UNIVERSITI PUTRA MALAYSIA

BIOREDUCTION OF HEXAVALENT MOLYBDENUM TO MOLYBDENUM BLUE USING Serratia sp. MIE2 AND PURIFICATION OF MOLYBDENUM-REDUCING ENZYME

MOHD IZUAN EFFENDI BIN HALMI

FBSB 2014 35
BIOREDUCTION OF HEXAVALENT MOLYBDENUM TO MOLYBDENUM BLUE USING *Serratia* sp. MIE2 AND PURIFICATION OF MOLYBDENUM-REDUCING ENZYME

By

MOHD IZUAN EFFENDI BIN HALMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2014
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

BIOREDUCTION OF HEXAVALENT MOLYBDENUM TO MOLYBDENUM BLUE USING Serratia sp. MIE2 AND PURIFICATION OF MOLYBDENUM-REDUCING ENZYME

By

MOHD IZUAN EFFENDI BIN HALMI

November 2014

Chairman: Mohd Yunus Abd Shukor, PhD
Faculty: Biotechnology and Biomolecular Sciences

Molybdenum reduction is an old phenomenon that has received very low attention compare to other well-known and extensively studied metals such as chromium, mercury and lead. Molybdenum has long been known to be toxic to ruminants and not toxic to other organisms. However, more recently it has been increasingly reported that molybdenum shows toxic effects to reproductive organs of fish, mouse and even humans at concentrations between 1 and 100 ppm. Hence its removal from the environment is highly sought after. The isolation of molybdenum reducing bacteria and the elucidation of the reducing mechanism will lead to an efficient bioremediation system. To fulfil this, a new Mo-reducing bacterium was isolated from an agriculture soil plot from Universiti Putra Malaysia. The isolate was tentatively identified as Serratia sp. MIE2 based on 16s rDNA molecular phylogeny. Serratia sp. MIE2 is a gram negative, oxidase and catalase positive bacterium. The molybdenum blue produced by Serratia sp. MIE2 exhibited a unique absorption spectrum with maximum peak at 865 nm and a shoulder at 700 nm. Dialysis tubing experiment showed that molybdate reduction by Serratia sp. MIE2 was an enzymatic process and not chemically mediated.

Characterization and optimization of molybdenum blue production by Serratia sp. MIE2 was carried out using one factor at a time (OFAT) and Response Surface Methodology (RSM). One factor at a time (OFAT) showed the optimum conditions supporting molybdate reduction occurred at pH 6.0, from 27 to 35 °C and 30-40 g/L sucrose as the carbon source or electron donor. The best nitrogen source was ammonium sulphate with an optimum concentration at 10 g/L. Moreover, the optimum concentrations of phosphate and molybdate were 2 and 10 mM, respectively. Molybdate reduction was maximized and optimized using response surface methodology (RSM) with optimum conditions occurring at 20 mM of molybdate, 25 g/L of sucrose, pH 6.25 and 3.95 mM of phosphate with molybdenum blue production increasing from an OFAT absorbance yield of 10.0 to higher than 20.0 as measured at 865 nm.
Modelling kinetic studies of *Serratia* sp. MIE2 using the optimum conditions obtained from the classical method (OFAT) show that the best model was Teissier followed by Luong, Aiba, Yano and Haldane with correlation coefficient, R^2 values of 0.994, 0.993, 0.992, 0.990 and 0.982, respectively. The calculated values of P_{max}, K_s and K_i of the best model were 0.89 µmole Molybdenum blue per hour, 5.84 mM and 32.23 mM respectively. Otherwise, modelling kinetics using the optimum condition obtained from RSM showed that the Luong model was the best model followed by Teissier, Aiba, Yano and Haldane with correlation coefficient, R^2 values of 0.999, 0.994, 0.993, 0.992 and 0.965, respectively. However, since Luong exhibited 4 kinetic constants while Teissier has only 3 constants, by default, Teissier model was chosen due to its mathematical simplicity. The calculated values of R^2, P_{max}, K_s and K_i of the best model, Teissier were 1.97 µmole Mo-blue per hour, 5.79 mM and 31.48 mM, respectively. Modelling kinetics showed the value of P_{max} was increasing from 0.89 µmole Molybdenum blue per hour to 1.97 µmole molybdenum blue per hour indicating that molybdate reduction yield increase several fold after optimization using RSM.

Before purification process, preliminary studies such as effect of storage and chromatographic stabilities, effects of restorative and inhibitive agents were carried out to minimise denaturation and to maximise yield of purified enzyme. The buffer use during storage and purification process was Tris-HCl at pH 7.0. Mo-reducing enzyme was stable when stored at -80°C for both 24 hours and one month followed by storage on ice (0°C). Temperature stability study showed that the enzyme was most stable at 25°C followed by 40°C with complete lost of activity at 60 and 40 minutes of incubation at 54 and 70°C. EGTA or (ethylene glycol tetraacetic acid), EDTA, Triton X-100, DBS and SDS decrease 50% activity of enzyme at concentration 0.1mM, 0.1mM, 0.1%, 0.1%, and 0.1%, respectively. DTT could restore the Mo-reducing enzyme activity of up to 100% at the maximum concentration of 5 mM for DTT and 0.5 mM for β-mercaptoethanol. Effects of cofactor suggest that nickel might be an important cofactor for the enzyme. Heavy metals such as mercury and zinc effect strongly inhibited the Mo-reducing enzyme. The coenzyme such as FMN and FAD were able to restore Mo-reducing enzyme activity. Mo-reducing enzyme was not inhibited by respiratory inhibitors, therefore, the electron transport chain of this bacterium is not the site of molybdate reduction.

