UNIVERSITI PUTRA MALAYSIA

GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING

SALUMIAH BINTI MIJIN

FP 2014 12
GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING

By

SALUMIAH BINTI MIJIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
This thesis is dedicated to my beloved husband and son, Abdul Sadar Abuda and Abdul Arieff Anaqiey, who taught me to hope, believe and have faith.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

GROWTH AND NUTRITIONAL QUALITY OF Cosmos caudatus Kunth AS AFFECTED BY RATES OF ORGANIC AND INORGANIC FERTILIZERS AND POST HARVEST COOLING

By

SALUMIAH BINTI MIJIN

March 2014

Chairman: Associate Professor Siti Aishah Hassan, PhD
Faculty: Agriculture

A study was conducted to determine the effects of fertilizer sources and rates on growth, physiology and phytonutritional quality of Cosmos caudatus, a herbal species that is normally consumed fresh as a salad. A factorial experiment was conducted in randomized complete block design with three replications. Two types of fertilizer namely inorganic compound fertilizer (15%N: 15%P_2O_5: 15%K_2O) and organic based fertilizer (8%N: 8%P_2O_5: 8%K_2O) were applied at five different rates based on nitrogen rate ranging from 0, 30, 60, 90 and 120 kg N/ha. Growth and physiological data were collected during vegetative stage and phytochemical content were measured at harvest.

The vegetative growth of C. caudatus was significantly affected by rates and sources of fertilizer used. Plants receiving inorganic compound fertilizer were taller and had higher biomass, more branches and greater total leaf area as compared to organic fertilized plants. Fertilizer sources had no significant effect on the leaf nutrient content. However, increasing amount of fertilizer applied increased the macronutrient content. Photosynthetic rate was significantly increased with increasing fertilizer rates. For plants treated with organic fertilizer, the ascorbic acid content increased with fertilizer rates but decreased at the highest fertilizer rate. Fertilizer rate 90 kg N/ha appeared to be sufficient for optimum biomass production. Inorganic fertilizer resulted in leaves containing higher nitrate and lower antioxidant activity.

Based on the identified optimum fertilizer rate, postharvest shoots during storage of organically and inorganic fertilized plants was carried out. The young shoots of 12 weeks old plants were harvested and divided into two groups. Comparisons were made between samples that were hydro-cooled and were left non-precooled at ambient temperature after harvest. Fertilizer sources did not show differences in water loss, visual appearance, pH and...
total chlorophyll content of *C. caudatus*. However, vitamin C and carotenoids contents of organic-fertilized plants were significantly higher than inorganic-fertilized plants. Hydro-cooling treatment has significant effect on the young shoot quality where less water loss, better visual appearance and higher content of vitamin C, total chlorophyll and carotenoids in hydro-cooled shoot as compared to control. The quality of *C. caudatus* shoot decreased as storage day progressed. In short, organic fertilizer could enhance richer vitamin C and carotenoids content in *C. caudatus* which is essential while consuming salad. Hydro-cooling is essential to retain postharvest quality of this shoot.

Different rate and sources fertilizer application had effects on growth performances and phytonutritional content of *C. caudatus*. In conclusion, organically grown *C. caudatus* were higher in phytonutritional content compared those applied with inorganic fertilizer. For growth and physiological performance, inorganic fertilizer was superior than organic fertilizer. However, considering nitrate is harmful whereas mineral and vitamin contents as well as antioxidant activity are priority in fresh herbs, organically grown produce may benefit human health better than corresponding conventionally grown produce. Higher fertilizer applied can cause decreasing phytonutritional content of *C. caudatus*. Therefore, it is suggested that, fertilizer rates should be limited to 90 kg N/ha for *C. caudatus* production to increase phytonutritional content. To maintain the freshness, prolong the shelf life and retain phytonutritional quality of *C. caudatus*, hydro-cooling treatment must be applied after harvest.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PERTUMBUHAN DAN KUALITI PEMAKANAN *Cosmos caudatus* Kunth YANG DIPENGARUHI OLEH KADAR BAJA ORGANIK DAN INORGANIK SERTA RAWATAN RENDAMAN SEJUK LEPastuai

