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ABSTRACT

The formulation for the curved crack in a finite plate is established. The
technique is the curved crack in a finite plate is divided into two sub-
problems i.e. the curved crack problem in an infinite plate and the finite
plate without crack. For the first problem, the curved problem is formu-
lated into Fredholm integral equation, where as for the second problem
the complex boundary integral equations based on complex variables are
considered. The solution of the coupled boundary integral equations
gives the solution on the domain of the boundary.

Keywords: hypersingular integral equation, multiple cracks problem,
curved cracks, finite plate.

1. Introduction

The multiple cracks problem in an infinite plate was modelled and investi-
gated in earlier years. Panasyuk and Savruk (1977) suggested a singular inte-
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gral equation for solving multiple cracks problem. Many researcher solved mul-
tiple cracks problem using singular, hypersingular or Fredholm integral equa-
tion for multiple straight, inclined or curved cracks problem (Chen, 1995a,b,
Chen et al., 2003, Nik Long and Eshkuvator, 2009). However a few publica-
tions were devoted for modelling multiple crack problem in a finite plate. A
general method for modelling multiple cracks problem in a arbitrary finite plate
was studied by (Cheung et al., 1992). The efficient dual boundary element
technique to obtain stress intensity factor at crack tips in a finite plate was
discussed by (Chen, 1995b), and evaluating the T-stress for multiple cracks
problem in finite region was done by (Chen et al., 2008). The principal of con-
tinues distribution of dislocation was used to model the curved crack problem
in arbitrarily shaped finite plate by (Han and Dhanasekar, 2004). Karihaloo
and Xiao (2001) expressed a hybrid crack element for the central crack prob-
lem in a finite plate. In the recent years, complex variable method presented
by (Muskhelishvili, 1953) was used as a popular method to formulate crack
problem in a finite plate. In addition, an alternating method depends on two
type of integral equation was displayed for solving multiple cracks problem in
a finite plate (Chen, 2011). One year later, couple boundary integral equation
was applied to solve multiple cracks problem in a finite plate (Chen and Wang,
2012). In this paper, the formulation for the multiple curved crack problem in
a finite plate is presented.

2. Analysis

The analysis presented in the following is based on two sub problem caused
by the original problem. First, a curved crack in an infinite plate, and a system
of Fredholm integral equation is suggested. The second, a finite region in the
absence of crack where a boundary integral equation based on complex variable
function method is used.(Fig.1)

Figure 1: (a) The original problem, (b) A curve crack in infinite plate, (c) A finite plate with
loading on the edges of plate
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2.1 Analysis for multiple cracks problem in infinite plate
using Fredholm integral equation

For a single crack problem in infinite plate, the loading on the crack face is
denoted by

(σy − iσxy)± = P (t)− iQ(t), |t| < a

Consider a point z on the crack with inclined angle β, the traction at point z
can be written by

σN + iσNT =
−1

2πi

∫ a

−a
[P (t)− iQ(t)][G(z, t) + exp(−2iβ)G(z, t)]X(t)dt−

1

2πi

∫ a

−a
[P (t) + iQ(t)][(1− exp(−2iβ))G(z, t) + exp(−2iβ)(z− z) ´G(z, t)]X(t)dt

(1)
where

G(z, t) =
1

X(z)(z − t)
, Ǵ(z, t) =

a2 + tz − 2z2

(X(z))3(z − t)2
, X(z) =

√
z2 − a2

It is noted that
Ǵ(z, t) =

dG(z, t)

dt

Now consider the multiple cracks in infinite plate shown in Fig.2. The multiple

Figure 2: Superposition method for multiple cracks problem, (a) The original problem, (b) Super-
position by many cracks with the undetermined traction

cracks problem can be considered as a superposition of N single crack with
undetermined traction on crack. Using interaction among cracks and Eq. (1) a
Fredholm integral equation is obtained as follows (Chen, 1995b, Chen et al.,
2003):

Pk(sk)− iQk(sk) +
∑́N

j=1

∫ aj

−aj
[Pj(sj)− iQj(sj)]Cjk(sj , sk)dsj
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+
∑́N

j=1

∫ aj

−aj
[Pj(sj)+iQj(sj)]Djk(sj , sk)dsj = pk(sk)−iqk(sk), (|sk| < ak, k = 1, ..., N)