Purification of the Mo-reducing enzyme was done using ammonium sulphate precipitation, gel filtration on Zorbax GF-250 and Zorbax GF-450 with a 20.8 purification fold. The molecular mass was estimated to be 100 kDa by SDS-polyacrylamide gel electrophoresis and the enzyme was monomeric. Mo-reducing enzyme showed maximum activity at 35°C and pH 5. The enzyme was assayed using NADH as the electron donor with the maximum initial velocity, V_{max} of 16.18 nmole molybdenum blue/min/mg protein and a Michaelis constant, K_m at 0.89 mM. The optimum concentration of phosphomolybdate (electron acceptor substrate) was 10 mM, with a V_{max} of 6.89 nmole molybdenum blue/min/mg protein (NADH as electron donor at saturated concentrations) and K_m of 6.02 mM. Identification of pure enzyme using MALDI-TOF showed only peptide DNAATRSEAMSLIHGR shows similarity to 35% to nitrile oxidoreductase and GTP cyclohydrolase I. The low similarity value prohibited further analysis to be carried out. Thus, the enzyme is assigned as hypothetical protein.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENURUNAN HEKSAVALEN MOLIBDENUM KEPADA MOLIBDENUM BIRU OLEH Serratia sp. MIE2 DAN PENULENAN ENZIM PENURUN MOLIBDENUM

Oleh
MOHD IZUAN EFFENDI BIN HALMI

November 2014

Pengerusi: Mohd Yunus Abd Shukor, PhD
Fakulti: Bioteknologi dan Sains Biomolekul

Penurunan molibdenum adalah suatu fenomena yang kurang mendapat perhatian berbanding dengan logam lain-lain yang terkenal dan dikaji secara meluas seperti kromium, merkuri dan plumbum. Molibdenum telah lama diketahui adalah toksik kepada ruminan dan tidak toksik kepada organisma lain. Walau bagaimanapun, baru-baru ini terdapat laporan yang menujukkan bahawa molibdenum menunjukkan kesan toksik kepada organ-organ pembiakan ikan, tikus dan juga manusia pada kepekatan antara 1 dan 100 ppm. Oleh itu penyingkirannya daripada alam sekitar mendapat perhatian yang tinggi. Pengasingan bakteria penurun molibdenum dan pengetahuan mengenai mekanisme penurunan akan membawa kepada sistem biopemulihan yang cekap. Satu bakteria Mo-penurun telah diasingkan daripada plot tanah pertanian dari Universiti Putra Malaysia. Isolat ini secara sementara ini dikenalpasti sebagai Serratia sp. MIE2 berdasarkan analisa filogenetik molekul 16s rDNA.

Serratia sp. MIE2 adalah gram negatif, oksidase dan katalase positif. Molibdenum biru dihasilkan oleh Serratia sp. MIE2 mempamerkan spektrum penyerapan unik dengan puncak maksimum pada 865 nm dan bahu di 700nm. Eksperimen tiub dialisis menunjukkan bahawa penurunan molibdenum oleh Serratia sp. MIE2 adalah suatu proses melibatkan enzim dan bukan secara kimia.

