appreciation for the chances given by him for me to attend valuable seminars, workshops, and conferences throughout the study.

Great thanks to my supervisory committee members; Professor Ir. Dr. Radin Umar Radin Sohadi and Mr. Law Teik Hua, Department of Civil Engineering, Faculty of Engineering, UPM and Dr. Abdul Ali Raja Mohamad, University Malaya Medical Centre, University Malaya (UM) for their valuable suggestions and advices contributed to the completion of my study.

This multidisciplinary study could not be accomplished without the financial support from Intensification of Research in Priority Area (IRPA) programme, provided by the Ministry of Science Technology and Innovation (MOSTI). Not to forget here to thank the Department of Traffic Police, Royal Malaysia Police and KESAS Highway Sdn. Bhd. in providing the accident data needed throughout this study; especially to En. Isa (PPUM), Sergeant Ahmad Shah (RMP), and Pn. Rozanna (KESAS Highway).
Special thanks to my colleagues and friends, who provided supports, assistance and encouragement to me along the study. I would like to show my appreciation to Ms. Lim Lay Sean for her morale support throughout the study. Last but not least, my deepest thanks to my family members, especially my parents Tung Won Wah and Tong Mei Lin, for their continuous supports and understanding.
I certify that an Examination Committee met on 14th June 2007 to conduct the final examination of Tung Sow Hoong on his Master of Science thesis entitled “Motorcycle Crash Patterns Along Exclusive Motorcycle Lanes in Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Shahnor Basri, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Hussain Hamid, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd. Sapuan Salit, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ahmad Kamal Ariffin Mohd. Ihsan, PhD
Associate Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 27 September 2007
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Wong Shaw Voon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Radin Umar Radin Sohadi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Law Teik Hua, M.Sc
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Abdul Ali Raja Mohamad
Lecturer
Trauma and Emergency
University Malaya Medical Centre
Universiti Malaya
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 15 November 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

TUNG SOW HOONG

Date: 20 August 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEET</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Introduction
 1.2 Problem Statements
 1.3 The Needs of the Study
 1.4 Objectives of the Study
 1.5 Research Hypotheses

2. **LITERATURE REVIEW**
 2.1 Motorcycle Crashes
 2.2 The Segregation of the Vulnerable Road Users
 2.3 Exclusive Motorcycle Lanes
 2.4 Existing Design Guide
 2.5 Roadside Hazards
 2.6 Injury Severity Due to Roadside Hazards
 2.7 Clear Zones and Lateral Offsets
 2.8 Other Risk Factors in Object Crashes
 2.8.1 The Rigidity and the Shape of the Object
 2.8.2 Geometric Characteristics of the Roadway
 2.9 Recommendations of Roadside Safety Improvement
 2.10 Statistical Analysis Method
 2.11 Chi – Square Test of Independence
 2.12 Odds Ratio Analysis
 2.13 Binary Logistic Regression Modeling
 2.14 Summary of the Chapter

xiv
METHODOLOGY

3.1 Overall Methodology 36
3.2 Selection of Exclusive Motorcycle Lanes 40
 3.2.1 Exclusive Motorcycle Lane along F0002 41
 3.2.2 Exclusive Motorcycle Lane along Shah Alam Expressway 45
3.3 Criteria In Data Selection 48
3.4 Data Sets 50
3.5 Injury Classification 48
3.6 Data Collection Forms 51
 3.6.1 Crash Data Form 51
 3.6.2 Injury Data Form 52
 3.6.3 Casualty Interview Form 53
 3.6.4 Site Investigation Form 54
3.7 Site Data Collection and Investigation 54
3.8 Roadside Object Categorisation 57
3.9 Data Compilations 57
3.10 Statistical Analysis 58
 3.10.1 Univariate Analysis 58
 3.10.2 Multivariate Analysis 59
 3.10.3 The Needs of Univariate and Multivariate Analysis 62
3.11 Resource Limitations 62