(2)
where

Cjk(sj , sk) =
−Xj(sj)

2πi
[Gj(tjk, sj) + exp(2i(αj − αk))Gj(tjk, sj)]

Djk(sj , sk) =
−Xj(sj)

2πi
[(1−exp(−2i(αj−αk)))Gj(tjk, sj)+exp(2i(αj−αk))(tjk−tjk)Ǵj(tjk, sj)]

Gj(z, s) =
1

Xj(z)(z − t)
, Ǵj(z, s) =

a2
j + sz − 2z2

(Xj(z))3(z − t)2

tjk = exp(−iαj)(zk0 + sk exp(iαk)− zj0)), Xj(z) =
√
z2 − a2

j

In Eq. (2), the prime in
∑́N

j=1 means that the term j = k should be excluded in
the summation. The meaning of αk, zk0, sk, ak(k = 1, 2, ...., N) has been indi-
cated in Fig.2. The kernel Cjk(sj , sk), Djk(sj , sk) express the traction influence
on the kth crack caused by the traction applied on the jth crack.

2.2 Analysis for the first boundary integral equation of
interior problem

For solving the second part of original problem, a boundary integral equa-
tion for an interior region based on complex variable method takes the following
form (Chen and Lin, 2010)

U(t0)

2
+B1i

∫
Γ

κ− 1

t− t0
U(t)dt−B1i

∫
Γ

L1(t, t0)U(t)dt + B1i

∫
Γ

L2(t, t0)U(t)dt

= B2i

∫
Γ

(2κ ln |t− t0|)Q(t)dt + B2i

∫
Γ

t− t0
t− t0

Q(t)dt(3)
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where

U(t) = u(t) + iv(t)

Q(t) = σN (t) + iσNT (t), (tεΓ)

B1 =
1

2π(κ+ 1)

B2 =
1

4πG(κ+ 1)

L1(t, t0) =
d

dt
{lnt− t0

t− t0
} = − 1

t− t0
+

1

t− t0
dt

dt

L2(t, t0) =
d

dt
{ t− t0
t− t0

} =
1

t− t0
− t− t0

(t− t0)2

dt

dt

and G denotes the shear modulus of elasticity, κ = 3 − 4ν for plane strain
problem when ν is Poisson’s ratio. Q(t) = σN (t) + iσNT (t) denotes the known
traction applied on the boundary and U(t) = u(t) + iv(t) denotes the unknown
boundary displacements which will be archived after discretizing and solving
the boundary integral equation (Eq. (3)). It is suppose that

g′(t)|t=t(s) =
H(s)√
a2 − s2

=

∑N
j=1 ϕjTj(s)√
a2 − s2

Q(t)|t=t(s) =

N∑
j=1

ψjTj(s)

After substituting g′(t) and Q(t), results∑N
j=1 ϕjTj(s0)

2
√
a2 − (s0)2

+ B1i

∫
Γ

(κ− 1)
∑N
j=1 ϕjTj(s)

(t− t0)
√
a2 − s2

dt

−B1i

∫
Γ

L1(t, t0)

∑N
j=1 ϕjTj(s)√
a2 − s2

dt + B1i

∫
Γ

L2(t, t0)

∑N
j=1 ϕjTj(s)√
a2 − s2

dt

= B2i

∫
Γ

(2κ ln |t− t0|)
N∑
j=1

ψjTj(s)dt + B2i

∫
Γ

t− t0
t− t0

N∑
j=1

ψjTj(s)dt (4)

In order to solve Eq. (4), the first integral was multiplied by
(s− s0)

(s− s0)

ds

ds
, two

last integral was multiplied by
√
a2 − s2

√
a2 − s2

ds

ds
and the rest was multiplied by

ds

ds
.