Oleh

SALUMIAH BINTI MIJIN

Mac 2014

Pengerusi : Profesor Madya Siti Aishah Hassan, PhD
Fakulit : Pertanian

Satu kajian telah dijalankan untuk mengkaji kesan sumber dan kadar baja terhadap pertumbuhan, fisiologi dan fitonutrisi kualiti *Cosmos caudatus*, yang biasanya dimakan segar sebagai salad. Kajian faktorial dijalankan dengan mengikut rekabentuk penuh rawak berblok dengan 3 replikasi. Dua jenis baja dinamakan baja inorganik kompaun (15%N, 15%P₂O₅, 15%K₂O) dan baja organik (8%N, 8%P₂O₅, 8%K₂O) telah digunakan pada lima kadar yang berbeza mengikut kadar nitrogen dari 0, 30, 60, 90 and 120 kg N/ha. Data fisiologi dan pertumbuhan dikumpul semasa pertumbuhan vegetatif dan kandungan fitonutrisi diukur selepas selesai ditanam.

Pertumbuhan vegetatif *C. caudatus* dipengaruhi secara signifikan oleh kadar dan sumber baja yang digunakan. Tanaman yang menerima baja inorganik kompaun mempunyai tinggi dan berat kering yang lebih tinggi, lebih bercabang dan mempunyai daun yang lebih luas berbanding dengan tanaman yang didirawat dengan menggunakan baja organik. Sumber baja tidak memberi kesan secara signifikan terhadap kandungan nutrien dalam tanaman. Walau bagaimanapun, tinggi jumlah penggunaan baja yang digunakan meningkatkan kandungan makronutrien. Kadar fotosintesis meningkat secara signifikan bila dibaja dengan kuantiti yang banyak. Bagi tumbuhan yang dirawat dengan baja organik, kandungan asid askorbik meningkat dengan peningkatan kadar baja tetapi menurun pada kadar baja yang sangat tinggi. Kadar baja 90 kg N/ha adalah lebih sesuai untuk mengoptimumkan penghasilan berat kering. Baja inorganik memberikan keputusan dimana mengandungi nitrat yang dan rendah antioksidan aktiviti pada daun.

Berpandukan kepada kadar baja optimum yang telah ditentukan, kajian lepas tuai pucuk yang dibaja secara organik dan inorganik dikaji terhadap jangka hayat semasa penyimpanan. Pucuk muda dituai pada minggu ke-12 dan dibahagikan kepada 2 kumpulan. Perbandingan dilakukan diantara sampel...
yang dilakukan rawatan rendaman air sejuk dan sampel yang tidak dilakukan rawatan rendaman air sejuk pada suhu bilik selepas dituai. Sumber baja yang digunakan tidak mempengaruhi kehilangan air, keadaan visual, pH dan kandungan klorofil *C. caudatus*. Walau bagaimanapun, kandungan vitamin C dan karotenoid yang di baja dengan menggunakan baja organik adalah tinggi secara sikhifikan berbanding dengan menggunakan baja inorganik. Rawatan air sejuk memberi kesan secara siknifikan ke atas kualiti pucuk muda dimana kurang kehilangan air, keadaan visual yang lebih baik dan tinggi kandungan vitamin C, klorofil dan karotenoid berbanding dengan rawatan kawalan. Kualiti pucuk *C. caudatus* menurun apabila disimpan lama. Ringkasnya, baja organik boleh meningkatkan kandungan vitamin C and karotenoid di dalam *C. caudatus* dimana ia adalah penting apabila dimakan sebagai salad. Rawatan rendaman air sejuk adalah penting untuk mengekalkan kualiti lepas tuai pucuk.

ACKNOWLEDGEMENTS

In the name of good, I would like to thank Him for giving me force and perseverance to complete study.