RESULTS AND DISCUSSION I:
MOTORCYCLE CRASHES ALONG EXCLUSIVE MOTORCYCLE LANES

4.1 Injury Severity of Motorcycle Crashes along Exclusive Motorcycle Lanes 64
4.2 Crash Patterns of Motorcycle Crashes along Exclusive Motorcycle Lanes 65
4.3 Crash Patterns as Risk Factors in Motorcycle Crashes along Exclusive Motorcycle Lanes 68
4.4 Road Geometry as Risk Factors in Motorcycle Crashes along Exclusive Motorcycle Lanes 70
4.5 Brightness Condition Risk Factors in Motorcycle Crashes along Exclusive Motorcycle Lanes 71
4.6 Roadside Object Involvement in Motorcycle Crashes 73
4.7 Multivariate Analysis 74
 4.7.1 Model I: Fatality Logistic Model 74
RESULTS AND DISCUSSION II: ROADSIDE OBJECT RELATED MOTORCYCLE CRASHES ALONG EXCLUSIVE MOTORCYCLE LANES

5.1 Injury Severity in Roadside Object Related Cases
5.2 Crash Type in Roadside Object Related Motorcycle Crashes
5.3 Road Geometry in Roadside Object Related Motorcycle Crashes
5.4 Brightness Condition while Motorcycle Crashes
5.5 Lane Width of the Location
5.6 Object Related in Motorcycle Crashes
5.7 Lateral Offset and Injury Severity
5.8 Comparison of Different Object Type
 5.8.1 Narrow Surface Object vs. Wide Surface Object
 5.8.2 Guardrails in the Motorcycle Crashes
 5.8.3 Narrow Surface Object vs. Guardrail
 5.8.4 Guardrail and Lateral Offset
 5.8.5 Narrow Surface Object and Lateral Offset
5.9 Multivariate Analysis
 5.9.1 Model II: Narrow Surface Object Logistic Model
 5.9.2 Model III: Wide Surface Object Logistic Model

6 CONCLUSIONS
6.1 Conclusions
6.2 Recommendations
6.3 Limitation of the Study

REFERENCES

APPENDICES

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Non – Intersection and Intersection Accident Rate (accident/10^4 Vehicle KM) 1969, Denmark</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of information examining roadside furniture involved in motorcycle crashes</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Motorcyclist collisions with fixed objects in Ontario</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Type of Roadside Hazards Causing Car Occupant Fatalities in South Australia 1985 – 1996</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>1998 – 1993 1st, 2nd and 3rd Event Collision Involving Rock Faces on Existing Alignment</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Relationship between Size of Clear Zone and Accident Reduction</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>The collected data from the respective sources</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Basic features of exclusive motorcycle lane along Federal Highway F0002</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>The seven levels of Abbreviated Injury Scale (AIS)</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Description of Variables Included in the Multivariate Analysis</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Crash types in non – single motorcycle crashes along exclusive motorcycle lanes</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of single motorcycle crashes and non- single motorcycle crashes in terms of injury severity</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Road geometry and fatality in motorcycle crashes along exclusive motorcycle lane in Malaysia</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Brightness condition and fatality in motorcycle crashes along exclusive motorcycle lanes in Malaysia</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Roadside object involvement and injury severity of motorcycle crashes along the exclusive motorcycle lanes</td>
<td>74</td>
</tr>
<tr>
<td>4.6</td>
<td>Logistic Regression on Fatality Risk Resulting from Motorcycle Crashes along Exclusive Motorcycle Lanes in Malaysia</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>The distribution of injury severity for roadside object related and non – roadside object related motorcycle crashes along exclusive motorcycle lanes</td>
<td>77</td>
</tr>
</tbody>
</table>
5.2 The first collision type reported in motorcycle crashes along both exclusive motorcycle lanes

5.3 The crash types and the injury severity outcome in roadside object related motorcycle crashes along both exclusive motorcycle lanes

5.4 The road geometry and injury severity for roadside object related motorcycle crashes along the exclusive motorcycle lanes