Pencirian dan pengoptimuman pengeluaran molybdenum biru oleh Serratia sp. MIE2 telah dijalankan dengan menggunakan satu-faktor-pada-satu-masa (OFAT) dan Kaedah Metodologi Permukaan (RSM). Kaedah satu-faktor-pada-satu-masa (OFAT) menunjukkan keadaan optimum menyokong pengurangan molibdenum berlaku pada pH 6.0, 27-35°C dan 30-40 g/L sukrosa sebagai sumber karbon atau elektron penderma. Sumber terbaik nitrogen adalah ammonium sulfat dengan kepekatan optimum pada 10 g/L. Selain itu, kepekatan optimum fosfat dan molibdet adalah 2 dan 10 mM, masing-masing. Pengurangan molibdenum telah dimaksimumkan dan dioptimumkan menggunakan Kaedah Metodologi Permukaan (RSM) dengan keadaan penghasilan molibdenum biru optimum berlaku pada 20 mM molibdat, 25 g/L sukrosa, pH 6.25 dan 3.95 mM fosfat dengan pengeluaran molibdenum biru meningkatkan dari serapan 10.0 menggunakan kaedah OFAT kepada serapan 20.0 pada jarak gelombang 865 nm menggunakan kaedah RSM.
Model kajian kinetik penurunan oleh *Serratia* sp. MIE2 menggunakan kondisi optimum yang diperolehi daripada kaedah klasik (OFAT) menunjukkan bahawa model yang terbaik ialah Teissier diikuti dengan Luong, Aiba, Yano dan Haldane dengan nilai R^2 0.994, 0.993, 0.992 dan 0.982, masing-masing. Nilai P_{max}, K_s dan K_i model yang terbaik adalah 0.89 μmol Mo-biru per jam, 5.84 mM dan 32.23 mM, masing-masing. Kinetik pemodelan menggunakan keadaan optima yang diperolehi daripada kaedah RSM pula menunjukkan bahawa model Luong adalah model terbaik diikuti oleh Teissier, Aiba, Yano dan Haldane dengan, nilai R^2 0.999, 0.994, 0.993, 0.992 dan 0.965, masing-masing. Walau bagaimanapun, sejak Luong menggunakan 4 pemalar kinetik manakala Teissier hanya menggunakan 3 pemalar, maka secara tetapan model Teissier dipilih berdasarkan kesederhanaan matematik. Nilai P_{max}, K_s dan K_i model yang terbaik adalah 1.97 μmole Mo-biru sejam, 5.79 mM dan 31.48 mM, masing-masing. Kinetik pemodelan Teissier menunjukkan nilai P_{max} telah meningkat daripada 0.89 μmol molibdenum biru/jam kepada 1.97 μmole molibdenum biru per jam yang menunjukkan bahawa pengurangan molibdenum meningkatkan hasil beberapa kali ganda selepas pengoptimuman menggunakan kaedah RSM.

Sebelum proses penulenan, kajian awal seperti kesan penyimpanan dan pengstabilan semasa kromatografi, kesan agen pemulihan enzim dan agen perencat telah dijalankan untuk mengurangkan denaturasi dan memaksimumkan hasil enzim yang akan ditulenan. pH optima untuk tujuan penyimpanan dan proses kromatografi adalah Tris-HCl pada pH 7. Mo-penurun enzim adalah stabil apabila disimpan pada -80ºC samada pada 24 jam atau satu bulan dan diikuti dengan penyimpanan di dalam ais (0ºC). Kajian kestabilan suhu menunjukkan bahwa enzim adalah yang paling stabil pada 25ºC diikuti dengan 40ºC dengan kehilangan aktiviti berlaku pada 60 dan 40 minit pengeraman pada suhu 54 dan 70ºC, masing-masing. EGTA (etilena glikol asid tetraasetik), EDTA (etilena diamina asid tetraasetik), Triton X-100, DBS (dodesil benzena sulfat) dan SDS (sodium dodesil sulfat) mengurangkan aktiviti enzim sebanyak 50% pada kepekatan 0.1mM, 0.1 mM, 0.1 %, 0.1 %, dan 0.1 % masing-masing. DTT boleh memulihkan aktiviti enzim penurun molibdenum sehingga 100 % pada kepekatan maksimum 5 mM untuk DTT dan 0.5 mM untuk 2-merkaptoetanol. Kesan kofaktor menunjukkan bahawa nikel mungkin menjadi kofaktor penting bagi enzim ini. Logam berat seperti merkuri dan zink merencat aktiviti enzim penurun molibdenum. Koenzim seperti FMN (flavin mononukleotida) dan FAD (flavin adenina dinukleotida) dapat memulihkan aktiviti Mo-penurun enzim. Aktiviti enzim penurun molibdenum tidak direncat oleh perencat respirasi, oleh itu, rantaian pengangkutan elektron daripada bakteria ini bukan merupakan tapak aktiviti penurunan molibdenum.

Penulenan enzim penurun molibdenum telah dilakukan dengan menggunakan fraksinasi ammonium sulfat, gel penapisan menggunakan Zorbax GF-250 dan Zorbax G-450 dengan pekali penulenan sebanyak 20.8. Jisim molekul enzim penurun molibdenum diangkarkan 100 kDa menggunakan kaedah gel elektroforesis-SDS dan enzim penurun molibdenum adalah monomerik. Enzim penurun molibdenum menunjukkan aktiviti maksimum pada suhu 35ºC dan pH 5. Enzim ini telah diasai menggunakan NADH sebagai penderma elektron dengan halaju awal maksimum, V_{max} adalah 16.18 nmole molibdenum biru /min/ mg protein dan pemalar Michaelis,
K_m adalah 0.89 mM. Kepekatan optimum fosfomolibdate (elektron penerima substrat) adalah 10 mM, dengan V_{max} adalah 6.89 nmole molibdenum biru/min/mg protein (NADH sebagai penderma elektron pada kepekatan tepu) dan K_m adalah 6.02 mM. Pengenalan enzim tulen menggunakan kaedah MALDI-TOF menunjukan hanya peptide DNAATRSEAMSLIHGR mempunyai persamaan 35% kepada nitril oksidoreduktase and GTP siklohidrolase 1. Persamaan yang rendah menghalang analisis yang seterusnya. Oleh itu enzim ini dinamakan protein hipotetikal.
ACKNOWLEDGEMENTS

I am very glad and thankful to Allah, for His blessings for me to complete this thesis completely and successfully. In addition, the completion of this project would not have been successful without the assistance, help, and co-operation from a number of people.

