EFFECTS OF CHEMICALLY SYNTHESIZED KAVA-KAVA
(Piper methysticum G.Forst) FLAVOKAWAIN A AND B ON
THE APOPTOTIC AND METASTATIC PROCESS OF MCF-7
AND MDA-MB231 CELLS IN VITRO AND 4T1 CELLS IN VIVO

NADIAH ABU

FBSB 2014 27
EFFECTS OF CHEMICALLY SYNTHESIZED KAVA-KAVA
(Piper methysticum G.Forst) FLAVOKAWAIN A AND B ON THE
APOPTOTIC AND METASTATIC PROCESS OF
MCF-7 AND MDA-MB231 CELLS IN VITRO AND 4T1 CELLS IN VIVO

By

NADIAH ABU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF CHEMICALLY SYNTHESIZED KAVA-KAVA (*Piper methysticum* G. Forst) FLAVOKAWAIN A AND B ON THE APOPTOTIC AND METASTATIC PROCESS OF MCF-7 AND MDA-MB231 CELLS *IN VITRO* AND 4T1 CELLS *IN VIVO*

By

NADIAH ABU

December 2014

Chairperson: Assoc. Prof. Noorjahan Banu Alitheen, PhD
Faculty: Biotechnology and Biomolecular Sciences

In Malaysia, breast cancer is becoming a more prominent health issue among women today. Unfortunately, most malignant breast cancer will tend to metastasize to distant locations and form secondary tumors. This is usually the main cause of cancer-related deaths. Therefore, it is imperative to not actually treat cancer but to halt the metastatic process altogether. Though a number of approaches can be used to treat this disease, the prognosis tends to be unfavorable due to unwanted side effects and development of resistance. Natural products still remain one of the most sought after sources to find the perfect cure for cancer. The kava-kava (*Piper methysticum*) plant has been well known to aid illnesses and harness remedies since ancient times, especially in the pacific region. There are two classes of molecules that can be extracted from this kava-kava plant, kavalactones and chalcones. Chalcones can be divided into three types, flavokawain A, flavokawain B and flavokawain C. This project aims to study the effects of flavokawain A and B in the apoptotic and metastatic process in, MCF7 and MDA-MB231. Notably, both flavokawain A and B were non-toxic in both *in vitro* and *in vivo* experiments using Balb/C mice after 28 days of treatment. Through the MTT assay, it was found that both flavokawain A and B were cytotoxic in both breast cancer cell lines. Both flavokawain A and flavokawain B managed to induce apoptosis significantly as evidenced by these assays; double staining acridine orange/propidium iodide, flow cytometry cell cycle analysis, Annexin V analysis, JC-1, Caspase 8/9 fluorometric assay and BrdU cell proliferation assay. The results suggest that both flavokawain A and B induce G2/M arrest and apoptosis in both cell lines. Additionally, metastasis-related assays were also conducted such as; wound healing assay, migration and invasion assay, HUVEC tube formation and rat aortic ring assay. Flavokawain A and flavokawain B were shown to possess promising anti-metastatic potential. To further elucidate the apoptotic and anti-metastatic mechanism of flavokawain A and
B at the molecular level, real time polymerase chain reaction and western blot were conducted. Even though both molecules pose similar mechanism of action, flavokawain B is more potent and active than flavokawain A in terms of the induction of cell death and inhibition of metastasis. This notion was put to test in an in vivo setting whereby the compounds were used to treat 4T1 cells (mouse breast cancer) in mice. Based on the results, both flavokawain A and flavokawain B reduced the size of the tumor in vivo. In conclusion, flavokawain B is seemingly a better candidate as an anti-cancer agent than flavokawain A as evidenced by the in vitro assays. Moreover, based on the metastatic potential, flavokawain B was also a much more potent agent than flavokawain A. This concept was also proven by the in vivo assays using 4T1-breast cancer cell challenged mice. This study was able to elucidate the mechanism of action of both flavokawain A and flavokawain B in terms of its anti-cancer properties.
KESAN FLAVOKAWAIN A DAN FLAVOKAWAIN B KAVA-KAVA (Piper mehysticum G.Forst) YANG DISINTESIS SECARA KIMIA TERHADAP PROSES ANTI-BARAH DAN ANTI-METASTATIK PADA MCF-7 DAN MDA-MB231 IN VITRO DAN SEL 4T1 IN VIVO

