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ABSTRACT

In this paper, we use multistep block method for solving linear and non-
linear Volterra integro-differential equations (VIDEs) of the second kind.
The VIDEs will be solved by using the combination of multistep block
method of order three and Newton-Cotes quadrature rule of suitable
order. The proposed method will solve VIDEs for K(x, s) = 1 and
K(x, s) 6= 1. The stability region of the method will be given. Numeri-
cal problems are included to represent the performance of the proposed
method.
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1. Introduction

The Volterra integro-differential equations (VIDEs) that will be studied is
in the subsequent form

y′(x) = F (x, y(x), z(x)), y(0) = y0, 0 ≤ x ≤ a, (1)

z(x) =

∫ x

0

K(x, s, y(s)) ds. (2)

Theorem 1. Linz (1969) Assume that F and K are uniformly continuous and
satisfy the subsequent condition:

|F (x, y1, z)− F (x, y2, z)| ≤ L1|y1 − y2|,
|F (x, y, z1)− F (x, y, z2)| ≤ L2|z1 − z2|,
|K(x, s, y1)−K(x, s, y2)| ≤ L3|y1 − y2|.

Under these conditions Equation (1) and Equation (2) possesses a unique so-
lution in 0 ≤ x ≤ a.

VIDEs emerge in many applications such as fluid dynamics, biological mod-
els and ecology [Filiz (2014b)]. The development of numerical method for solv-
ing VIDEs began with the work by Day (1967). He solved integro-differential
equations by using composite trapezoidal rule. The new combination of linear
multistep method with quadrature formula for the numerical approximation of
VIDEs has been introduced by Linz (1969). In 1974, the stability analysis of
linear multistep method for the numerical approximation of VIDEs have been
proposed by Brunner and Lambert (1974).

Chang (1982) has presented an extrapolation method for solving VIDEs
by using two-step and three-step Adams-Moulton rule together with Euler-
Maclaurin formula. In the same year, Makroglou (1982) has extended the
theory of hybrid method in ODE for the numerical solution of VIDEs. He had
also demonstrated the stability region of the proposed method. Rashed (2004)
describes new method for the numerical solution of VIDEs by using Lagrange
Interpolation. In Saadati et al. (2008) and Raftari (2010) VIDEs have been
solved using finite difference method based upon Newton Cotes quadrature
rule. They transform the VIDEs into a martix equations. Chen and Zhang
(2011) proposed new quadrature rules generated by boundary value method
for solving VIDEs.

Later Filiz (2013) has proposed the combination of the Runge-Kutta method
of order four (RK4) with trapezoidal rule and Simpson’s 1/3 rule for solving
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VIDEs. He developed a new fourth order routine for the numerical approxima-
tion of VIDEs using Lagrange interpolating polynomial. In Filiz (2014b) and
Filiz (2014a), he has solved VIDEs using Runge-Kutta Fehlberg Method and
Cash-Karp method respectively.

In this paper, we define third order numerical method and suitable numer-
ical integration method for solving Equation (1) and Equation (2). We show
how to use this method to solve both linear and nonlinear VIDEs.

2. Multistep Block Method

We derive the method following the formation of the two point multistep
block method from Majid and Suleiman (2011).

Figure 1: Two Point Multistep Block Method.

In Figure 1 the two formulas of yn+1 and yn+2 are approximated simulta-
neously in a block at xn+1 and xn+2 respectively. The first corrector formula
will involve the set of points {xn, xn+1, xn+2} while the second corrector for-
mula will involve the set of points {xn−1, xn+1, xn+2}. Predictor formulas will
include the set of points {xn−1, xn}. The predictor formulas and the corrector
formulas are derived using Lagrange interpolation polynomial of order 2 and
order 3 correspondingly. The two points of yn+1 and yn+2 will be attained after
integrating y′ = f(x, y) at the interval of [xn, xn+1] and [xn, xn+2].
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The generated multistep block method formulas are as follows:

ypn+1 = yn +
h

2
[3fn − fn−1], (3)

ypn+2 = yn + h[4fn − 2fn−1], (4)

ycn+1 = yn +
h

12
[−fn+2 + 8fn+1 + 5fn], (5)

ycn+2 = yn +
h

9
[2fn+2 + 15fn+1 + fn−1]. (6)