I also would like to take this opportunity to special thank to my supervisor, Associate Professor Dr. Mohd. Yunus Abd. Shukor for his guidance, advice and moral support starting from my Bachelor until my PhD. I would like to express my gratitude to my beloved parents, Sam bin Bidin and Sabariah Binti Din and to my late father Halmi bin Hussin who passed away in 1994 for their encouragements and continuous support to keep me going on with this task. My co-supervisor, Dr. Wan Lutfi Bin Wan Johari, Dr. Mohd Shukuri Mohamad Ali and Dr. Noor Azmi Shaharuddin, I appreciate the guidance and suggestions from them during the duration of this project. Thank you to my beloved Norzila binti Kusnin who are always supportive of me and is the source of encouragement and kindness that have encouraged me to finish this thesis.

Thank you very much to my dear labmates, Finally, I would like to thank to all my lecturers especially in the Department of Biochemistry and in the Faculty of Biotechnology and Biomolecular Sciences and UPM in general, my friends and anyone who were involved in assisting me to complete this project. Thank you for your support and understanding.
I certify that a Thesis Examination Committee has met on 17 November 2014 to conduct the final examination of Mohd Izuan Effendi b Halmi on his thesis entitled "Biorreduction of Hexavalent Molybdenum to Molybdenum Blue using Serratia sp. MIE2 and Purification of Molybdenum-Reducing Enzyme" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Syahida binti Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Umi Kalsom binti Md Shah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Shuhaimi bin Mustafa, PhD
Professor
Institut Penyelidikan Produk Halal
Universiti Putra Malaysia
(Internal Examiner)

Amal Kanti Paul, PhD
Professor
Department of Botany
University of Cucumber
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 January 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Yunus Abd Shukor, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Wan Lutfi Bin Wan Johari, PhD
Senior Lecturer
Faculty of Science and Environmental studies
Universiti Putra Malaysia
(Member)

Mohd Shukuri bin Mohamad Ali, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Noor Azmi Bin Shaharuddin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _______________________ Date: __________________

Name and Matric No.: Mohd Izuan Effendi Bin Halmi (GS36714)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ______________________ Signature: ______________________
Name of Chairman of Supervisory Committee: ______________________
Name of Member of Supervisory Committee: ______________________
Name of Member of Supervisory Committee: ______________________
Name of Member of Supervisory Committee: ______________________
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1.0 INTRODUCTION

1.1 Thesis Objective 2

2.0 LITERATURE REVIEW

2.1 The Chemistry of Molybdenum 3

2.2 The Biochemistry of Molybdenum 6

2.2.1 Molybdenum in Mammals 6

2.2.2 Molybdenum in Plant 7

2.3 Molybdenum Toxicity 9

2.4 Molybdenum as a Pollutant 10

2.5 Microbial reduction of metal ions 10

2.6 Enzymatic and Microbial Reduction of Molybdate to Mo-blue 11

2.7 Properties of partial and pure Mo-reducing Enzyme from several Bacteria 16

2.7.1 Mo-reducing enzyme from EC 48 with molybdate as theSubstrate 16

2.7.2 Mo-reducing enzyme from EC 48 with 12-phosphomolybdate as theSubstrate 17

2.7.3 Using 12-Phosphomolybdate as a substrate 19

2.7.4 Mo-reducing enzyme from EC 48 with Laboratory-prepared phosphomolybdate as the substrate 20

2.7.5 Mo-reducing enzyme from *Serratia marcescens* Dr.Y5 20

2.8 Statement of the Problems 21

2.8.1 Isolation and characterization of a more potent Mo-reducing bacterium 21

2.9 Statistical-based optimization compared to one-at-a-time Approach 21

2.10 Kinetics of the Mo-reducing enzyme 22

2.11 Identification of the Mo-reducing enzyme 23
2.12 Significance of the Study

3.0 METHODOLOGY

3.1 Materials

3.1.1 Chemicals and equipments

3.2 Preparation of culture medium

3.2.1 Low phosphate media (LPM)
3.2.2 High phosphate media
3.2.3 Low phosphate Agar

3.3 Isolation of Mo-Reducing Bacteria

3.4 Scanning Spectra of Molybdenum-blue

3.5 Dialysis tubing experiment

3.6 Identification of Mo-Reducing Bacteria

3.6.1 Gram Staining
3.6.2 Catalase Test
3.6.3 Oxidase test
3.6.4 16s rRNA Gene Sequencing
3.6.5 Phylogenetic Analysis

3.7 Effect of Various Parameter on Molybdate reduction MIE2 using One Factor at a Time (OFAT).

3.7.1 Effect of different Electron Donor Sources
3.7.2 Effects of electron donor concentrations
3.7.3 Screening of nitrogen sources
3.7.4 Effects of nitrogen source concentrations
3.7.5 Effect of LPM initial pH
3.7.6 Effect of Temperature
3.7.7 Effect of Phosphate and Molybdate concentration