I would like to acknowledge the following support and dedication of the following people who have contributed in making this project a success:

My supervisor, Associate Professor Dr. Siti Aishah Hassan whose continual guidance, assistance, patience and constructive criticism have given me the courage to go on.

Associate Professor Dr. Phebe Ding and Professor Umi Kalsom binti Yusuf, my co-supervisor, whose assistance, encouragement and advice gave me the will to continue to the finish.

Many thanks to En. Mat Daud, En. Haji Khoiri and En. Mazlan Bangi in Department of Crop Science, for assisting me during field and lab experiments.

I would have made a mistake if I could forget my friends; Wang Liang Hui, Greetha, Norzeha Othman, Faezah, Bokhari, Daniel, Marlina and Maya for their constant support.

My Family, Aena, my grandmother, Abdul Sadar, my husband, Abdul Arief Anaqiey, my son, Arianna Hadirah, my daughter and Kazaruddin, my brother for being so understanding, loving and supporting me emotionally and spiritually.
I certify that a thesis Examination Committee has met on **20 March 2014** to conduct the final examination of Salumiah binti Mijin on her Master of Science thesis entitled “Growth and Nutritional Quality of *Cosmos caudatus* As “Affected by Rates of Organic and Inorganic Fertilizers and Post Harvest Cooling” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Thohirah Lee Abdullah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd. Ridzwan A. Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Mahmud Tengku Muda Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Dr. Normaniza Osman, PhD
Faculty of Science
Universiti Malaya
(External Examiner)

NORITAH OMAR, PhD
Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Siti Aishah Hassan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Phebe Ding, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Umi Kalsom Yusuf, PhD
Professor
Faculty of Sciences and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date
DECLARATION

Declaration by graduate student

I hereby declare that:
● this thesis is my original work;
● quotations, illustration and citations which have been duly referenced;
● this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
● intellectual property from the thesis copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
● written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
● there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2103 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: ___________
Name and matric No.:___________________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

● The research conducted and the writing of this thesis was under our supervision;

● Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _______________ Signature: _______________
Name of Chairman of Supervisory Committee: _______________
Name of Member of Supervisory Committee: _______________

Signature: _______________ Signature: _______________
Name of Member of Supervisory Committee: _______________
Name of Member of Supervisory Committee: _______________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 GENERAL INTRODUCTION

2 LITERATURE REVIEW

2.1 *Cosmos caudatus*

2.1.1 Origin, type and uses

2.1.2 Botany

2.1.3 Medicinal value and nutritional content

2.2 Fertilizer

2.2.1 Organic fertilizer

2.2.2 Inorganic fertilizer

2.2 Growth and physiological response to fertilizer sources

2.3 Response of phytonutritional content to fertilizer sources

2.4 Response of growth and physiology to fertilizer rates

2.5 Effect of fertilizer rates on phytonutritional content

2.6 Pre-cooling

2.6.1 pre-cooling method

2.6.1.1 Room cooling

2.6.1.2 Forced air cooling

2.6.1.3 Hydro-cooling

2.6.1.4 Vacuum cooling

2.7 Pre-cooling effects on physico-chemical composition

3 EFFECT OF FERTILIZER SOURCES AND APPLICATION RATES ON GROWTH, PHYSIOLOGY AND PHYTONUTRITIONAL QUALITY OF *Cosmos caudatus*