5.5 The brightness condition and injury severity of roadside object related motorcycle crashes along the exclusive motorcycle lanes

5.6 The lane width and injury severity of roadside object related motorcycle crashes along the exclusive motorcycle lane

5.7 The involved object types and injury outcome

5.8 The lateral offsets of the object involved and the injury outcome

5.9 Comparison: Narrow Surface Object and Wide Surface Object

5.10 The Comparison of Guardrails and Non-Object Related Motorcycle Crashes along Exclusive Motorcycle Lanes

5.11 Comparison: Narrow Surface Object and Guardrail

5.12 Logistic Regression on Severe Injury Risk Resulting from Motorcycle Crashes with Narrow Surface Object along Exclusive Motorcycle Lanes in Malaysia

5.13 Logistic Regression on Severe Injury Risk Resulting from Motorcycle Crashes with Wide Surface Object along Exclusive Motorcycle Lanes in Malaysia
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>43-44</td>
</tr>
<tr>
<td>3.3</td>
<td>46-47</td>
</tr>
<tr>
<td>3.4</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>69</td>
</tr>
</tbody>
</table>
5.1 Types of roadside object related in motorcycle crashes along both exclusive motorcycle lanes

5.2 The cumulative percentage vs. lateral offset of the involved object in roadside object related motorcycle crashes along exclusive motorcycle lanes

5.3 The cumulative percentage vs. lateral offset of the guardrail in roadside object related motorcycle crashes along exclusive motorcycle lanes

5.4 The cumulative percentage vs. lateral offset of the involved object in narrow surface object related motorcycle crashes along exclusive motorcycle lanes
CHAPTER 1

INTRODUCTION

1.1 Introduction

Motorcycles have been the most registered type of vehicle in Malaysia for the past 10 years. There are 5,842,617 registered motorcycles, which represents 48.5% of all registered vehicles in Malaysia in year 2002. This shows that the motorcycle is a very popular mode of transportation in Malaysia. Its popularity may be due to the affordable prices of the motorcycle. The popularity also resulted in the highest fatality rate among all modes of transport. From 1997 to 2002, motorcyclists had the highest fatality rate (per 10,000 vehicle) as shown in Figure 1.1 (PDRM, 2003). The high rate of motorcyclist fatalities seems to be a major concern in our country.

![Fatality Rate Chart](image)

Figure 1.1: The fatality rate per 10,000 registered vehicle in Malaysia from 1997 to 2002 (Source: Royal Malaysia Police (PDRM), 2003)
Many measures have been carried out to reduce the number of fatalities every year. One of the most effective measures is the introduction of the exclusive motorcycle lane for motorcyclists. The exclusive motorcycle lane segregates the motorcycle traffic from the main traffic stream. The segregation reduces the high number of motorcycle crashes with other vehicles. A short-term reduction of 39% of motorcycle crashes was found after the introduction of the exclusive motorcycle lane along Federal Highway F0002 in Malaysia (Radin et. al, 1995). However, there are still motorcycle crashes occurring along exclusive motorcycle lanes. Fatality is due to multiple motorcycle crashes, single motorcycle crashes and even due to motorcycles colliding into objects at the roadside. Clear zones are a feature of modern highways that have great impact on roadside safety (M. H. Ray, 1998). Thus, allocating proper clear zones along the exclusive motorcycle lanes can reduce the collisions of the motorcycles with roadside objects planted along the exclusive motorcycle lane.

The existing exclusive motorcycle lanes in the country were designed according to a design guide, Arahan Teknik (Jalan) 10/86: A Guide to the Design of Cycle Track. However, some of the design parameters in the existing design guide are combinations of highway and cycle track design. These might not be suitable because of high volume of motorcycle traffic in our country. Unfortunately, the guide does not include any design for clear zones. Therefore, a better design guide is needed to produce safer exclusive motorcycle lanes for present and future usage of the motorcyclist.