3.8 Optimization of molybdate reduction using Response Surface Methodology (RSM)

3.8.1 Screening of significant parameters using Placket-Burman Design
3.8.2 Optimization of significant parameter using Box-Behken Design

3.9 Modeling kinetic of molybdate reduction

3.9.1 Determination of kinetic parameters for molybdate reduction to molybdenum blue

3.10 Purification of Mo-reducing enzyme

3.10.1 Preparation of crude enzyme
3.10.2 Protein assay
3.10.3 Definition of enzyme activity
3.10.4 Mo-reducing enzyme stability studies

3.10.4.1 Effect of storage pH
3.10.4.2 pH stability studies
3.10.4.3 Effect of temperature of storage
3.10.4.4 Temperature stability studies
3.10.4.5 Effect of chelating agent, detergents and organic solvents
3.10.4.6 Effect of sulfhydryl agents
3.10.4.7 Effect of metal ion cofactors
3.10.4.8 Effect of heavy metals ion
3.10.4.9 Effect of coenzymes 41
3.10.4.10 Effect of Inhibitors 42
3.10.5 Purification by Ammonium Sulphate Fractionation 42
3.10.6 Purification by Agilent Zorbax™ (G-250) Gel Filtration 43
3.10.7 Purification by Agilent Zorbax™ (GF-450) Gel Filtration 44
3.10.8 SDS-Polyacrylamide Gels Preparation 44
3.10.8.1 Preparation of Samples and Running the Gel 46
3.10.8.2 Gel Staining 46
3.10.9 Characterization of Mo-Reducing enzyme 47
3.10.9.1 Effect of pH on Molybdenum-Reducing Enzyme Activity 47
3.10.9.2 Effect of Temperature on Molybdenum-Reducing Enzyme Activity 47
3.10.10 Molybdenum reducing enzyme kinetics 47
3.10.10.1 K_m and V_{max} NADH as the substrate 48
 Electron Donor
3.10.10.2 K_m and V_{max} LPPM as the substrate 48
 Electron Donor
3.10.10.3 Determination of K_{cat}/K_m 48
3.10.11 Protein spots for MALDI-TOF peptide mass 48