Oleh

NADIAH ABU

Disember 2014

Pengerusi : Profesor Madya Noorjahan Banu Mohamed Alitheen, PhD
Fakulti: Bioteknologi and Sains Biomolekul

ACKNOWLEDGEMENTS

In the name of Allah the most merciful and most beneficent

First and foremost, Alhamdulillah, praise to Allah the almighty, the most magnificent and the most forgiving. I would like to extend my deepest gratitude towards my supervisor, Assoc Prof Dr Noorjahan Banu Alitheen and my co-supervisors, Prof Abdul Rahman Omar, Assoc Prof Dr Puad Abdullah, Dr Bernard Corfe and Dr Caroline Evans for their invaluable insights and guidance in supporting me throughout the whole period of this study.

Additionally, I wish to extend my gratitude to Dr Yeap Swee Keong for providing his constant guidance and motivation in my study up until the very end. I also want to specially acknowledge the awesome nerds of Animal Tissue Culture Lab; Dr Ho, Mr Aimi, Ms Haema, Ms Kristeen, Ms Laily, Ms Hamidah, Ms Elyani, Mr Zaim, Mr Firdaus, Mr Umar, Ms Aini, Ms Rizi and to our lovely lab assistant, Madam Roszaimah for their helpful assistance and for the delightful times spent in the lab.

My sincere gratitude also goes to Dr M Nadeem Akhtar for providing the compounds needed for this study. Moreover, I would also like to express my heartfelt appreciation towards Dr Kian Lam Lim, Mr Tan Yung Chie, Dr Hyunh Ky, Dr Tan Sheau Wei and Dr Heshu Rahman for sharing with me their knowledge and experience for the easement of my project. My thanks also goes to the Ministry of Higher Education for granting the funding needed for this project, FRGS (Vote: 5524243) and also the Bright Sparks Unit, University Malaya, for the financial support during my study years.

I would also like to thank my wonderful and supportive lifelong partner-in-crime, Mohd Safwan for his endless patience and words of encouragement to keep me going. Also, I would like to express my heartiest appreciation towards my parents, sisters, parents-in law, friends and anyone who has directly or indirectly helped me through the ups and downs during the course of this project, and extensively, in life. Thank you, thank you and thank you.
I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of Nadiah Abu on her thesis entitled EFFECTS OF CHEMICALLY SYNTHESIZED KAVA-KAVA (*Piper methysticum*) FLAVOKAWAIN A AND B ON THE APOPTOTIC AND METASTATIC PROCESS ON TWO BREAST CANCER CELL LINES, MCF-7 AND MDA-MB231 CELLS *IN VITRO* AND 4T1 CELLS *IN VIVO* in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy

Members of the Thesis Examination Committee were as follows:

Tan Soon Guan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Jannah Ong Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohamed Al-Rubeai, PhD
Professor
UCD School of Chemical and Bioprocess Engineering
University College Dublin
Ireland
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Noorjahan Banu Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Abdul Rahman Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Mohd Puad Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ___
This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisory Committee:

Signature: ______________________
Name of Member of Supervisory Committee:

Signature: ______________________
Name of Member of Supervisory Committee:

Signature: ______________________
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xy</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW

2.1 Cancer 3

2.1.1 Breast Cancer 5

2.1.2 MCF-7, MDA-MB231 and 4T1 cells 6

2.2 Natural products 7

2.2.1 Kava kava and Flavokawain 8

2.2.2 Safety and Toxicity Evaluation 12

2.3 Cytotoxicity 12

2.3.1 Induction of Cell Death 12

2.3.2 Apoptosis 13

2.4 Metastasis 24

2.4.1 Metastasis Process 24

2.4.2 Metastasis and Breast Cancer 27

2.4.3 Anti-Metastatic Drugs 29

2.5 Immunology and Cancer 30

2.5.1 T cells, NK cells and cytokines 30

2.5.2 Inflammation and Cancer 32

2.6 Bioassays 33

2.6.1 MTT assay 33

2.6.2 BrdU Cell proliferation assay 33

2.6.3 AO/PI Double Staining 33

2.6.4 Cell cycle assay 34

2.6.5 Annexin V assay 34

2.6.6 JC-1 Mitoscreen 34

2.6.7 In vitro Wound Healing 35

2.6.8 In vitro Migration/Invasion 35

2.6.9 Angiogenesis assays 36

2.6.10 Immunophenotyping Analysis 36

2.6.11 Real Time PCR 36
3 IN VITRO AND IN VIVO TOXICITY EVALUATION OF FLAVOKAWAIN A AND B

3.1 Introduction

3.2 Materials and Methods
- 3.2.1 Preparation of Flavokawain A and B
- 3.2.2 Animal and Diet
- 3.2.3 MTT Assay for Splenocytes
- 3.2.4 Detection of IL-2, TNF-α and Nitric Oxide
- 3.2.5 Animal Treatment
- 3.2.6 Serum Biochemical Analysis
- 3.2.7 Immunophenotyping of Splenocytes in vivo
- 3.2.8 In vivo Nitric Oxide Detection
- 3.2.9 Statistical Analysis

3.3 Results

- 3.3.1 Flavokawain A and B affected splenocytes viability
- 3.3.2 Flavokawain A and B did not induce any mortality or toxic signs in subjects tested
- 3.3.3 Anti-inflammatory activity of flavokawain A and B is regulated through TNF-α and NO
- 3.3.4 Flavokawain A and B regulated several important immune markers

3.4 Discussion

3.5 Conclusion

4 CYTOTOXIC AND ANTI-METASTATIC EFFECTS OF FLAVOKAWAIN A AND FLAVOKAWAIN B IN MCF-7 AND MDA-MB231 CELLS IN VITRO

4.1 Introduction

4.2 Materials and Methods
- 4.2.1 Preparation of Flavokawain A and Flavokawain B
- 4.2.2 Cell Culture
- 4.2.3 MTT Assay
- 4.2.4 Cell Treatment
- 4.2.5 BrdU Cell Proliferation Assay
- 4.2.6 AO/PI Double Staining
- 4.2.7 Flow Cytometry Cell Cycle Analysis
- 4.2.8 Externalization of Phosphatidylserine
4.2.9 JC-1 Mitoscreen Assay 56
4.2.10 Caspase 8/9 Fluorometric Detection 57
4.2.11 In vitro Scratch Assay 57
4.2.12 In vitro Migration/Invasion Assay 57
4.2.13 In vitro HUVEC Tube Formation Assay 58
4.2.14 Ex vivo Rat Aorta Ring Assay 58
4.2.15 Quantitative Real-Time PCR 58
4.2.16 Western Blot 60
4.2.17 Statistical Analysis 61

4.3 Results 61
4.3.1 Flavokawain A and Flavokawain B Inhibited the proliferation of MCF-7 and MDA-MB231 in vitro 61
4.3.2 Cell Cycle Accumulation in MCF-7 and MDA-MB231 in vitro 64
4.3.3 The induction of apoptosis by Flavokawain A and Flavokawain B in MCF-7 and MDA-MB231 in vitro 69
4.3.4 The reduction of motility and invasiveness in MDA-MB231 cells upon treatment with Flavokawain A and Flavokawain B 78
4.3.5 The anti-angiogenic potential of Flavokawain A and Flavokawain B 85
4.3.6 Flavokawain A and Flavokawain B regulated several apoptosis and metastasis-related genes and proteins 88