The order of this method is determined by applying the formula for the
constants Cq. The formula is defined as follows:

C0 =

k∑
j=0

αj ,

C1 =

k∑
j=0

jαj − βj ,

C2 =

k∑
j=0

j2αj
2
− jβj ,

C3 =

k∑
j=0

j3αj
3!
− j2βj

2
,

...

Cq =

k∑
j=0

jqαj
q!
− jq−1βj

(q − 1)!
. (7)

Thus, by using Equation (7) we can calculate for the order and error constant
of the method.

For q = 0,

C0 =

(
−1
−1

)
+

(
1
0

)
+

(
0
1

)
=

(
0
0

)
.

For q = 1,
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C1 =

(
−1
−1

)
+ 2

(
1
0

)
+ 3

(
0
1

)
−
(

0
1
9

)
−

(
5
12
0

)
−
(

8
12
15
9

)
−
(
− 1

12
2
9

)
=

(
0
0

)
.

For q = 2,

C2 =
1

2

(
−1
−1

)
+ 2

(
1
0

)
+

9

2

(
0
1

)
−
(

5
12
0

)
− 2

(
8
12
15
9

)
− 3

(
− 1

12
2
9

)
=

(
0
0

)
.

For q = 3,

C3 =
1

6

(
−1
−1

)
+

4

3

(
1
0

)
+

27

6

(
0
1

)
− 1

2

(
5
12
0

)
− 2

(
8
12
15
9

)
− 9

2

(
− 1

12
2
9

)
=

(
0
0

)
.

For q = 4,

C4 =
1

24

(
−1
−1

)
+

2

3

(
1
0

)
+

27

8

(
0
1

)
− 1

6

(
5
12
0

)
− 4

3

(
8
12
15
9

)
− 9

2

(
− 1

12
2
9

)
=

(
1
24
1
9

)
.

The proposed multistep block method is said to be of order q if C0 = C1 =
· · · = Cq = 0 and Cq+1 6= 0 is the error constant. So the corrector formula in
Equation (5) and Equation (6) is of order 3 and the error constant is

Cq+1 = C4 =

(
1
24
1
9

)
.

Considered the general linear multistep method as
k∑
j=0

αjyn+j = h

k∑
j=0

βjFn+j , (8)
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where
Fn = F (xn, yn, zn), (9)

zn = h

n∑
i=0

ωniK(xn, xi, yi). (10)

Definition 1. Linz (1969) If ρ(r) =
∑
αjr

j and σ(r) =
∑
βjr

j are character-
istic polynomials, then a multistep method of the Equation (8) to Equation (10)
is consistent if

1. ρ(1) = 0,

2. ρ′(1) = σ(1) and

3. the weight ωni are bounded for all n and i ≤ n , |ωni| ≤W , and are such
that for any continuous function f(x),∫ x

0

f(t) dt− h
n∑
i=0

ωnif(xi) = θ(h),

where θ(h)→ 0 as h→ 0, n→∞, nh = x.

3. Implementation

In this part, we consider the use of multistep block method coupled with
quadrature rules to obtain numerical methods for Equation (1) and Equa-
tion (2).

