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ABSTRACT

In this paper, an adaptive hierarchical matrix (H -matrix) points itera-
tive method based solution was proposed to solve two-dimensional Pois-
son problem with Dirichlet boundary condition. The finite difference
approximation was used to discretize the problem, which led to a system
of linear equation. Two types of admissibility conditions, standard and
weak, produces two different H -matrix structures, HS- and HW - respec-
tively. The adaption of the H -matrices to a linear system leads to the
saving of memory utilization. An experiment was conducted which com-
pares the proposed HW -matrix with the benchmarked HS-matrix. The
results showed the superiority of the proposed method when comparing
both H -matrix structures 1.

Keywords: Adaptive Hierarchical Matrix, Point Iterative Solver, Pois-
son Equation, Finite Difference Approximation.
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1. Introduction

Throughout the years, iterative methods have been used extensively in solv-
ing any real world problems related to real time natural phenomena. Many
researchers adopted this method to obtain high accuracy solutions with fast
convergence rate. The only downside of this method is that it requires a large-
scale memory size and long CPU time in calculating huge number of grid size
as mentioned by Sakurai et al. (2002).

In 1998, Hackbush et al. introduced an H -matrix approach which acted
as an efficient treatment to dense matrices as it was stored in a special data-
sparse way. This was done by carefuly partitioning the matrix in accordance
to an admissibility condition. There were two known admissibility conditions;
the weak admissibility and the standard admissibility conditions. During both
the partitioning processes, some sub-matrices would be converted into low-rank
approximations. This treatment eventually reduced the memory utilization.

The construction of H -matrix was presented by Hackbusch and his col-
leagues [Hackbusch (1999), Hackbusch and Khoromskij (2000) and Hackbusch
et al. (2004)]. Consequently, many definitions and illustrations of H -matrices
were developed and explained by many researchers [Grasedyck et al. (2008)
and Izadi (2012)]. Moreover, many researchers [Benner and Mach (2010),
Börm et al. (2003a), Hackbusch (1999), Hackbusch and Khoromskij (2000),
Hackbusch et al. (2004) and Wan et al. (2011)] had studied extensively the
properties of H -matrices.

In the application aspect, Engquist and Ying (2011) constructed a tridiago-
nal block matrix where H -matrix was applied to each subblocks. In addition,
an algorithm to construct an H -matrix approximation was developed by Lin
et al. (2011). As noted by many researchers, the usage of H -matrix in solving
any real world problems would reduce memory utilization as compared to the
absence of H -matrix.

Most researches in H -matrix mainly partitioned their matrix using the
standard admissibility condition which is defined as:

Definition 1.1. [Börm et al. (2003b)]. Let η > 0 be a fixed parameter while
τ and σ be two index sets. A block b = τ × σ is said to satisfy the standard
admissibility condition (or η−admissible) if

Admη(b) = true :⇐⇒ min(diam(Ωτ ), diam(Ωσ)) ≤ η dist(Ωτ ,Ωσ), (1)

where Ωτ and Ωσ are a union of the supports of the respective basis function
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ϕi, namely
Ωτ :=

⋃
i∈τ

supp(ϕi), Ωσ :=
⋃
i∈σ

supp(ϕi).

From this definition, the term “diam" and “dist" are denoted as the Eu-
clidean diameter and distance of Ωτ and Ωσ that are defined as follows:

diam(Ωτ ) := max
xi,xj∈Ωτ

||xi − xj ||,

dist(Ωτ ,Ωσ) := min
xi∈Ωτ ,xj∈Ωσ

||xi − xj ||.

However, this partitioning produced a large amount of low-rank sub-matrices
as shown in Figure 1.

Figure 1: H -matrix structure with standard admissibility condition. The darkened colored blocks
consists of the full matrix while the other block becomes sub-matrices of low-rank approximation.

This could affect the accuracy of the H -matrix. Thus, in this paper,
the proposed method utilized an H -matrix structure with less low-rank sub-
matrices that could produce a more accurate H -matrix.

This paper also discusses the problem derivation and discretization, pro-
posed method, performance evaluation, conclusion and future works.
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2. Problem Derivation and Discretization

Let’s consider the two-dimensional Poisson problem that can be represented
mathematically as,

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω, (2)

with Dirichlet boundary conditions and satisfying the exact solution u(x, y) =
e(x, y), (x, y) ∈ ∂Ω.