4.4 Discussion 96
4.5 Conclusion 98

5 IN VIVO ANTI-TUMOR ACTIVITY OF FLAVOKAWAIN A AND FLAVOKAWAIN B IN 4T1-BREAST CANCER CHALLENGED MICE 99
5.1 Introduction 100
5.2 Materials and Methods 100
5.2.1 Preparation of Flavokawain A and Flavokawain B 100
5.2.2 Cell Culture 100
5.2.3 MTT Analysis 100
5.2.4 In vitro Scratch Assay 100
5.2.5 In vitro Migration/Invasion Assay 101
5.2.6 Animal and Diet 101
5.2.7 Tumor Inoculation and Treatment 101
5.2.8 TUNEL Analysis 101
5.2.9 H&E Staining of the Tumor Sections 102
5.2.10 Immunophenotyping of Splenocytes 102
5.2.11 Splenocytes Cytotoxicity Assay 102
5.2.12 Serum Detection of IL-2, IFN-\(\gamma\) and IL-1\(\beta\) 103
5.2.13 Nitric Oxide Detection 103
5.2.14 Quantitative Real-Time PCR 103
5.2.15 Western Blot 104
5.2.16 Proteome profiler 105
5.2.17 Statistical Analysis 105
5.2.18 Statistical Analysis 105
5.3 Results 105
5.3.1 Flavokawain A and flavokawain B inhibited the proliferation of 4T1 cells in vitro 105
5.3.2 Flavokawain A and flavokawain B decreased the motility and invasiveness of 4T1 cells in vitro 107
5.3.3 Flavokawain A and flavokawain B inhibited the growth of 4T1 cells in vivo 114
5.3.4 Flavokawain A and flavokawain B regulated several immune markers and cytokines 121
5.3.5 Flavokawain A and flavokawain B suppressed the inflammatory process in vivo 129
5.3.6 Flavokawain B possess anti-metastatic abilities in vivo 133
5.4 Discussion 137
5.5 Conclusion 140

6 SUMMARY AND GENERAL CONCLUSION 141

REFERENCES 144
APPENDICES 168
BIODATA OF STUDENT 177
LIST OF PUBLICATIONS 178
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Molecular structure and properties of Flavokawain A, B and C</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Toxicity observation of Flavokawain A and Flavokawain B in Balb/C mice after 28 days of treatment</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Treatment doses of Flavokawain A and Flavokawain B used in subsequent bioassays in vitro</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Accession number and sequence of the primers used in the qPCR analysis of MCF-7 and MDA-MB231 samples treated with three different concentrations of Flavokawain A</td>
<td>60</td>
</tr>
<tr>
<td>4.3 List of antibodies used in the Western Blot analysis in MCF-7 and MDA-MB231 samples treated with three different doses of Flavokawain A</td>
<td>61</td>
</tr>
<tr>
<td>4.4 Selectivity Index of Flavokawain A and Flavokawain B in MCF-7 and MDA-MB231</td>
<td>62</td>
</tr>
<tr>
<td>5.1 Accession number and sequence of the primers used in the qPCR analysis of 4T1 samples treated with three different concentrations of Flavokawain A and Flavokawain B</td>
<td>104</td>
</tr>
<tr>
<td>5.2 List of antibodies used in the Western Blot analysis in 4T1 samples treated with Flavokawain A and Flavokawain B</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagram about the breakdown of causes of cancer</td>
</tr>
<tr>
<td>2.2</td>
<td>The kava kava plant (Piper methysticum)</td>
</tr>
<tr>
<td>2.3</td>
<td>The apoptotic machinery induced by both the intrinsic and extrinsic pathways</td>
</tr>
<tr>
<td>2.4</td>
<td>The metastasis cascade in cancer</td>
</tr>
<tr>
<td>2.5</td>
<td>Patients with breast cancer will develop secondary tumors at different sites including lung, liver and bone.</td>
</tr>
<tr>
<td>2.6</td>
<td>The anti-tumor mechanism induced by T cell population</td>
</tr>
<tr>
<td>3.1</td>
<td>The percentage of splenocyte viability after being treated with seven different concentrations of flavokawain A and flavokawain B.</td>
</tr>
<tr>
<td>3.2</td>
<td>The level of secretion of TNF-α and IL-2 in the harvested splenocytes after being treated with flavokawain A and flavokawain B.</td>
</tr>
<tr>
<td>3.3</td>
<td>The level of nitric oxide detected in the harvested splenocytes in vivo after being treated with flavokawain A and flavokawain B</td>
</tr>
<tr>
<td>3.4</td>
<td>Flow cytometric analysis of the harvested splenocytes after 28 days of treatment with 50 mg/kg/day of flavokawain A and flavokawain B. The splenocytes were stained with five immune markers, CD3, CD4, CD8 and macrophage.</td>
</tr>
<tr>
<td>4.1</td>
<td>The percentage of BrdU incorporation in MCF-7 and MDA-MB231 after being treated with three different concentrations of flavokawain A and flavokawain B for 48 hours.</td>
</tr>
<tr>
<td>4.2</td>
<td>Histogram analysis of the cell cycle machinery in MCF-7 and MDA-MB231 after being treated with three different doses of flavokawain A for 12 and 24 hours.</td>
</tr>
<tr>
<td>4.3</td>
<td>Bar chart analysis of the cell cycle analysis in MCF-7 and MDA-MB231 after 12 and 24 hours of treatment with</td>
</tr>
</tbody>
</table>
flavokawain A

