
 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 
 
 

 PREDICTION OF CRITICAL VALUES FOR ONSET OF CONVECTION BY VERTICAL 
HEATED PLATE IN WATER UNDER CONSTANT HEAT FLUX CONDITION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NGEOW YEN WAN 
 
 

T FK  2007 48 
 



 
 
 
 

PREDICTION OF CRITICAL VALUES FOR 
ONSET OF CONVECTION BY VERTICAL 

HEATED PLATE IN WATER UNDER CONSTANT 
HEAT FLUX CONDITION 

 
 
 
 
 
 

 
 

NGEOW YEN WAN 
 

 
 
 
 
 
 
 
 
 

MASTER OF SCIENCE 
UNIVERSITI PUTRA MALAYSIA 

 
2007 

 
 



 N
G

EO
W

 Y
EN

 W
A

N
  

 
M

A
STER

 O
F SC

IEN
C

E 
 

 
 

2007 



 
 
 
 

PREDICTION OF CRITICAL VALUES FOR ONSET  
OF CONVECTION BY VERTICAL HEATED PLATE  

IN WATER UNDER CONSTANT HEAT FLUX CONDITION 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 
 

NGEOW YEN WAN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfilment of the Requirements for the Degree of Master of Science 

 
 

 June 2007 
 



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirements for the Degree of Master of Science 

 
PREDICTION OF CRITICAL VALUES FOR ONSET  
OF CONVECTION BY VERTICAL HEATED PLATE  

IN WATER UNDER CONSTANT HEAT FLUX CONDITION 
 
 

By  

 

NGEOW YEN WAN 

 

June 2007 

 

Chairman: Associate Professor Thomas Choong Shean Yaw, PhD 

Faculty:  Engineering 

 

The local onset of convection in water generated by vertical heated plate is 

examined. It is generally accepted that the occurrence of buoyancy convection can be 

predicted using well known conventional critical Rayleigh number derived by Lord 

Rayleigh (1916). However, the development of local transient instability is less well 

understood for fluids suddenly heated by vertical heating plate. In this work, the 

correlation between local onset of convection and distance from the leading-edge has 

been derived and has allowed the tracking of local critical time along the heating 

plate. 

 

 

Patterson et al. (2002) experiments have been reproduced based on Constant Heat 

Flux (CHF) boundary condition. Experiments of Patterson et al. (2002) have shown 

that the local onset of convection occurred at the departure from the initial heat 

 ii



conduction temperature profile. The characteristic of temperature profile along the 

vertical heated plate for x-axis and y-axis have been studied to determine the 

correlation between the local onset of convection and the distance from the leading-

edge along the heating plate. Subsequently, simulations under different vertical 

heated plate lengths and heat fluxes have been simulated to study the effect for both 

of these conditions. 

 

 

A computational fluid dynamics (CFD) software, Fluent 6.0 is used in this study to 

solve the governing partial differential equations for heat transfer using finite volume 

technique under various heat fluxes and plate lengths. 2D-time simulations were 

conducted for constant heat flux (CHF) boundary conditions. Various heat fluxes and 

plate lengths were applied and the effects were investigated. The mechanism of the 

local onset of convection by the vertical heating plate was observed. The temperature 

profiles, velocity magnitude and heat transfer coefficient versus time were plotted to 

detect the local onset of convection. The newly derived correlation of local onset of 

convection was incorporated in this study to predict the local critical time and 

compare with the simulated results. 

 

 

It is observed that the local critical Rayleigh number is consistent with respect to 

their location and is independent of heating plate length. The local critical time is 

earlier as the heat flux is increased under the same heating plate length. 
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Approximately 280 simulations were conducted and most of these simulated local 

critical Rayleigh number were in good agreement with the predicted value using the 

newly derived equation. 
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Jun 2007 
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Fakulti:  Kejuruteraan 

 

Permulaan konveksi tempatan di dalam air disebabkan pemanasan plat tegak telah 

dikaji. Adalah diterima secara keseluruhan bahawa pengapungan konveksi boleh 

diketahui dengan penggunaan nombor genting Rayleigh daripada Lord Rayleigh 

(1916). Tetapi, pembangunan kestabilan tempatan masih belum difahami dengan 

sepenuhnya terutamanya bagi cecair yang tiba-tiba dipanasi plat tegak panas. Dalam 

kajian ini, perhubungan antara permulaan konveksi tempatan dengan jarak dari 

“leading-edge” telah dikaji dan dengan ini masa genting tempatan di atas plat panas 

dapat ditentukan. 

