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ABSTRACT

The present work is devoted to the proof of uniqueness of the solution of
the finite elements scheme in the case of variable coefficients. Finite ele-
ments method is applied for the numerical solution of the mixed problem
for symmetric hyperbolic systems with variable coefficients. Moreover,
dissipative boundary conditions and its stability are proved. Finally,
numerical example is provided for the two dimensional mixed problem
in simply connected region on the regular lattice. Coding is done by
DELPHI7.
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1. The Statement of the Problem ([2],[3])

There are many results [(D.Aloev et al., 2014),(Falk and Richter, 1999),(Du
et al., 1988),(Hughes and Tezduyar, 1984),(Segerlind, 1976),(Adjerid and Bac-
couch, 2010) and (Codina, 2008)] that are devoted to the study of finite element
method (FEM) for a mixed problem for symmetric hyperbolic systems with the
help of finite differences method. Various explicit and implicit finite difference
schemes (FDS) are obtained. The stability of the obtained schemes is also in-
vestigated. Error estimates of the approximate solutions of the mixed problems
are given. Particularly, in the preceding work of the authors [1], the stability
of the implicit difference scheme obtained by the finite elements method for
two dimensional t - hyperbolic system with constant coefficient were proved.
A detailed review of [(Falk and Richter, 1999),(Du et al., 1988),(Hughes and
Tezduyar, 1984),(Segerlind, 1976),(Adjerid and Baccouch, 2010) and (Codina,
2008)] is given in [(D.Aloev et al., 2014)].

We consider the following t - hyperbolic system of the form

A(t, x, y)
∂u

∂t
+B(t, x, y)

∂u

∂x
+ C(t, x, y)

∂u

∂y
+D(t, x, y)u = F (t, x, y), (1)

in the domain
G =

{
(t, x, y) : t ∈ (0, T ), (x, y) ∈ Ω

}
,

where
Ω = {(x, y) : 0 < x < lx, |y| <∞}

with the boundary conditions:

For x = 0, 0 < t ≤ T, |y| <∞ :

uI(t, 0, y) = S(x, y)uII(t, 0, y) + g1(x, y), (2)

for x = lx, 0 < t ≤ T, |y| <∞ :

uII(t, lx, y) = R(x, y)uI(t, lx, y) + g2(x, y), (3)

for |y| → ∞ and 0 < t ≤ T, 0 ≤ x ≤ lx :

‖u‖ → 0, ‖u‖ =

√√√√ N∑
k=1

u2
k (4)

and with the initial data

u(0, x, y) = u0(x, y), (x, y) ∈ Ω. (5)
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Here {t, x, y} are independent variables and

B(t, x, y) = (bks(t, x, y)), C(t, x, y) = (cks(t, x, y)),

are symmetric matrices of N×N dimension, the elements of these matrices are
given functions, and A is the positive defined matrix; D(t, x, y) = (dks(t, x, y))
is the square matrix of N ×N dimension and R, S are rectangle matrices, in
which the number of rows are respectively equals to the number of the positive
and negative eigenvalues of the matrix B.

In equations (1)-(5), the function

u(t, x, y) = (u1, u2, · · · , uN )T

is unknown vector function and

F (t, x, y) = (f1, f2, · · · , fN )T

is the given function.

Approximation of the domain G and the description of the finite elements meth-
ods is given in [(D.Aloev et al., 2014)]. High accuracy finite element methods
are given in [(Hughes and Tezduyar, 1984),(Segerlind, 1976),(Adjerid and Bac-
couch, 2010) and (Codina, 2008)] for different type of hyperbolic equations.

The present work is devoted to the proof of uniqueness of the solution
of the finite elements scheme in the case of variable coefficients. Finite ele-
ments method is applied for the numerical solution of the mixed problem for
symmetric hyperbolic systems with variable coefficients. Moreover, dissipative
boundary conditions and its stability are proved. Finally, numerical example
is provided for the two dimensional mixed problem in simply connected region
on the regular lattice. Coding is done by DELPHI7.

The paper is arranged as follows: In Section 2, construction of the difference
scheme for symmetric t-hyperbolic system is described. Section 3 discusses the
uniqueness of the solution of the finite elements scheme. Finally, numerical
example is provided in Section 4 to show the accuracy and efficiency of the
method. Section 5 concludes the main ideas of the the approximate method.
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2. Construction of the Difference Scheme for
Symmetric t-Hyperbolic System

We divide the domain Ω to the finite elements which have not generic inte-
rior points. The finite element is denoted by K. Then it is clear that

Ω =
⋃

K⊂Ω

K.