3.1 Introduction

3.2 Materials and Methods

3.2.1 Experimental site

3.2.2 Crop establishment

3.2.3 Treatments and experimental design

3.2.4 Data collection

3.2.4.1 Determination of plant growth

3.2.4.2 Determination of physiological characteristics

3.2.4.3 Phytochemical composition

3.2.4.3.1 Determination of nutrient and nitrate
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.6 Total chlorophyll</td>
<td>79</td>
</tr>
<tr>
<td>4.4.7 Antioxidant activity</td>
<td>81</td>
</tr>
<tr>
<td>4.5 Conclusion</td>
<td>83</td>
</tr>
<tr>
<td>5 CONCLUSION AND RECOMMENDATIONS</td>
<td>84</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>85</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>115</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>122</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>123</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.1</td>
<td>Nutrient composition in leaf tissue of C. caudatus grown under increasing fertilizer rates and different fertilizer sources.</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of fertilizer sources on antioxidant activity of C. caudatus determined using the TBA method</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of fertilizer rates on antioxidant activity of C. caudatus determined using the TBA method</td>
</tr>
<tr>
<td>4.1</td>
<td>Main and interaction effects of Cosmos caudatus shoots planted using inorganic and organic fertilizer sources, treated with hydro-cooled or non-hydro-cooled, storage day on water loss, visual appearance, pH, ascorbic acid, carotenoid and chlorophyll.</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation coefficients (r) for water loss, visual appearance, pH, vitamin C, carotenoid, chlorophyll and antioxidant activity of Cosmos caudatus.</td>
</tr>
<tr>
<td>4.3</td>
<td>Antioxidant activity of C. caudatus measured by TBA method</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cosmos caudatus seeds.</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Cosmos caudatus plants grown under rain shelter after 6 WAT.</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Cosmos caudatus flower at 14 week after transplanting.</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of fertilizer sources on plant height of C. caudatus</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of fertilizer application rates on plant height of C. caudatus</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Total number of branches of C. caudatus at varying fertilizer rates from 8 to 12 WAT.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect between fertilizer sources on total number of branches of C. caudatus from 8 until 12 WAT.</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Total biomass of C. caudatus as affected by varied fertilizer rates.</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Total biomass of C. caudatus as affected by fertilizer sources.</td>
<td>35</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of fertilizer sources and rates on total biomass of C. caudatus at 10 WAT.</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Shoot mass of C. caudatus as affected by fertilizer sources.</td>
<td>37</td>
</tr>
<tr>
<td>3.9</td>
<td>Shoot mass of C. caudatus as affected by fertilizer application rates.</td>
<td>38</td>
</tr>
<tr>
<td>3.10</td>
<td>Mean shoot mass of C. caudatus as affected by fertilizer rates.</td>
<td>39</td>
</tr>
<tr>
<td>3.11</td>
<td>Effect of fertilizer sources and rates on shoot mass of C. caudatus at 12 WAT.</td>
<td>39</td>
</tr>
<tr>
<td>3.12</td>
<td>Effect of fertilizer sources on total leaf area of C. caudatus from 2 to 12 WAT.</td>
<td>40</td>
</tr>
<tr>
<td>3.13</td>