Let’s take Eq. (2) as the model of the problem on the rectangular grid Ω
with grid spacing h in both directions and xi = x0 + ih, yj = y0 + jh, for all
i, j = 0, 1, . . . , n, n + 1 are used. Since Eq. (2) is solved by using the finite
difference approximation, it will lead to the standard five-point method, which
has been used by Othman and Abdullah (2000), as follows,

vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j = h2fi,j , (3)

where vi,j is an approximation to the exact solution u(xi, yj) at the grid point
(xi, yj) and fi,j = f(xi, yj). It can be seen that the application of Eq. (3) to
each of the internal mesh points will result in a large and sparse linear system
as follows,

Av = f, (4)

where A is a square nonsingular matrix while v and f are denoted by the
following column vectors containing all unknowns as,

v = (v1,1, v2,1, . . . , vn,1, v1,2, v2,2 . . . , vn,n−1, v1,n, v2,n, . . . , vn,n)T ;

f = (f1,1, f2,1, . . . , fn,1, f1,2, f2,2 . . . , fn,n−1, f1,n, f2,n, . . . , fn,n)T .

Let Pm be defined as the unknowns in the mth row

Pm = (P1,m, . . . , Pn,m)T .

This can help introduce

vm = (v1,m, v2,m, . . . , vn,m)T and fm = (f1,m, f2,m, . . . , fn,m)T ,

which yields

v = (vT1 , v
T
2 , . . . , v

T
n )T and f = (fT1 , f

T
2 , . . . , f

T
n )T .

Thus, Eq. (4) can be converted into v = A−1f = B where A−1 exists and
v = B ∈ Rn×n.
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3. H -matrix Adaptation on Five Points
Iterative Method

Let B be a matrix of dimension n×n with n = 2LM for an integer LM and
let B̃ be the H -matrix of B. Denote the set for all indices as I0;1 where the
former subscript indicates the level of partitioning and the latter is the index
for blocks in each level. For simplicity, the weak admissibility condition will be
used to partition the matrix which is defined as follows:

Definition 3.1. [Izadi (2012)]. The block b = τ × σ is called W -admissible
if it holds

AdmW (b) = true :⇐⇒ b is leaf or τ 6= σ

where τ and σ are a set of indexes from i and j, respectively.

After the matrix has been partitioned, all of the admissible blocks will be
converted to low-rank approximations by using singular value decomposition
(SVD). The rank r is a set according to size of the partitioned block. Thus,
each block will have a predefined rank.

On the first level of partitioning, matrix

B̃ =

(
B1;11 B1;12

B1;21 B1;22

)

is obtained. According to the definition above, sub-matrices B1;12 and B1;21

will be the admissible blocks. By applying the SVD, it will produce their low-
rank approximations.

On the second level of partitioning, the non-admissible sub-matrices from the
previous level will be partitioned again thus producing the following matrix:

B̃ =


B2;11 B2;12

B2;21 B2;22
B1;12

B2;33 B2;34B1;21 B2;43 B2;44


Sub-matrices B2;12, B2;21, B2;34 and B2;43 are the admissible blocks as stated
from the definition above. The low-ranks approximation of these blocks is done
by using SVD.

For the third level of partitioning, sub-matrices that are non-admissible from

Malaysian Journal of Mathematical Sciences 373



Syafiq, N. A., Othman, M. and Senu, N.

the previous level will be partitioned again which will produce the following
matrix:

B̃ =



B3;11 B3;12

B3;21 B3;22
B2;12

B3;33 B3;34B2;21 B3;43 B3;44

B1;12

B3;55 B3;56

B3;65 B3;66
B2;34

B3;77 B3;78
B1;21

B2;43 B3;87 B3;88


According to the definition above, submatrices B3;12, B3;21, B3;34, B3;43, B3;56,
B3;65, B3;78, B3;87 will be the admissible blocks. Similar to the previous levels,
by using SVD, low-rank approximations will be produced.

This partitioning will be continued until to the smallest sub-block size,
which is R4×4. This type of partitioning will reduce the memory of the matrix
and to ensure that B is approximately the same with B̃ (B ≈ B̃). Figure 2
shows the H -matrix representation when (a) n = 16, (b) n = 32, (c) n = 64
and (d) n = 128. The diagonal darkened colored blocks consists of the full
matrix while the other block becomes sub-matrices of low-rank approximation.
The ranks for each of these blocks are shown accordingly.
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Figure 2: H -matrix representation when (a) n = 16, (b) n = 32, (c) n = 64 and (d) n = 128. The
numbers in each block shows their designated ranks..