4.4 Histogram analysis of the cell cycle machinery in MCF-7 and MDA-MB231 after being treated with three different doses of flavokawain B for 12 and 24 hours.

4.5 Bar chart analysis of the cell cycle analysis in MCF-7 and MDA-MB231 after 12 and 24 hours of treatment with flavokawain B.

4.6 AO/PI double staining of MCF-7 and MDA-MB231 after being treated with three different doses of flavokawain A for 48 and 72 hours.

4.7 AO/PI double staining of MCF-7 and MDA-MB231 after being treated with three different doses of flavokawain B for 48 and 72 hours.

4.8 Histogram analysis of Annexin V/FITC in MDA-MB231 and MCF-7 after being treated with three different concentrations of flavokawain A and flavokawain B after 48 hours.

4.9 Bar chart analysis of the annexin v assay in MCF-7 and MDA-MB231 after 24h, 48h and 72 h of treatment with three doses of flavokawain A.

4.10 Bar chart analysis of the annexin v assay in MCF-7 and MDA-MB231 after 24h, 48h and 72 h of treatment with three doses of flavokawain B.

4.11 Bar chart and histogram analysis of the depolarization of mitochondrial membrane potential of MCF-7 and MDA-MB231 after treatment with three doses of flavokawain A and flavokawain B for 48 hours.

4.12 Detection of the activation of caspase 8 and 9 in both MCF-7 and MDA-MB231 after 48 hours of treatment with three concentrations of flavokawain A and flavokawain B.

4.13 Percentage of wound closure in MDA-MB231 cells when a wound was introduced in the middle and treated with flavokawain A.

4.14 Percentage of wound closure in MDA-MB231 cells when a wound was introduced in the middle and treated with flavokawain B.
Representative images of the \textit{in vitro} transwell migration analysis of MDA-MB231 when treated with three different doses of flavokawain A.

Representative images of the \textit{in vitro} transwell migration analysis of MDA-MB231 when treated with three different doses of flavokawain B.

Representative images of the \textit{in vitro} transwell invasion analysis of MDA-MB231 when treated with three different doses of flavokawain A.

Representative images of the \textit{in vitro} transwell invasion analysis of MDA-MB231 when treated with three different doses of flavokawain A.

\textit{In vitro} HUVEC tube formation analysis when treated with three different doses of flavokawain A and flavokawain B.

\textit{Ex vivo} rat aortic ring analysis when treated with three different doses of flavokawain A and flavokawain B.

Relative mRNA level of expression of apoptosis and cell cycle related genes in flavokawain A treated cells.

Relative mRNA level of expression of apoptosis and cell cycle related genes in flavokawain B treated cells.

Western Blot analysis of apoptotic-related proteins in flavokawain A treated cells.

Western Blot analysis of apoptotic-related proteins in flavokawain B treated cells.

Relative mRNA level of expression of metastasis-related genes in flavokawain A and flavokawain B-treated cells.

Western blot analysis of metastasis-related proteins in flavokawain B-treated cells.

MTT analysis of 4T1 cells after treatment with flavokawain A and flavokawain B.

Scratch analysis of 4T1 cells after treatment with...
flavokawain A.