<td>Effect of fertilizer rates on total leaf area of C. caudatus from 2 to 12 WAT.</td>
<td>41</td>
</tr>
<tr>
<td>3.14</td>
<td>Effect of fertilizer sources and rates on total leaf area of C. caudatus at 10 WAT.</td>
<td>42</td>
</tr>
<tr>
<td>3.15</td>
<td>Effect of fertilizer sources on root: shoot ratio of C. caudatus from 2 to 12 WAT.</td>
<td>43</td>
</tr>
<tr>
<td>3.16</td>
<td>Effect of fertilizer rates on root: shoot ratio of C. caudatus from 2 to 12 WAT.</td>
<td>43</td>
</tr>
<tr>
<td>3.17</td>
<td>Effect of fertilizer sources on relative growth rate of C. caudatus from 2 to 12 WAT.</td>
<td>44</td>
</tr>
<tr>
<td>3.18</td>
<td>Effect of fertilizer rates on relative growth rate of C. caudatus from 2 to 12 WAT.</td>
<td>44</td>
</tr>
<tr>
<td>3.19</td>
<td>Effect of fertilizer sources and rates on relative growth rate of C. caudatus at 6 WAT.</td>
<td>46</td>
</tr>
<tr>
<td>3.20</td>
<td>Effect of fertilizer sources on photosynthetic rate of C. caudatus at 12 WAT.</td>
<td>46</td>
</tr>
<tr>
<td>3.21</td>
<td>Effect of fertilizer rates on photosynthetic rate of C. caudatus at 12 WAT.</td>
<td>47</td>
</tr>
<tr>
<td>3.22</td>
<td>Effect of fertilizer sources on stomata conductance of C. caudatus at 12 WAT.</td>
<td>48</td>
</tr>
<tr>
<td>3.23</td>
<td>Effect of fertilizer rates on stomata conductance of C. caudatus at 12 WAT.</td>
<td>48</td>
</tr>
</tbody>
</table>
3.24 Effect of fertilizer sources and rates on stomatal conductance of *C. caudatus* at 12 WAT.
3.25 Effect of fertilizer sources on chlorophyll a and b of *C. caudatus* at 12 WAT.
3.26 Effect of fertilizer rates on chlorophyll a and b of *C. caudatus* at 12 WAT.
3.27 Effect between fertilizer sources and rates on chlorophyll a of *C. caudatus* at 12 WAT.
3.28 Effect of fertilizer sources on specific leaf area of *C. caudatus* from 2 to 12 WAT.
3.29 Effect of fertilizer rates on specific leaf area of *C. caudatus* from 2 to 12 WAT.
3.30 Effect of fertilizer sources on net assimilation rate of *C. caudatus* from 2 to 12 WAT.
3.31 Effect of fertilizer rates on net assimilation rate of *C. caudatus* from 2 to 12 WAT.
3.32 Effect of fertilizer sources and rates on net assimilation rate of *C. caudatus* at 10 WAT.
3.33 Nitrogen content in leaf tissue of *C. caudatus* in response to fertilizer rates and sources.
3.34 Effect of fertilizer sources on nitrate content of *C. caudatus* at 12 WAT.
3.35 Effect of fertilizer rates on nitrate content of *C. caudatus* at 12 WAT.
3.36 Effect of fertilizer sources on ascorbic acid content of *C. caudatus* at 12 WAT.
3.37 Effect of fertilizer rates on ascorbic acid content of *C. caudatus* at 12 WAT.
3.38 Effect of fertilizer sources and rates on ascorbic acid content of *C. caudatus* at 12 WAT.
3.39 Effect of fertilizer sources on total chlorophyll content of *C. caudatus* at 12 WAT.
3.40 Effect of fertilizer rates on total chlorophyll content of *C. caudatus* at 12 WAT.
3.41 Effect of fertilizer sources and rates on total chlorophyll content of *C. caudatus* at 12 WAT.
3.42 Effect of fertilizer rates on antioxidant activity content of *C. caudatus* at 12 WAT using the FTC method.
3.43 Effect of fertilizer sources on antioxidant activity content of *C. caudatus* at 12 WAT using the FTC method.
4.1 Effects of hydro-cooling treatment and storage day on water loss of *C. caudatus*.
4.2 Effects of hydro-cooling treatment and storage day on visual appearance of *C. caudatus*.
4.3 Effects of hydro-cooling treatment and storage day on carotenoids content of *C. caudatus*.
4.4 Effects of hydro-cooling treatment and storage day on chlorophyll content of *C. caudatus*.
4.5 Effect of fertilizer sources and hydro-cooling treatment on antioxidant activity of *C. caudatus* using FTC method.
LIST OF ABBREVIATIONS