Next, the interval [0, T ] is divided into Nt parts and the partitioning points are

tk = τ · n, (n = 0, ..., Nt), τ =
T

Nt
.

In each time layer tn the approximate solution uh (tn, x, y) of the mixed problem
(1)-(5) is searched in the form

unh = uh (tn, x, y) =
∑

(xi;yj)∈Ω

unijQij(x, y),

where Qij(x, y) is the base function [5], its values at the nodes (xi, yj) ∈ Ω are
equal to one, and in other points are equal to zero. Let

unij = u(xi, yj , tn) =


u1ij(tn)
u2ij(tn)
...
uNij(tn)

 =


un1ij
un2ij
...
unNij


On the element K with the nodes Mij we approximate equation (1) by the
implicit difference scheme:(

A(tn+1, x, y)
un+1
h − unh

τ
,Qij

)
K

+

(
B(tn+1, x, y)

∂un+1
h

∂x
,Qij

)
K

+

(
C(tn+1, x, y)

∂un+1
h

∂y
,Qij

)
K

+
(
D(tn+1, x, y)un+1

h , Qij

)
K

= (F (tn+1, x, y), Qij)K , (xi, yj) ∈ Ω, (6)

where (u, v)K =
∫∫
K

u(x, y) · v(x, y)dK.
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Let us rewrite the difference scheme (6) for (xi, yj) ∈ Ω in the following form

(
A(tn+1, x, y)un+1

h , Qij

)
K

+ τ

(
B(tn+1, x, y)

∂un+1
h

∂x
,Qij

)
K

+ τ

(
C(tn+1, x, y)

∂un+1
h

∂y
,Qij

)
K

+ τ
(
D(tn+1, x, y)un+1

h , Qij

)
K

= τ (F (tn+1, x, y), Qij)K + (A(tn+1, x, y)unh, Qij)K . (7)

3. Uniqueness of the Solution of the Finite
Elements Scheme

For simplicity we suppose that A is unit matrix. Assume that the mixed
problem (1)-(5) has a unique solution and the boundary conditions satisfy the
following conditions [4]: ∫

Γ(Ω)

Su · uds ≥ 0 ∀t ∈ [0, T ] . (8)

D +D∗ − ∂B

∂x
− ∂C

∂y
≥ 0, (9)

where S = nxB + nyC and n = (nx, ny) is the unit external normal to the Ω,
and Γ(Ω) is the boundary of the domain Ω.
Consider the following differential-difference system:

Lu ≡ τB(t, x, y)
∂u

∂x
(t, x, y) + τC(t, x, y)

∂u

∂y
(t, x, y)

+ (I + τ ·D(t, x, y))u(t, x, y)

= u(t− τ, x, y) + τ · F (t, x, y). (10)

Here I is the unit matrix, t is the time divisibly by τ .

We consider the bilinear form

a(u, v) ≡ (Lu, v)K , (11)

where

(u, v)K =

∫
K

u · vdK. (12)
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Let Pm(K) be the set of polynomials of order ≤ m defined onK, the coefficients
do not depend on t. Then for each element of K the following equality holds

a(uh, vh) = (uh(t− τ, x) + τ · F (t, x), vh)K , (13)

where ∀vh ∈ Pm(K).

If the solution is known on the layer t−τ and vh ∈ Pm(K) is the base function,
then from (13) and definition of the solution on the layer t we get the system
of algebraic equations (7). Let us introduce the following operator:

L∗v ≡ v − τB(t, x, y)
∂v

∂x
(t, x, y)

− τC(t, x, y)
∂v

∂y
(t, x, y) + τ(D∗(t, x, y)

− ∂B

∂x
(t, x, y)− ∂C

∂y
(t, x, y))v(t, x, y). (14)

Lemma 1. The following equality holds

a(u, v) = (u, L∗v)K + τ

∫
Γ(K)

Su · v (15)

Using integration by parts we obtain

a(u, v) ≡ (Lu, v)K

=

(
τB

∂u

∂x
+ τC

∂u

∂y
+ (I + τ ·D)u, v

)
K

= τ

 ∫
Γ(K)

Su · v

+ ((I + τ ·D∗)v, u)K

−
(
B
∂v

∂x
+ C

∂v

∂y
, u

)
K

−
((

∂B

∂x
+
∂C

∂y

)
v, u

)
K

=

(
v − τB ∂v

∂x
− τC ∂v

∂y
+ τ

(
D∗ − ∂B

∂x
− ∂C

∂y

)
v, u

)
K

+ τ

∫
Γ(K)

Su · v.

Lemma is proved.