5.3 **Scratch analysis of 4T1 cells after treatment with flavokawain B**

5.4 **In vitro migration assay of 4T1 cells after treatment with flavokawain A.**

5.5 **In vitro migration assay of 4T1 cells after treatment with flavokawain B.**

5.6 **In vitro invasion assay of 4T1 cells after treatment with flavokawain A.**

5.7 **In vitro invasion assay of 4T1 cells after treatment with flavokawain B.**

5.8 Tumor size and weight excised from flavokawain A-treated mice.

5.9 Tumor size and weight excised from flavokawain B-treated mice.

5.10 TUNEL analysis of tumor sections excised from flavokawain A-treated mice.

5.11 TUNEL analysis of tumor sections excised from flavokawain A-treated mice.

5.12 H&E analysis of tumor sections excised from flavokawain A-treated mice.

5.13 H&E analysis of tumor sections excised from flavokawain B-treated mice.

5.14 ELISA analysis of selected cytokines in the serum of flavokawain A-treated mice.

5.15 ELISA analysis of selected cytokines in the serum of flavokawain B-treated mice.

5.16 Immunophenotyping analysis of flavokawain A-treated splenocytes

5.17 Immunophenotyping analysis of flavokawain B-treated splenocytes
5.18	Specific cytotoxicity of YAC cells after treatment with flavokawain A and flavokawain B-treated splenocytes.	128
5.19	Nitric oxide level detected in flavokawain A and flavokawain B treated tumors	130
5.20	qPCR analysis for inflammation-related genes in flavokawain A and flavokawain B treated tumors	131
5.21	Western blot analysis in flavokawain A and flavokawain B treated tumors	132
5.22	Clonogenic assay of flavokawain B treated organs	134
5.23	Bone marrow smearing from flavokawain B-treated mice	135
5.24	Proteome profiler analysis of flavokawain B-treated tumors	136
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>Beta Actin</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine Orange</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen Presenting Cell</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Tissue Culture Collection</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BAX</td>
<td>BCL-2-Associated X Protein</td>
</tr>
<tr>
<td>BCL-2</td>
<td>B-Cell Lymphoma 2</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromodeoxyuridine</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase 2</td>
</tr>
<tr>
<td>Ct</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T cells</td>
</tr>
<tr>
<td>CXCR4</td>
<td>C-X-C Chemokine receptor type 4</td>
</tr>
<tr>
<td>DAB</td>
<td>Diaminobenzidine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
</tbody>
</table>
ECM: Extracellular matrix
EDTA: Ethylenediaminetetraacetic acid
ELISA: Enzyme-linked immunosorbent assay
ER: Estrogen Receptor
FACS: Fluorescence-activated cell sorting
FBS: Fetal Bovine Serum
FITC: Fluorescein isothiocyanate
FKA: Flavokawain A
FKB: Flavokawain B
FOXM: Forkhead box protein M1
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
GLUT: Glucose Transporter
H&E: Hematoxylin and eosin
HEGF: Human endothelial growth factor
HPRT: Hypoxanthine-guanine phosphoribosyltransferase
HRP: Horseradish peroxidase
HSP: Heat shock protein
IC50: Inhibitory Concentration 50
ICAM-1: Intercellular Adhesion Molecule
IL: Interleukin
IFN: Interferon
INOS: Inducible nitric oxide synthase
JC-1: 5,5',6,6'-tetrachloro-1,1',3,3'
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinases</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>MG/KG BW</td>
<td>Mg/kg body weight</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MMP9</td>
<td>Matrix metalloproteinase 9</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MRP-1</td>
<td>Multidrug resistance protein 1</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NAOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NF-KB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>P-AKT</td>
<td>Phosphor AKT</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PLK</td>
<td>Polo-like kinase</td>
</tr>
<tr>
<td>PS</td>
<td>phosphatidylserine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>QPCR</td>
<td>Quantitative PCR</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase PCR</td>
</tr>
<tr>
<td>S.E.M</td>
<td>Standard error of means</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TdT</td>
<td>Terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3',5,5'-Tetramethylbenzidine</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>168</td>
</tr>
<tr>
<td>B</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>170</td>
</tr>
<tr>
<td>D</td>
<td>176</td>
</tr>
</tbody>
</table>

A Synthesis of Flavokawain A and Flavokawain B
B Preparation of Cell Culture Reagents
C Validation of the primers used in qPCR
D Preparation of Western Blot Reagents
CHAPTER 1

INTRODUCTION

Cancer has become a global burden as the number of new cases increases year by year (Siegel et al., 2013). In women today, breast cancer has been one of the leading causes of cancer-related fatalities. This unfortunate incident has been linked to various factors including lack of a viable treatment, late screening for cancer patients and the lack of awareness among women to self-screen. In Malaysia, the number of new cases of breast cancer patients has also been increasing annually (Hisham et al., 2004; Yip et al., 2006). It is estimated that in 1 out of 16 women will be diagnosed with breast cancer at some point in their lives (Siegel et al., 2013). Although conventional treatments including chemotherapy and surgery are widely used, these methods have several drawbacks including physical pain, increased relapse and lower survival rate (Bauma et al., 2005; Ganz et al., 2011).