4.0 RESULTS & DISCUSSIONS 49
4.1 Isolation and screening molybdenum reducing bacteria 49
4.2 Scanning Spectra of Molybdenum-blue produced by Serratia sp. MIE2 49
4.3 Dialysis Tubing experiment 50
4.4 Identification of Isolate TPU 3 52
4.5 Characterization and optimization of molybdate reduction using one at a time approach 56
4.5.1 Screening of electron donors 56
4.5.2 Effect of sucrose concentration 57
4.5.3 Screening of nitrogen sources 59
4.5.4 Effects of different ammonium sulphate concentrations 60
4.5.5 Effect of initial pH 61
4.5.6 Effect of temperature 63
4.5.7 Effect of phosphate concentration 64
4.5.8 Effect of molybdate concentration 65
4.5.9 Modeling molybdate reduction kinetics after one-factor-at-a-time method (or OFAT) 66
4.6 Optimization of molybdate reduction using Response Surface Methodology (RSM) 69
4.6.1 Screening significant parameter using Plackett-Burman 69
4.6.2 Optimization of molybdate reduction using RSM 72
4.6.3 Determination and validation of optimum conditions 75
4.6.4 Effect of process variables using response surface plot 77
4.6.4.1 Molybdate vs. phosphate concentration 77
4.6.4.2 Molybdate vs. sucrose concentrations 78
4.6.4.3 Molybdate concentration vs. pH 79
4.6.4.4 Phosphate concentration vs. pH 80
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>List of isolated Mo-reducing bacteria.</td>
<td>13</td>
</tr>
<tr>
<td>2:</td>
<td>Levels of variables tested in Plackett-Burman Design.</td>
<td>33</td>
</tr>
<tr>
<td>3:</td>
<td>Levels of variables tested in Box Behnken Design.</td>
<td>33</td>
</tr>
<tr>
<td>4:</td>
<td>Various kinetic models for effect of substrate on Mo-blue production.</td>
<td>35</td>
</tr>
<tr>
<td>5:</td>
<td>Solution for preparing 12 % resolving gels for Tris-glycine SDS-polyacrylamide Gel electrophoresis.</td>
<td>45</td>
</tr>
<tr>
<td>6:</td>
<td>Solution for preparing 5% stacking gels for Tris-glycine SDS-polyacrylamide Gel electrophoresis.</td>
<td>46</td>
</tr>
<tr>
<td>7:</td>
<td>Parameter estimation for different substrate–inhibition models.</td>
<td>68</td>
</tr>
<tr>
<td>8:</td>
<td>Plackett–Burman design to evaluate significant parameters influencing molybdate reduction of Serratia sp. MIE2.</td>
<td>70</td>
</tr>
<tr>
<td>9:</td>
<td>ANOVA of Plackett-Burman, Factorial Model and Analysis of variance for molybdate reduction.</td>
<td>72</td>
</tr>
<tr>
<td>10:</td>
<td>Box-Behnken matrix for experimental design and predicted response using RSM.</td>
<td>73</td>
</tr>
<tr>
<td>11:</td>
<td>Analysis of variance (ANOVA) for the fitted quadratic polynomial model for optimization of molybdate reduction of Serratia sp. MIE2.</td>
<td>75</td>
</tr>
<tr>
<td>12:</td>
<td>Predicted and experimental value for the responses at optimum condition using response surface methodology.</td>
<td>76</td>
</tr>
<tr>
<td>13:</td>
<td>Summary of optimum condition of Serratia sp. MIE2 using One Factor at a Time (OFAT).</td>
<td>76</td>
</tr>
<tr>
<td>14:</td>
<td>Parameter estimates and regression for different substrate–inhibition models.</td>
<td>86</td>
</tr>
<tr>
<td>15:</td>
<td>Effects of storage temperature on Mo-reducing enzyme storage stability.</td>
<td>91</td>
</tr>
<tr>
<td>16:</td>
<td>Effect of chelating agents, detergents and organic solvents on Mo-reducing enzyme storage stability.</td>
<td>93</td>
</tr>
<tr>
<td>17:</td>
<td>Fractionation with ammonium sulphate.</td>
<td>100</td>
</tr>
</tbody>
</table>
18: Purification scheme of the Mo-reducing enzyme
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scanning spectra of Mo-blue from molybdosilicate (A), molybdosulphate (B) and molybdophosphate (C).</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>The chemical structure of 12-phosphomolybdate.</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>The chemical structures of various cofactors of xanthine oxidase (from North, 1998).</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>A schematic presentation of the mechanism of molybdate reduction to Mo-blue by EC 48 (modified from Ghani et al. 1993; Zulhisham, 1993; Danny, 1997).</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Scanning spectra of molybdenum blue from Serratia marcescens strain Dr.Y10, Acinetobacter sp. strain Dr.Y12, Klebsiella oxytoca strain Dr.Y14 and Serratia sp. strain Dr.Y13 labelled 1, 2, 3 and 4 respectively in comparison with ascorbic acid-reduced phosphomolybdate (uppermost curve) (Shukor et al., 2006).</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Scanning spectrum of Mo-blue from Serratia sp. MIE2 after 24 hours of incubation time.</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Enzymatic reduction of molybdate to Mo-blue in dialysis tube.</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Phylogram (neighbour-joining method) showing the genetic relationship between Serratia sp. MIE2</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>NCBI deposition 16S rRNA gene sequence of MIE2.</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>Effects of different carbon sources on molybdate reduction of Serratia sp. MIE2.</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>Effects of sucrose concentration on molybdate reduction of Serratia sp. MIE2.</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>Effects of different nitrogen sources on molybdate reduction of Serratia sp. MIE2.</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>Effects of different ammonium sulphate concentrations on molybdate reduction of Serratia sp. MIE2.</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>Effects of different pHs on molybdate reduction of Serratia sp. MIE2.</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>Effects of different temperature on molybdate reduction of Serratia sp. MIE2.</td>
<td>63</td>
</tr>
<tr>
<td>Page</td>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>16:</td>
<td>Effects of phosphate concentration on molybdate reduction of Serratia sp. MIE2.</td>
<td></td>
</tr>
<tr>
<td>17:</td>
<td>Effects of molybdenum concentration on molybdate reduction of Serratia sp. MIE2.</td>
<td></td>
</tr>
<tr>
<td>18:</td>
<td>Effect of different concentration of molybdate on molybdate reduction. Molybdate reduction were measured at wavelength 865nm every for 2 hours until 24 hours.</td>
<td></td>
</tr>
<tr>
<td>19:</td>
<td>Comparison of molybdate reduction kinetic experimental values with 7 different kinetic models from literature.</td>
<td></td>
</tr>
<tr>
<td>20:</td>
<td>3D plot (a) and contour plot (b) showing effect of molybdate concentration and phosphate on Mo-blue production.</td>
<td></td>
</tr>
<tr>
<td>21:</td>
<td>3D plot (a) and contour plot (b) showing effect of molybdate concentration and sucrose concentration on the molybdate reduction.</td>
<td></td>
</tr>
<tr>
<td>22:</td>
<td>3D plot (a) and contour plot (b) showing effect of molybdate concentration and pH concentration on the molybdate reduction.</td>
<td></td>
</tr>
<tr>
<td>23:</td>
<td>3D plot (a) and contour plot (b) showing effect of phosphate concentration and pH on the molybdate reduction.</td>
<td></td>
</tr>
<tr>
<td>24:</td>
<td>3D plot (a) and contour plot (b) showing effect of phosphate concentration and sucrose concentration on the molybdate reduction.</td>
<td></td>
</tr>
<tr>
<td>25:</td>
<td>3D plot (a) and contour plot (b) showing effect of phosphate concentration and sucrose concentration on the molybdate reduction.</td>
<td></td>
</tr>
<tr>
<td>26:</td>
<td>Effect of different concentration of molybdate on molybdate reduction. Molybdate reduction were measured at wavelength 865nm every for 2 hours until 24 hours.</td>
<td></td>
</tr>
<tr>
<td>27:</td>
<td>Comparison of molybdate reduction kinetic experimental values with 7 different kinetic models from literature.</td>
<td></td>
</tr>
<tr>
<td>28:</td>
<td>Effect of pH and types of buffer on Mo-reducing enzyme storage stability.</td>
<td></td>
</tr>
<tr>
<td>29:</td>
<td>The effects of preincubation pHs of 4 (2), 5 (3), 6 (S), 7 (U), 7.5 (ê), 8 (Ô), 9 (N) and 10 (%) on the stability of the Mo-reducing enzyme.</td>
<td></td>
</tr>
</tbody>
</table>
30: The effects of preincubation temperatures of 25 °C (\(\text{\textdegree} \text{C}\)), 34 °C (\(\text{\textdegree} \text{C}\)), 40 °C (\(\text{\textdegree} \text{C}\)), 54 °C (\(\text{\textdegree} \text{C}\)) and 70 °C (\(\text{\textdegree} \text{C}\)) on the stability of the enzyme.