Integrating Equation (1) from xn to xn+r,

y(xn+r) = y(xn) +

∫ xn+r

xn

F (x, y(x), z(x)) dx, (11)

where
z(x) =

∫ x

0

K(x, s, y(s)) ds. (12)
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We can approximate Equation (11) by using multistep block method and obtain

ypn+1 = yn +
h

2
[3F (xn, yn, zn)

− F (xn−1, yn−1, zn−1)], (13)
ypn+2 = yn + h[4F (xn, yn, zn)

− 2F (xn−1, yn−1, zn−1)], (14)

ycn+1 = yn +
h

12
[−F (xn+2, yn+2, zn+2)

+ 8F (xn+1, yn+1, zn+1) + 5F (xn, yn, zn)], (15)

ycn+2 = yn +
h

9
[2F (xn+2, yn+2, zn+2)

+ 15F (xn+1, yn+1, zn+1)

+ F (xn−1, yn−1, zn−1)]. (16)

To evaluate the integral in Equation (12) we consider two approaches:

3.1 Approach I

In the first approach we use Simpson’s rule to evaluate the integral. If
k(x, s) = 1, Simpson’s 1/3 rule is applied:

zn+2 = zn +
h

3
(yn+2 + 4yn+1 + yn). (17)

3.2 Approach II

When k(x, s) 6= 1, it is more appropriate to apply composite Simpson’s rule
with interpolation schemes. Given for n = 0, 2, 4, ...,, we can write

zn+1 =
h

3

n∑
i=0

ωsiK(xn+1, xi, yi)

+
h

6
{K(xn+1, xn, yn) + 4K(xn+1, xn+ 1

2
, yn+ 1

2
)

+ K(xn+1, xn+1, yn+1)}, (18)

zn+2 =
h

3

n+2∑
i=0

ωsiK(xn+2, xi, yi), (19)
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where yn+ 1
2
have unknown value that can be estimated by Lagrange interpo-

lation at points {xn+1, xn+2, xn+3}. Therefore we obtain

`n+1(x 1
2
) = −1

8
,

`n+2(x 1
2
) =

3

4
,

`n+3(x 1
2
) =

3

8
, (20)

and so we get

yn+ 1
2
= −1

8
yn+1 +

3

4
yn+2 +

3

8
yn+3. (21)

4. Stability Region

Here is the discussion on the stability region of the multistep block method
combined with Simpson’s rule. The method is applied to the test equation

y′(x) = ξy(x) + η

∫ x

0

y(s) ds, (22)

where ξ = λ + µ , η = −λµ and obtained the following alternative form of
Equation (22)

y′(x) = (λ+ µ)y(x)− λµ
∫ x

0

y(s) ds. (23)

From the proposed method for the numerical solution of Equation (1) and
Equation (2), the correspond unique characteristic polynomials ρ, σ, ρ̃ and σ̃
are as follows:

1. First point of corrector formula

ρ(r) = r2 − r σ(r) = − 1

12
r3 +

8

12
r2 +

5

12
r (24)

2. Second point of corrector formula

ρ(r) = r3 − r σ(r) =
2

9
r3 +

15

9
r2 +

1

9
(25)

3. Simpson’s 1/3 rule

ρ̃(r) = r2 − 1 σ̃(r) =
1

3
r2 +

4

3
r +

1

3
(26)
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The stability polynomial of the method considered can be found after sub-
stituting Equation (24), Equation (25) and Equation (26) into this particular
formula

π(r, hξ, h2η) := ρ̃(r)[ρ(r)− hξσ(r)]− h2ησ̃(r)σ(r). (27)

From the stability polynomial we can plot the region of absolute stability of
the combinations method.

Figure 2: Stability region in the hξ, h2η plane.

From Figure 2 it can be seen that the proposed method is stable within the
shaded region.

5. Numerical Results

Some numerical problems are presented to study the performance of the
proposed method.
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Problem 1 (k(x, s) = 1) Filiz (2013):

y′(x) = −
∫ x

0

y(s) ds, y(0) = 1, 0 ≤ x ≤ 1,

with the exact solution
y(x) = cosx.

Problem 2 (k(x, s) = 1) Filiz (2013):

y′(x) = 1−
∫ x

0

y(s) ds, y(0) = 0, 0 ≤ x ≤ 1,

with the exact solution
y(x) = sinx.