Lemma 2. The following inequality is true

a(u, u) ≥ (u, u)K +
τ

2

∫
Γ(K)

Su · u. (16)
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Doing some transformations we get the following chain of inequalities:

(u, L∗u)K =

(
u− τ

(
B
∂u

∂x
+ C

∂u

∂x

)
+ τ

(
D∗ − ∂B

∂x
− ∂C

∂y

)
u, u

)
K

= −
(
u+ τ

(
B
∂u

∂x
+ C

∂u

∂y

)
+ τDu, u

)
K

+

(
2u+ τDu+ τ(D∗ − ∂B

∂x
− ∂C

∂y
)u, u

)
K

= −a(u, u) +

((
2I + τ

(
D +D∗ − ∂B

∂x
− ∂C

∂y

))
u, u

)
K

(17)

Taking into account (9), using equalities (15) and (17) we get the following
inequality:

a(u, u) =
1

2

(
(2I + τ(D +D∗ − ∂B

∂x
− ∂C

∂y
))u, u

)
K

+
τ

2

∫
Γ(K)

Su · u ≥ (u, u)K +
τ

2

∫
Γ(K)

Su · u. (18)

Theorem 1. If the solution of the finite elements scheme of type uh ∈ Pn(K)
exists and is convergent, then it is uniquely defined on K and satisfy the fol-
lowing inequality:

‖uh(t, x, y)‖2Ω ≤ e
T ‖uh(0, x, y)‖2Ω + (T + 1)(eT − 1)F, (19)

where ‖u‖Ω =
√∫

Ω

u · u, F = max
t∈[0,T ]

‖Fh(t, x, y)‖2Ω .

Assume that the values of the convergent solution uk−1
h ∈ Pm(K) on the

layer tk−1 = τ(k− 1) are defined and the base function vh ∈ Pm(K) is chosen,
then for definition of the values of the convergent solution ukh ∈ Pm(K) on the
layer tk = τk from equality (11) we get the following system of linear algebraic
equations :

τ

(
B(tk, x, y)

∂uh
∂x

(tk, x, y) + C(tk, x, y)
∂uh
∂y

(tk, x, y)

)
K

+
(

(I + τ ·D(tk, x, y))uh(tk, x, y), vh

)
K

= (uh(tk−1, x, y) + τ · Fh(tk, x, y), vh)K . (20)

We rewrite the system (20) in the matrix form:

Ahuh = bh (21)
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If we prove that the homogenous system of algebraic equations Ahuh = 0
has only trivial solution uh ≡ 0, then the uniqueness of the solution of the
nonhomogeneous system (21) holds. This problem is equivalent to the proof of
the equality uh = 0 on K, i.e.

τ

(
B(tk, x, y)

∂uh
∂x

(tk, x, y) + C(tk, x, y)
∂uh
∂y

(tkx, y)

)
K

+
(

(I + τ ·D(tk, x, y))uh(tk, x, y), vh

)
K

= 0, ∀vh ∈ Pn(K). (22)

We can take vh = uh, then taking into account the fact that the left part of
equality (20) is a(uh, vh). From Lemma 3.2 we will get the following inequality:

(uh, uh)K +
τ

2

∫
Γ(K)−Γ∗(K)

Shuh · uhds+
τ

2

∫
Γ∗(K)

Shuh · uhds ≤ 0, (23)

where Γ∗(K) = Γ(K) ∩ Γ(Ω).

Because of arbitrariness of the element K ∈ Ωh from (23) we obtain the fol-
lowing inequality:

(uh, uh)Ω +
τ

2

∑
K∈Ω

∫
Γ(K)−Γ∗(K)

Shuh · uhds+
τ

2

∫
Γ(Ω)

Shuh · uhds ≤ 0. (24)

It is obvious that ∑
K∈Ω

∫
Γ(K)−Γ∗(K)

Shuh · uhds ≡ 0. (25)

Taking of equalities (25) from (24) we get the following:

(uh, uh)Ω ≤ 0. (26)

From the last inequality it follows that uh ≡ 0. According to Lemma 3.2 the
following inequality is true:

2(unh, u
n
h)K + τ

∫
Γ(K)−Γ∗(K)

Shu
n
h · unhds+ τ

∫
Γ∗(K)

Shu
n
h · unhds

≤ 2(un−1
h + τ · Fn

h , u
n
h)K , (27)

where ukh = uh(tk, x, y), uk−1
h = uh(tk−1, x, y) and F k

h = Fh(tk, x, y). From (27)
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it follows that

2|unh|2K + τ

∫
Γ(K)−Γ∗(K)

Shu
n
h · unhds+ τ

∫
Γ∗(K)