 

 

Simulasi eksperimen Patterson et al. (2002) telah diulangi dalam keadaan pemanasan 

haba adalah malar (CHF) telah dijalankan. Eksperimen yang dilakukan oleh 

Patterson et al. (2002) menunjukkan konveksi bermula apabila konduksi berlepas 

daripada profil suhu. Corak suhu mengikut masa telah dijalankan pada tempat-tempat 
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berdekatan plat tegak iaitu paksi-x dan paksi-y. Akhirnya, simulasi telah dilakukan 

untuk mengkaji pengaruh kepanjangan plat dan flux haba yang berbeza. 

 

 

Perisian komputer bendalir, Fluent 6.0 telah digunakan dalam kajian ini untuk 

menyelesaikan masalah matematik pemindahan haba menggunakan cara had isipadu 

dalam keadaan flux haba dan plat yang berbeza.  Simulasi dalam bentuk 2-D telah 

dijalankan dalam bentuk berkeadaan tidak stabil di mana pemanasan haba adalah 

malar (CHF) di sempadan. Pengaruh bagi simulasi bagi berbagai jenis flux haba dan 

panjang plat yang berbeza telah telah dikaji dan mekanisme permulaan konveksi 

dalam simulasi telah diperhatikan. Profil suhu digunakan untuk menentukan masa di 

mana konveksi bermula. Pembentukan persamaan baru untuk menentukan permulaan 

konveksi tempatan telah digunakan dalam kajian ini dan dibanding dengan nilai yang 

dihasil daripada simulasi. 

 

 

Adalah didapati, simulasi pemanasan plat tegak menunjukkan nilai kritikal tempatan 

Rayleigh adalah sama mengikut lokasi dan tidak bergantung pada kepanjangan plat 

yang digunakan. Selain itu, masa kritikal adalah lebih cepat apabila flux haba 

ditingkatkan bagi panjang plat pemanas yang sama. 

 

 

Sebanyak 280 simulasi telah dijalankan dan purata hasil simulasi yang diperolehi 

memberi keputusan yang memuaskan berbanding dengan nilai yang dihasilkan 

daripada persamaan yang baru dibentukkan. 
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CHAPTER 1 

INTRODUCTION 

 

Heat transfer continues to be a fertile area due to its application in several fields, which 

includes the cooling system for electronics appliances, refrigerators, packaging for 

electronic industries, chiller system, geotechnical engineering and solar collector. Free 

convection plays a significant role as one of the mode of heat transfer. The classical 

interest of free convection is the study of a semi-infinite wall which is initially having 

the same temperature as the ambient fluid; the wall is suddenly heated, either by 

imposing of constant heat flux or rise in the wall temperature. Figure 1.1 shows the 

schematic diagram of a vertical heated wall boundary layer. 
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Figure 1.1: Schematic diagram of a vertical heated wall boundary layer. 
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The local onset of convection induce by transient heat conduction has been described in 

the following terms: at any fixed position on the plate, the flow is initially described as 

one dimensional and unsteady, as though the plate is doubly infinite; at some time later, 

over a non zero period of time, which depends on the position, a transition occurs in the 

flow, known as the leading-edge effect (LEE), and the flow becomes two dimensional 

and steady (Ostrach, 1964). 

 

 

Lord Rayleigh (1916) derived a criterion for the onset of buoyancy convection in a fluid 

layer bounded by two free surfaces. Spangenberg and Rowland (1961) through their 

experimental studies have found that the onset of convection is independent of the depth 

of the water which is also confirmed by Foster (1965). Tan and Thorpe (1996, 1999a) 

have shown that the local onset of the transient instability and convection in horizontal 

deep fluids can be characterized by transient Rayleigh number that is dependent upon 

the Biot number of the interface. They derived equations for the prediction of the critical 

time and critical depth which were successfully applied for horizontal heating plate. This 

research aims to derive the correlation of local onset of convection for a vertical heating 

plate under constant heat flux (CHF) boundary condition and to verify the theory using 

Computational Fluids Dynamics (CFD) simulation. 

 

 

Patterson et al. (2002) attempted to determine the transition of the unsteady-state heat 

conduction in a semi-infinite fluid from a vertical plate and the LEE by relating it to the 

traveling waves on the boundary layer. They claimed that their experimental findings at 

2 