31: Effect of the sulphhydryl reagents DTT and 2-mercaptoethanol on the Mo-reducing enzyme storage stability.

32: The effect of potential cofactors to the storage stability of the Mo-reducing enzyme.

33: The effect of heavy metals to the storage stability of the Mo-reducing enzyme.

34: Effect of a cofactor, FAD, on Mo-reducing enzyme storage stability. The error bars represent mean ± standard deviation for three replicates.

35: Effect of inhibitors to the Mo-reducing enzyme

36: Gel filtration on Zorbax GFC-250. Shaded region indicates Mo-reducing enzyme activity. Each tube number or fraction represents 1 ml.

37: Gel filtration on Zorbax GFC-450. Shaded region indicates Mo-reducing enzyme activity. Each tube number or fraction represents 1 ml.

38: SDS-PAGE electrophoretogram of purified Mo-reducing enzyme stained by Coomassie blue method.

39: Reducing SDS-PAGE electrophoretogram of purified Mo-reducing enzyme stained by Coomassie staining method

40: Effect of pH on enzyme activity using a 25 mM citrate-phosphate buffer system. Error bars are mean ± standard deviation of triplicates.

41: Effect of temperature on enzyme activity. Error bars are mean ± standard deviation of triplicates.

42: Michaelis-Menten plot of amount of Molybdenum-blue formed (nmole/min/mg protein) versus the electron donor substrate (NADH).

43: Michaelis-Menten plot of amount of Molybdenum-blue formed (nmole/min/mg protein) versus the electron acceptor substrate (LPPM).

44: List of identified peptide fingerprint
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>M</td>
<td>molarity</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mM</td>
<td>milimolar</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celcius</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>Abs</td>
<td>Absorbance</td>
</tr>
<tr>
<td>et al.</td>
<td>and all</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
</tbody>
</table>

xx
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>uL</td>
<td>microliter</td>
</tr>
<tr>
<td>w</td>
<td>weight</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per liter</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>g/cm³</td>
<td>gram per centimeter cube</td>
</tr>
<tr>
<td>g/L</td>
<td>gram per volume</td>
</tr>
<tr>
<td>V/V</td>
<td>volume per volume</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic absorption spectrometry</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per litre</td>
</tr>
<tr>
<td>µg/L</td>
<td>microgram per litre</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>MPL</td>
<td>Maximum Permissible Limit</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>n.d</td>
<td>not detected</td>
</tr>
</tbody>
</table>

xxi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>not available</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>OFAT</td>
<td>One Factor at a Time</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>HP</td>
<td>Hypothetical Protein</td>
</tr>
<tr>
<td>AAN</td>
<td>Artificial neural Network</td>
</tr>
</tbody>
</table>
CHAPTER 1

1.0 INTRODUCTION

Heavy metals pollution is a silent threat that has affected water bodies and soils all around the world (Rajkumar et al., 2012; Shukor et al., 2009a; Zakaria et al., 2007; Fadzilah et al., 2014; Sany et al., 2013). There has been a growing concern over public health by heavy metals contamination (Chen et al., 2013; Wee et al., 2014). Molybdenum is one of the essential heavy metals that are required at trace amount and toxic at certain concentration (Othman et al., 2013; Halmi et al., 2013; Yamaguchi et al., 2007; Meeker et al., 2008). Hexavalent molybdenum (Mo$^{6+}$) exhibit toxic properties due to its solubility in water compared to molybdenum blue which is insoluble in water, thus exhibiting nontoxic properties and limited environmental disruption (Raab & Feldmann, 2003; Lloyd, 2003).

Molybdenum has many important functions in various applications. Molybdenum is a valuable alloying agent that inhibits corrosion in water-base hydraulic systems and automobile engine anti-freeze (Ilevbare & Burstein, 2001). Molybdenum replaces chromium for inhibition of corrosion in mild steel over a wide range of pH (Twite & Bierwagen, 1998). Molybdenum is used due to its low toxicity and is a less aggressive oxidant towards organic additives (Philip, 1992). Another common use of molybdenum is as lubricant in the form of molybdenum disulphide (Lansdown, 1999).