One of the main reasons of administering anti-cancer agents in cancer patients is to eliminate cancer cells; it is also favorable that it inhibits the metastatic process as well (Zijl et al., 2011). Metastasis is a process whereby primary tumor cells migrate and invade to form secondary tumors at a distant site, or secondary location (Zijl et al., 2011). Metastasis accounts for more than 90% of cancer-related fatalities (Finger et al., 2010; Lu et al., 2009). There are several steps in the metastasis cascade including extravasation, migration, tissue invasion, angiogenesis and circulation (Fidler, 2000; Finger et al., 2010). The most common sites of breast cancer metastasis is the lung, bone and liver (Weigelt et al., 2005).

Natural products have played an important part in search for new drugs, even some of the most famous widely used drugs are derived from natural sources (Newman et al., 2012; Rocha et al., 2001). Kava-kava (Piper methysticum) plant is an evergreen shrub that is widely consumed in the pacific region (Dharmaratne et al., 2002; Lebot et al., 1997). Moreover, this plant is largely known to be involved in a wide spectrum of biological activities including, anti-inflammation, anti-bacterial and most importantly, anti-cancer (Tang et al., 2008). Intriguingly, there has been a correlation between the consumption of kava-kava and the incidence of cancer (Steiner, 2000).

There are several interesting components that can be found in the kava root extracts, including chalcones (Dharmaratne et al., 2002; Tang et al., 2008). Chalcones are open ring flavonoids that are widely synthesized in the plant kingdom (Batovska et al., 2010). Flavokawain A is a chalcone and has been reported to possess promising anti-cancer and anti-inflammatory activities (Tang et al., 2008). Additionally, flavokawain A was found to inhibit the growth of bladder cancer cell lines in vitro (Tang et al., 2008). Based on
the preliminary study, flavokawain A was found to have similar potential cytotoxic activities in breast cancer as in bladder cancer cells. Flavokawain B on the other hand, is a much better studied chalcone as compared to flavokawain A. It has been put forward that flavokawain B possess promising anti-inflammatory and antinociceptive properties (Kuo et al., 2010; Kwon et al., 2013). The promising anti-cancer properties of flavokawain B have also been tested in oral carcinoma, synovial sarcoma and liver cancer (Kuo et al., 2010; Sakai et al., 2011; Tang et al., 2010). Nevertheless, though as hopeful as flavokawain A and flavokawain B may seem, further in depth mechanism as well as the anti-metastatic values is still yet to be discovered, especially in breast cancer. Moreover, the safety profile of the flavokawain A and B should also be tested even though the anti-cancer activities are promising. To achieve the objectives of this study several bioassays were attempted such MTT analysis, flow cytometry analysis, real-time PCR and western blot.

The objectives of this study were:
1. To assess and compare the in vitro toxicity and in vivo immunomodulatory potential of both flavokawain A and flavokawain B.
2. To investigate the cytotoxic effects and anti-metastatic potential of flavokawain A in two breast cancer cell lines, MCF-7 and MDA-MB231 in vitro.
3. To assess the anti-cancer mechanism of flavokawain B in terms of induction of cell death and anti-metastatic abilities in MCF-7 and MDA-MB231 in vitro.
4. To evaluate the anti-cancer activity of flavokawain A in an in vivo setting; 4T1-breast cancer challenged mice.
5. To determine the anti-cancer activity of flavokawain B in 4T1-breast cancer challenged mice in vivo.

Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., Clark, L., Bayan, N., Coppe, J.-P., Tong, F., Speed, T., Spellman, P. T., Devries, S.,