Problem 3 (k(x, s) 6= 1) Chen and Zhang (2011):

y′(x) = − sinx− cosx+

∫ x

0

2 cos(x− s)y(s) ds,

y(0) = 1, 0 ≤ x ≤ 5,

with the exact solution
y(x) = e−x.

Problem 4 (k(x, s) 6= 1) Chen and Zhang (2011):

y′(x) = 1 + y(x)− xe−x
2

− 2

∫ x

0

xse−y
2(s) ds,

y(0) = 0, 0 ≤ x ≤ 5,

with the exact solution
y(x) = x.

Notations used in the following tables are:
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MAXE : Maximum error
h : Step size
TS : Total steps
TF : Total functions
2MVIDE : Multistep block method proposed in this paper
RK3 : Runge-Kutta method of order 3 with Simpson’s 1/3

rule by Filiz (2013)
BVMs : Combination of BVMs and third order Generalized

Adams Method by Chen and Zhang (2011)

Table 1: Numerical results for Problem 1.

h 0.025 0.0125 0.00625
MAXE

RK3 5.4120(-7) 6.8067(-8) 8.5342(-9)
2MVIDE 4.2996(-7) 5.6627(-8) 7.2698(-9)

TS
RK3 40 80 160

2MVIDE 21 41 81
TF

RK3 120 240 480
2MVIDE 43 83 163

Table 2: Numerical results for Problem 2 .

h 0.025 0.0125 0.00625
MAXE

RK3 2.7829(-7) 3.4510(-8) 1.3953(-9)
2MVIDE 4.2079(-7) 4.9165(-8) 5.9272(-9)

TS
RK3 40 80 160

2MVIDE 21 41 81
TF

RK3 120 240 480
2MVIDE 43 83 163

Table 1 and Table 2 show the maximum errors between the method of RK3
and 2MVIDE for the case where k(x, s) = 1. The numerical problems are
tested at three different step sizes. The results show that the maximum errors
for both methods are comparable. However, 2MVIDE need less number of
total steps and total functions call compared to RK3 for every different step
size when solving the problems.
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Table 3: Numerical results for Problem 3.

h 0.25 0.125 0.0625 0.03125
MAXE

BVMs 2.1607(-1) 2.8411(-2) 3.6378(-3) 4.6011(-4)
2MVIDE 5.5960(-2) 1.1875(-3) 3.7553(-4) 8.4181(-5)

TF
2MVIDE 51 91 171 331

Table 4: Numerical results for Problem 4.

h 0.25 0.125 0.0625 0.03125
MAXE

BVMs 1.0403(-1) 3.0971(-2) 5.0462(-3) 7.0448(-4)
2MVIDE 5.1109(-1) 4.2052(-2) 2.9188(-3) 1.9083(-4)

TF
2MVIDE 51 91 171 331

In Table 3 and Table 4 the numerical results for problem 3 and problem 4
are shown. These problems are solved using Approach II. In Table 3, 2MVIDE
obtained smaller maximum error compared to BVMs and in Table 4 the maxi-
mum error for both methods are comparable. The accuracy of the 2MVIDE for
solving the tested problems improved as the step sizes reduced. Thus 2MVIDE
manage to solve and give acceptable results for all the tested problems.

6. Conclusion

In this paper, we have introduced and implemented the multistep block
method combined with quadrature rules for solving linear and nonlinear VIDEs.
From the results it can be concluded that the proposed multistep block method
is appropriate for solving VIDEs.
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Figure 3: Graph of total functions versus maximum errors for RK3 and 2MVIDE when solving
Problem 1.

Figure 4: Graph of total functions versus maximum errors for RK3 and 2MVIDE when solving
Problem 2.
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Figure 5: Graph of step sizes versus maximum errors for BVMs and 2MVIDE when solving Problem
3.

Figure 6: Graph of step sizes versus maximum errors for BVMs and 2MVIDE when solving Problem
4.
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