The wide application of molybdenum in industry has resulted in several water pollution cases all around the world such as in the Tokyo Bay and the Black Sea, Japan (Davis, 1991) and Tyrol in Austria (Neunhäuserer et al., 2001), where molybdenum level reaches in the hundreds of ppm. Poland is the latest case where molybdenum reached as high as 10 ppm in soil in Silesian Upland (%XUHHWDO 2013). In Malaysia, molybdenum is mined as a byproduct of copper and molybdenum mining area in Sabah and there have been episodic cases of pollution in the surrounding area (Yong, 2000).

Molybdenum is very toxic to ruminants with levels as low as several parts per million causing scouring and even deaths (Greenwood and Earnshaw, 1984; Stojek, 2013). It was discovered that molybdenum shows its toxicity by inhibiting spermatogenesis in catfish and mice at levels as low as several parts per million (Yamaguchi et al., 2007; Zhai et al., 2013; Bi et al., 2013; Zhang et al., 2013). This new findings would increase molybdenum exposure as a toxic heavy metals similar to chromium and would increase the number of works on its removal from soil and water bodies. In the past decades researchers have focused on bioremediation as an environmental friendly and low cost method to solve this problem.

Bioremediation is one of the ways to remove toxic metals from the environment (Sar et al., 2013). A variety of molybdenum reducing bacteria has been reported with all
of them required a semi-aerobic condition for maximal production of molybdenum blue (Campbell et al., 1985; Ghani et al., 1993; Shukor et al., 2008; Shukor et al., 2009c; Shukor et al., 2009d; Abo-Shakeer et al., 2013; Shukor et al., 2009a; Shukor et al., 2010a; Ahmad et al., 2013; Shukor et al., 2009e; Shukor et al., 2010b; Othman et al., 2013.). According to Levine, Molybdate reduction was first reported in 1896 by Capaldi and Proskauer (Levine, 1925; Capaldi & Proskauer, 1896). Since then, many more reducers have been isolated (Ghani et al., 1993; Shukor et al., 2008; Shukor et al., 2009a-2009d; Shukor et al., 2010a-2010b). The first successful molybdenum remediation was carried out on an agricultural soil contaminated with molybdenum in Tyrol, Austria. Cows grazing on this soil showed signs of molybdenum toxicity or molybdenosis. The toxicity is actually a Cu deficiency, since Mo decreases Cu uptake in ruminants. The use phytoremediation and microbes from sewage and from the soil itself manages to immobilize the molybdenum into nonsoluble form ultimately reducing its toxicity (Neunhauserer et al., 2001).

Despite this, all of the molybdenum-reducing bacterium isolated so far is not from agricultural soil while molybdenum is particularly very toxic to ruminants. In addition, genetic and strain improvement of the Mo-reducing activity from potent Mo-reducing bacterium using biotechnology would enhance the remediation process. Previously, the first Mo-reducing enzyme was purified from Serratia sp. strain DrY5 (Shukor et al., 2014). However the yield of the purified enzyme was very low and prevents identification through sequencing process. To solve this problem, a novel Mo-reducing bacterium isolated from agricultural soil and screened for high Mo-reducing activity is needed. The identification, physiological and biochemical characterization of the isolated bacterium as well as the purification of the Mo-reducing enzyme will be carried out.

1.1 Thesis Objectives

Based on the problem statement and significant of the study, the following objectives are outlined:

1. To isolate and characterize a novel Mo-reducing bacterium from agricultural soil
2. To optimize Mo-blue production through one-factor-at-a-time (OFAT) and Response Surface Methodology (RSM)
3. To determine the kinetics of Mo-blue production in the bacterium before and after RSM
4. To determine the effect of storage pH and temperature, metabolic inhibitor, coenzyme and metal ions on Mo-blue production in the bacterium
5. To purify characterize and identify the Mo-reducing enzyme from the bacterium
REFERENCES

DOE, Environmental Quality Report. 2010, Department of Environment, Ministry of Science, Technology and the Environment, Malaysia. ISSN 0127-6433.

116

Stojek, M. 2013. The concentration of molybdenum and copper in rocks, soils and SODQWVLQWKHDUDRI-DE-ERQNL(DVWHUQ%HVNLGV0WV=DDDWRPROPLHGj L Z VNDÆDFK JOHEDFK L UROLQDFK Z RNROLF\ -DEÆRQHN %HVNG.

Teissier, G. 1942. Croissance des populations *EDFWHULHQHV HW TXDQWLWHG[DOLP*

disable (Growth of bacterial populations and the available substrate concentration), *Revision Science* 80:209.

Walser, H., and Shields, D. J. 2006. Traditional and emerging applications of molybdenum metal and its alloys. In 18th annual general meeting of IMOA, Austria. pp 12-20

Yong, F. 2000. Mamut copper mine—the untold story, minerals: underpinning yesterday’s needs, today’s development and tomorrow’s growth, in, national seminar on the Malaysian minerals industry, Pacific Sutera Hotel, Kota LQDED0X6DEDK0DODIVLD-SS24.