Shu
n
h · unhds

≤ 2(un−1
h + τ · Fn

h , u
n
h)K

≤
∥∥un−1

h + τ · Fn
h

∥∥2

K
+ ‖unh‖

2
K . (28)

From the inequality (28) we obtain

|unh|2K + τ

∫
Γ(K)−Γ∗(K)

Shu
n
h · unhds+ τ

∫
Γ∗(K)

Shu
n
h · unhds

≤
∥∥un−1

h + τ · Fn
h

∥∥2

K

≤
(∥∥un−1

h

∥∥
K

+ τ‖Fn
h ‖K

)2
≤ (τ + 1)

∥∥un−1
h

∥∥2

K
+ (τ2 + τ) ‖Fn

h ‖
2
K . (29)

Taking into account the identity (25) and the condition (8), from inequality
(29) it follows that

|ukh|2Ω ≤ (τ + 1)
∥∥uk−1

h

∥∥2

Ω
+ (τ2 + τ)

∥∥F k
h

∥∥2

Ω
. (30)

From the last inequality we have:

|uh(t, x, y)|2Ω ≤ eT ‖uh(0, x, y)‖2Ω
+ (T + 1)(eT − 1)F, (31)

where F = max
t∈[0,T ]

‖Fh(t, x, y))‖2Ω. Theorem is proven.

4. Numerical Computations

For the numerical solution of the mixed problem (1)-(5) the complex pro-
grammes Delphi-7 is applied. For the solution of the obtained system of alge-
braic equations "The method of minimal discrepancy" is used. Example 1:
As model problem in the domain

Ω = {(x, y) : 0 < x < 2, 0 < y < 2}

we consider the following system
∂u1

∂t + y ∂u1

∂x + x∂u1

∂y − u2 = x2 + y2

+x+ y + 2t− t2 − 4
∂u2

∂t − y
∂u2

∂x − x
∂u2

∂y + u1 = t2 + xy + x+ y + 2t
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with the boundary conditions

for x = 0: u1 = t2;

for x = 2: u2 = 2− y + t2;

for y = 0: u2 = 2− x+ t2

and with the initial data for t = 0:{
u1 = xy,
u2 = 4− x− y.

The exact solution of this mixed problem is as follows:

u1 = xy + t2; u2 = 4− x− y + t2.

It is not difficult to check that above mentioned mixed problem satisfies con-
ditions of Theorem 3.1. The values of the error is computed

‖u− v‖ , ‖u‖Ω =

√√√√∫
Ω

u · u

Table 1 given below show the error values of the numerical solution for the
values of the parameters Nx = 10, 20; Ny = 10, 20; t = 10. Here v is the
numerical solution of the mixed problem by the finite elements method

Table 1: Error values of Example 1

Nt Nx = 10, Ny = 10 Nx = 20, Ny = 20
10 5.2580955 2.9865759
20 2.6233082 1.4951976
40 1.3014823 0.7477249
80 0.6395239 0.3731776
160 0.3107552 0.1865482

Table 1 shows that the error in the numerical solution tends to zero when
the difference grid steps tend to zero. Since the error of approximation is of
first order O(τ, hx, hy), this result is acceptable. Pay attention to the range of
integration (at the Nx = Ny = 20, a step value is hx = hy = 0.1 and hence
O(τ, hx, hy) = O(0.1)).
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Example 2: In the domain

Ω = {(x, y) : 0 < x < 2, 0 < y < 2}

we consider the following system
∂u1

∂t + y ∂u1

∂x + t∂u1

∂y + yu1 − xu2 = xt(y − t)
+t2 − x3 + (x+ y + y2)(1 + t),

∂u2

∂t − t
∂u2

∂x + x∂u2

∂y + xu1 − yu2 = 2(t+ xy)

+xt(x+ y − 2)− y3 + yt2

with the boundary conditions

for x = 0: u1 = yt;

for x = 2: u2 = 4 + y2 + t2;

for y = 0: u1 = xt; u2 = x2 + t2

and with the initial data for t = 0:{
u1 = xy,
u2 = x2 + y2.

The exact solution of this mixed problem is as follows:

u(x, y, t) =

(
u1

u2

)
=

(
xy + xt+ yt
x2 + y2 + t2

)
It is not difficult to check that above mentioned mixed problem satisfies condi-
tions of Theorem 3.1. The error values of the numerical solution for the values
of the parameters

nt = 20, nx = 20, ny = 20

in ‖u‖ =
√
J (t) is equal

‖u− v‖ = 0.1201078.

Here v is the numerical solution of the mixed problem by the finite elements
method.

5. Conclusion

In this paper, finite element method is used to find approximate solution of
symmetric hyperbolic systems with variable coefficients. Stability of the finite
element method is proved. Numerical examples indicates that the proposed
method is highly efficient for the tested problem.
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