It is obtained
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∑N
j=1 ϕjTj(s0)

2
√
a2 − (s0)2

+ B1i(κ− 1)

N∑
j=1

ϕj

∫ a

−a

A(s, s0)

(s− s0)
√
a2 − s2

ds

−B1i

N∑
j=1

ϕj

∫ a

−a

B(s, s0)√
a2 − s2

ds + B1i

N∑
j=1

ϕj

∫ a

−a

C(s, s0)√
a2 − s2

ds

= B2i2κ

N∑
j=1

ψj

∫ a

−a

D(s, s0)√
a2 − s2

ds + B2i

N∑
j=1

ψj

∫ a

−a

E(s, s0)√
a2 − s2

ds (5)

where

A(s, s0) = Tj(s)
(s− s0)

(t− t0)

dt

ds
; B(s, s0) = Tj(s)L1(t, t0)

dt

ds

C(s, s0) = Tj(s)L2(t, t0)
dt

ds
; D(s, s0) = Tj(s)ln |t− t0|

√
a2 − s2dt

ds

E(s, s0) = Tj(s)
t− t0
t− t0

√
a2 − s2

dt

ds

Applying quadrature rules, Eq. (5) is turned to∑N
j=1 ϕjTj(s0)

2
√
a2 − (s0)2

+B1i(κ− 1)
π

Q

N∑
j=1

ϕj

Q∑
q=1

A(sq, s0)

(sq − s0)
−

B1i
π

Q

N∑
j=1

ϕj

Q∑
q=1

B(sq, s0) +B1i
π

Q

N∑
j=1

ϕj

Q∑
q=1

C(sq, s0) =

B2i2κ
π

Q

N∑
j=1

ψj

Q∑
q=1

D(sq, s0) +B2i
π

Q

N∑
j=1

ψj

Q∑
q=1

E(sq, s0) (6)

where

A(sq, s0) = Tj(sq)
(sq − s0)

(tq − t0)

dtq
dsq

; B(sq, s0) = Tj(sq)L1(tq, t0)
dtq
dsq

C(sq, s0) = Tj(sq)L2(tq, t0)
dtq
dsq

; D(sq, s0) = Tj(sq)ln |tq − t0|

√
a2 − s2

qdtq

dsq

E(sq, s0) = Tj(sq)
tq − t0
tq − t0

√
a2 − s2

qdtq

dsq
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multiplying both side in
∫ a
−a Uk−1(s0)

√
a2 − s2

0 ds0 and using quadrature rule,
it is given

B1i(κ− 1)
π

Q

N∑
j=1

ϕj

P∑
p=1

Q∑
q=1

A(sq, s0p)

(sq − s0p)
Uk−1(s0p)

π sin2 βp
P + 1

−

B1i
π

Q

N∑
j=1

ϕj

P∑
p=1

Q∑
q=1

B(sq, s0p)Uk−1(s0p)
π sin2 βp
P + 1

+

B1i
π

Q

N∑
j=1

ϕj

P∑
p=1

Q∑
q=1

C(sq, s0p)Uk−1(s0p)
π sin2 βp
P + 1

=

B2i2κ

N∑
j=1

ψj

P∑
p=1

Q∑
q=1

D(sq, s0p)Uk−1(s0p)
π sin2 βp
P + 1

+

B2i

N∑
j=1

ψj

P∑
p=1

Q∑
q=1

E(sq, s0p)Uk−1(s0p)
π sin2 βp
P + 1

. (7)

Also, The first integral in Eq. (6) will be expressed as

1

4

N∑
j=1

ϕj(

P∑
p=1

cos((j + k)βp)

j + k
+

P∑
p=1

cos((k − j)βp)
k − j

), k ≥ j

1

4

N∑
j=1

ϕj(

P∑
p=1

cos((j + k)βp)

j + k
+

P∑
p=1

cos((j − k)βp)

j − k
), k ≤ j − 1

2.3 Analysis for the second boundary integral equation
of interior problem

The traction at inner point τ can be evaluated by second boundary integral
equation (Chen and Lin, 2010).