To construct the H -matrix, the following recursive algorithm is proposed:
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Algorithm 1 hmconstruct(n,A)

Require: size n, matrix A ∈ Rn×n

Ensure: H -matrix A
1: Initialize: r = (n4 )− 1 ;
2: if n > 8 then
3: A1...n2 ,1...

n
2

= hmconstruct((n2 ), A1...n2 ,1...
n
2

) ;
4: A(n2 )+1...n,(n2 )+1...n = hmconstruct((n2 ), A(n2 )+1...n,(n2 )+1...n) ;
5: end if
6: % [U, S, V ] = svd(X) produces a diagonal matrix S of the same dimension

as X, with nonnegative diagonal elements in decreasing order, and unitary
matrices U and V so that X = U ∗ S ∗ V ′.

7: (U, S, V ) = svd(A1...n2 ,(
n
2 )+1...n) ; . MATLAB built-in function

8: A1...n2 ,(
n
2 )+1...n = U1...n2 ,1...r

∗ S1...r,1...r ∗ V ′1...n2 ,1...r ;
9: (U, S, V ) = svd(A(n2 )+1...n,1...n2

) ;
10: A(n2 )+1...n,1...n2

= U1...n2 ,1...r
∗ S1...r,1...r ∗ V ′1...n2 ,1...r ;

This recursive algorithm assists in partitioning the matrix and constructing
the low-rank matrices. The ‘SVD’ call is a MATLAB built-in function which
computes the singular matrix value decomposition [MATLABr (2015)]. The
dimensions of the resulting decomposed matrices will be determined by the size
of the partition matrices and the preset ranks. This ensures that less memory
is used.

In this research, the iterative part of Poisson solver is combined with the
H -matrix structure. In other words, the iterative Poisson program consists
of three main parts. The first part is the iterative part. This is where the
standard five-points method is applied. The second part is the H -matrix
construction. Here, the program will go through Algorithm 1 to get its H -
matrix approximation (vnew = H (vold)). The final part is the convergence
test. The program is checked for convergence test with a certain number of
error tolerance. If it does not converge, the program will continue until it’s
converges and exits. In summary, the proposed iterative Poisson program can
be written as in the following algorithm:
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Algorithm 2 Proposed Algorithm
Require: size m
Ensure: average absolute error, time taken to execute program
1: Initialize: u, v, e, f ∈ R(m+2)×(m+2); epsilon = 1.0e− 10 ;
2: start timer ;
3: Let localf = 0 ;
4: while localf 6= 1 do
5: localf = 1
6: u = std51h(m,u, f) ; . Standard five-point method
7: u2...m+1,2...m+1 = hmconstruct(m,u2...m+1,2...m+1) . Algorithm 1
8: for i = 2, 3, . . . ,m+ 1 do
9: for j = 2, 3, . . . ,m+ 1 do

10: if abs(ui,j − vi,j) > epsilon then
11: localf = 0 ; . Check for convergence
12: end if
13: end for
14: end for
15: v = u ; . Swap old values becomes new values
16: end while
17: end timer ;
18: display average absolute error and time taken to execute program;

4. Convergence Analysis

This section analyzes the convergence of an iterative method with H -
matrix adaptation when finding the solution to Eq. (4). Here, the v in the
equation will be adapted with H -matrix. From the previous section, it can
be seen that by constructing the H -matrix of v, denoted as vH , v will be
approximately the same with vH (v ≈ vH ). Thus Eq. (4) can be rewritten as

AvH = f, (5)

From Eq. (5), by refering to Young (1971), Varga (2000), and Börm et al.
(2003b), the iterative method will take the form of

Mvk+1
H = NvkH + f, (6)

where A = M −N , M and N are square matrices, vkH is the current approx-
imation and vk+1

H is the approximation of the next iteration. Eq. (6) can be
rewritten as

vk+1
H = M−1NvkH +M−1f, (7)
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which can be simplified into

vk+1
H = CvkH + f̃ , (8)

where C = M−1N is often referred to as the iteration matrix and f̃ = M−1f .
If the current approximation vkH is, in fact, the exact solution vH , then the
iterative method should produce a next iteration vk+1

H that is also the exact
solution. That is, it should be true that

vH = CvH + f̃ . (9)