% percentage
* significant at p≤ 0.05
** significant at p≤ 0.01
°C degree Celsius
ANOVA analysis of variance
BHT Butylated hydroxytoluene
FTC ferric thiocyanate
g gram
LSD least significant different
M molar
ml milliliter
ml/L milliliter per liter
nm nanometer
ns non-significant
PE polyethylene
rpm rotations per minute
TBA Thiobarbituric acid
WAT week after transplanting
CHAPTER I

GENERAL INTRODUCTION

Herbs have been used for centuries to improve the health and well being of entire civilizations (Lidley, 1981). Medicinal herbs are used globally in various complementary alternative therapies (WHO, 2003). According to the world health organization (WHO), more than 5 billion people, or 80% of the world's population, still depend on herbs and traditional methods of healthcare (Wan Hassan, 2006).

Malaysia is rated as one of the 12 countries in the world with a wide ‘mega-diversity’ of plants (Herbal Medicine Research Group, 2002). Malaysia, being in a tropical rain forest zone, has rich sources of medicinal herbs and plants. The total value of herbal products in Malaysia is estimated to be RM 4.55 billion and the rate of growth of the sector is approximately 15% annually (Wan Hassan, 2006). However, the industries that utilize medicinal herbs in their health products are still at the infancy stage in Malaysia though the numbers are expected to increase and estimated to reach up to 20%. The value of total consumption of herbs and herbal products locally is estimated at RM3.2 billion of which only an estimated RM 500 million is from local sources. A large percentage of the nation’s herbs supplies are imported from Thailand, China, India, and Indonesia (Wan Hassan, 2006).

More than 2,000 herb species in Malaysia have been reported to have medicinal properties. In addition to native species, some plants were brought in by the Chinese, Indians and others when they migrated into Malaysia centuries ago (Wan Hassan, 2006). Herbs can be consumed fresh as salad, processed or cooked (Norhanom et al., 1999). Some are consumed fresh because of their taste, which adds variety and flavour to the human diet in addition to having health benefits.

One local herb with potential to be developed commercially is *Cosmos caudatus*, known locally as ‘ulam raja’. Although it originated from Tropical Central America it is now found in almost all tropical regions. This herb is found to contain antimutagen and antifungal compounds such as custonoide, stigmesterol, lutein and 4, 4-bipyridine (Ragasa et al., 1999). Huda-Faujan et al. (2007) also reported that the *C. caudatus* contains very high levels of amino acid and protein. Further, more than twenty antioxidants have been also identified in the *C. caudatus* (Guanghou et al., 2005).

Local demand for herbs in the production of traditional medicines is on the rise. However, less than 10% the herbs used in the production of local traditional medicines is cultivated locally. The rest are imported or collected from the wild. Over-dependence on imported raw materials can expose the local industry to problems of inconsistency in supply, price instability and adulterated and low quality materials.
In the last decades, interest in the medicines and nutritional application of this herb has increased dramatically. Due to its functional properties, it has also been demonstrated to support the bone formation and aid blood circulation (Abas et al. 2003). This plant is widely grown and can be readily established at low cost. *Cosmos caudatus* could become a novel antibiotic agent due to the significant antimicrobial. However, the lack of information regarding cultural practices in the cultivation of local herbs, especially in terms of fertilization, is probably one of the attributing factors for the problem of low local supplies. For herbal crops such as *C. caudatus*, where the leaf is the major plant part used, promotion of vegetative growth is a priority. In relation to this fertilizers are known to have pronounced influence on plant growth and development. Improvements in foliar production through proper management of plant inputs are thus a major concern for large scale production. Since biomass production of plants grown in no limiting conditions will depend upon the available nutrients in the growing medium, all important cash crops should follow recommended fertilizer rates for optimal yield. Therefore, this herb was selected for this study.

Postharvest handling of herbs is of prime importance to reduce potential loss of their medicinal properties and yield. All fresh green herbs are fragile when they are in fresh state and can easily deteriorate in short time after harvest. For this reason, appropriate storage temperature and humidity is necessary to lengthen the storage duration of fresh herbs without loss in quality of such produce.

Research confirms that lowering the respiration rate of fresh vegetables is essential to preserve its market quality. In relation to this the most important technology for lowering respiration rates is found to be precooling of produce within hours of harvest (Jones, 2007) whereby pre-cooling is the first step in good temperature management. Proper pre-cooling preserves product quality by inhibiting the growth of decay microorganisms, restricting enzymatic and respiratory activities, inhibiting water loss and reducing ethylene production (Hardenburg et al., 1986). Since *C. caudatus* is commonly eaten raw in Malaysia as a good source of natural antioxidants, minerals and vitamin (Shui et al., 2005), research on preservation of its postharvest quality is essential.