1

2G
Q(τ) = −2B1i

∫
Γ

1

(t− τ)2
U(t)dt−B1i

∫
Γ

M1(t, τ)U(t)dt

+ B1i

∫
Γ

M2(t, τ)U(t)dt+B2i

∫
Γ

κ− 1

(t− τ)
Q(t)dt

+ B2i

∫
Γ

κK1(t, τ)Q(t)dt+B2i

∫
Γ

K2(t, τ)Q(t)dt (τεS+) (8)
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K1(t, τ) =
d

dt
{lnt− τ

t− τ
} = − 1

t− τ
+

1

t− τ
dτ

dτ

K2(t, τ) = − d

dt
{ t− τ
t− τ

} =
1

t− τ
− (t− τ)

(t− τ)2

dτ

dτ

M1(t, τ) =
−d
dt
{K1(t, τ)} =

−d
dτ
{ d
dt
{lnt− τ

t− τ
}} (9)

=
−1

(t− τ)2
+

1

(t− τ)2

dt

dt

dτ

dτ

M2(t, τ) = − d

dt
{K2(t, τ)} =

d

dτ
{ d
dt
{ t− τ
t− τ

}

=
1

(t− τ)2
(
dt

dt
+
dτ

dτ
)− 2

(t− τ)

(t− τ)3

dt

dt

dτ

dτ

In above equation t means a point on the boundary and t is conjugate of t
respectively, dt and dt represent the tangent of boundary and conjugate of dt,
respectively.
more over τ , τ are the point on the crack and its conjugate and dτ and dτ is
same as dt and dt.
After discritization of Eq. (3) and using quadrature rule, Eq. (8) will be pre-
sented by

1

2G
Q(τk) = −2B1i

π

N

N∑
j=1

A2(sj , τk)H(sj)

−B1i
π

N

N∑
j=1

B2(sj , τk)H(sj) + B1i
π

N

N∑
j=1

C2(sj , τk)H(sj)

+B2i
π

N

N∑
j=1

D2(sj , τk)F (sj) + B2i
π

N

N∑
j=1

E2(sj , τk)F (sj)

+ B2i
π

N

N∑
j=1

G2(sj , τk)F (sj) (τkεS
+) (10)
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where

A2(sj , τk) =
1

(tj − τk)2

dtj
dsj

; B2(sj , τk) = M1(tj , τk)
dtj
dsj

C2(sj , τk) = M2(tj , τk)
dtj
dsj

; D2(sj , τk) =
κ− 1

(tj − τk)

dtj
dsj

E2(sj , τk) = κK1(tj , τk)
dtj
dsj

; G2(sj , τk) = K2(tj , τk)
dtj
dsj

(11)

At the end, it will converted as [Qτ ] = [Aτ ] ∗ {H(s)} + [Gτ ] ∗ {F (s)} which
Qτ = σN (τ)+iσNT (τ) means that traction on the crack face. After substituting
displacement (it is obtained from Eq. (7)) and traction at boundary point in
Eq. (10), the traction at an inner point τ of plate will be evaluated.

After substituting Qτ as the traction of inner points in the right hand side
of Eq. (2), P − iQ at inner point τ will be obtained. Then we can get the stress
intensity factor at crack tips.

3. Solution strategy

In solving Eq. (3) and Eq. (8), the following quadrature rules will be used:∫ a

−a

g(s)ds

(s− s0)
√
a2 − s2

ds =
π

M

M∑
j=1

g(sj)

(sj − s0k)
j = 1, ...,M, k = 1, ...,M − 1

(12)

sj = a cos(
(2j − 1)π

2M
) sok = a cos(

kπ

M
)

∫ a

−a
f(t)(a2 − t2)−1/2dt =

Q∑
q=1

wqf(tq), wq =
π

Q
, tq = a cos(

(2q − 1)π

2Q
)

(13)
and∫ a

−a
f(t)(a2 − t2)1/2dt =

P∑
p=1

wpf(tp), wq =
π(sin2(βp))

P + 1
, tp = a cos[

pπ

P + 1
]

(14)
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and relation between first and second Chebyshev polynomial

Tj(x)Uk(x) =
1

2
(Uj+k(x) + Uk−j(x)), k ≥ j − 1

Tj(x)Uk(x) =
1

2
(Uj+k(x) + Uj−k−2(x)), k ≤ j − 2 (15)

it is known that Tq(t) = Tq(cos(θ)) = cos(qθ) is Chebyshev polynomial of first

kind and Up(t) = Up(cosβ) =
sin[(P + 1)β]

sin(β)
is Chebyshev polynomial of second

kind.
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