To understand the convergence properties of the iterative method from Eq. (8),
by subtracting it from Eq. (9), it will yield

vH − vk+1
H = C(vH − vkH ). (10)

That is, since the current error is e(k) = vH − vkH ,

e(k) = Ce(k−1) = C(Ce(k−2)) = C2e(k−2) = · · · = Cke(0). (11)

Note that, the superscript of C is the power of C, while the superscript of
e (inside parentheses) is the iteration number to which this particular error
coresponds. By applying matrix norms to Eq. (11) will produce ||e(k)|| =
||Cke(0)|| ≤ ||C||k||e(0)||, then ||e(k)|| → 0 if ||C|| ≤ 1.

5. Numerical Results and Discussion

The proposed method was applied to the following test problem which was
used by Sakurai et al. (2002), Othman and Abdullah (2000) and Othman et al.
(2004),

∂2u

∂x2
+
∂2u

∂y2
= (x2 + y2)exy, (x, y) ∈ Ω = [0, 1]× [0, 1], (12)

subject to the Dirichlet boundary conditions and satisfying the exact solution
u(x, y) = exy for (x, y) ∈ ∂Ω.

For the hardware, all computations are performed on Intel(R) Core(TM)2
Duo, 3.16 GHz CPU, 4.00 GB memory and 32-bit Operating System. As for
the software, all computations are performed using MATLAB R2011a on the
Windows 7 Operating System.

Here, the performance metrics are analyzed by examining the execution
time, the memory cost and the accuracy. The execution time is the total
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time taken for the method to converge which is measured using the MATLAB
software. The memory cost is mainly determined by the total memory cost
of the program which is measured using the computer’s task manager. The
accuracy of the method is determined by the average absolute error which is
calculated after the method has converged.

All results of the numerical experiments, which were gained from the im-
plementations of Gauss-Seidel method with the presence of H -matrix were
recorded in Table 1. This implementation was carried out on several grid sizes,
16, 32, 64 and 128, and the convergence test used was the average absolute
error with the error tolerance ε = 10−10. The proposed method, denoted as
HW -matrix, was compared with another H -matrix structure. This structure
was proposed by Börm et al. (2003b) that used the standard admissibility con-
dition, denoted as HS-matrix, and was used as a benchmark result.

Table 1: Comparison of Iterations, the Average Absolute Errors, the Execution time (in seconds)
and the Memory Cost (in MB) for the HW -Std51h and HS-Std51h methods.

n Methods Ite Ave. Abs. Error Time (s) Mem. (MB)
16 HW -Std51h 597 2.2444E-4 0.3588 9.2773

HS-Std51h 597 3.0627E-4 0.4680 12.3867
32 HW -Std51h 2105 3.1375E-5 2.9484 9.3242

HS-Std51h 2105 6.1090E-5 4.9764 12.4102
64 HW -Std51h 7587 4.2058E-6 52.5099 9.3750

HS-Std51h 7587 1.1153E-5 52.9155 12.5391
128 HW -Std51h 27564 5.5879E-7 501.4184 9.6680

HS-Std51h 27564 2.0066E-6 1127.6688 12.6406

Table 2: Comparison of the average low-rank values at different sizes between H -matrices.

n
Average Rank

HW -Std51h HS-Std51h
16 1.71 1.25
32 2.13 1.55
64 2.58 1.88
128 3.05 2.26

From Table 1, as the matrix size increases, the HW -Std51h is shown to be
more accurate than HS-Std51h. This is because the HW -Std51h has a higher
average low-rank values, as shown in Table 2, which produces a more accurate
H -matrix. Moreover, the HW -Std51h has less execution time and memory
cost. This is because the HW -Std51h has a more coarser structure compared
to the HS-Std51h. This shows that the adaptation of the proposed HW -matrix
produces a more superior results compared to the HS-matrix structure. Note
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that this paper focuses more on the memory utilization. The only difference
is the H -matrix structure, but both structures use the standard five-point
method. The graphical representations of Table 1 are shown in Figures 3, 4,
and 5.

6. Conclusion and Future Works

In this paper, the structure of H -matrix has been successfully applied in
an iterative solver. From the results, it shows that the proposed HW -Std51h
is 26− 72% more accurate, converges 0− 56% faster and utilizes 23− 26% less
memory space when compared to the HS-Std51h. The idea of this proposed
method can be extended to different points and group iterative solver which
will be reported separately in the future.
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