This study will evaluate the effects of using inorganic and organic fertilizer sources at suitable rates for higher production of *C. caudatus* shoots and higher yield. This study will test the validity of claims that plants grown with inorganic fertilizers have less taste and are less healthy as compared to those grown using organic fertilizers. Determination of fertilizer rates is an important aspect of this study in order to determine the optimum fertilizer rates for optimum yield and quality of the *C. caudatus* and to avoid over fertilization which may have a net negative impact on yield and quality.

Hence, the objectives of the study are:

1. To determine the effect of fertilizer sources and rates on growth, physiology and phytonutritional quality of *C. caudatus*;
2. To determine the optimum fertilizer rates for higher yields in production of *C. caudatus*; and
3. To determine the effect of fertilizer sources and hydro-cooling treatment on shelf life and quality of *C. caudatus* shoots during storage.

CHAPTER 2

LITERATURE REVIEW

2.1 *Cosmos caudatus*

2.1.1 Origin, types and uses

Cosmos caudatus is a herbaceous annual plant belonging to the family Compositae. The scientific name for the plant is *Cosmos caudatus* kunth. It originated from tropical Central America and is now widespread in almost all tropical regions (Guanghou et al., 2005). Locally it is known as ulam raja whereby ‘Ulam’ is a Malay word for fresh herbaceous vegetable salad. Hence when literally translated ‘ulam raja’ means the 'King salad'.

There are many types of *C. caudatus*. The two main popular types are the ones with pink and white flowers. A more common hybrid of *C. caudatus* is the yellow flowered varieties or *Cosmos sulphureus*, whose shoots can also be eaten as ‘ulam’ or salad. *Cosmos caudatus* or ‘ulam raja asli’ is also called ‘ulam raja kuning’ (Ooi, 2003).

Cosmos caudatus is one of the popular ‘ulam’ in Malaysia. Its young shoots or the edible young leaves are usually eaten with ‘sambal belachan’ (shrimp paste-chili), cincalok (fermented shrimp sauce) or with budu (anchovy sauce). As a traditional vegetable, this herb can also be cooked in the ‘masak lemak’ style or blanched and eaten with rice and it is also used in dishes such as kerabu. This herb is also served as an appetizer and used as food flavoring due to its unique taste and aroma. Today, the ulam raja is featured as part of the Malaysian cuisine in major hotels in the country for tourists and is also a favorite among locals at buffet lunches or dinners (Wan Hassan, 2006).

2.1.2 Botany

Cosmos caudatus is an annual, short-lived perennial aromatic herb. It grows up to between 0.5 to 2 m tall (Wan Hassan, 2006). The fruits or seeds are thin, elongated and dark brown in color (Figure 2.1). The leaves are simple, pinnate or bipinnate, arranged in opposite pairs, soft and aromatic, bright green in colour, measuring between 20 to 30 cm in length (Figure 2.2). At night or in the day, the leaves fold to enclose the terminal buds (Wan Hassan, 2006). The stem is erect, light purplelish green, succulent and hairy (Smith, 1991). The flowers are produced on a single long inflorescent stalk
REFERENCES

produced foods. Critical Review. In Food Science and Nutritional. 42: 1-34.

Buddhiman, T. and Jyoti, P.T. 2009. Traditional knowledge of biopreservation of perishable vegetable and bamboo shoots in Northeast India as food resources. Indian Journal of Traditional Knowledge. 8(1): 89-95.

Faulkner, S.P. 1999. *Foliar feeding when your plants need it fast, the growing edge*. May-June. 42-47.

Ooi, 2003. Malaysian plants that are eaten raw.

Zarehie, H. 1995. Study of nitrate accumulation in vegetables of lettuce and spinach in related with optimum application of nitrogen fertilizers. Msc thesis, Department of Horticulture, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran. 79p

