Il
UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A SUB-SURFACE STORMWATER
STORAGE-INFILTRATION SYSTEM

ABDULLAH ALI NASSER AL-HAMATI

FK 2007 35



DEVELOPMENT OF A SUB-SURFACE STORMWATER
STORAGE-INFILTRATION SYSTEM

By

ABDULLAH ALI NASSER AL-HAMATI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2007



Dedicated to my Parents,
to my wife
to my Son; Imad and daughter; Reem

to my family.

il



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirements for the degree of Doctor of Philosophy

DEVELOPMENT OF A SUB-SURFACE STORMWATER
STORAGE-INFILTRATION SYSTEM
By
ABDULLAH ALI NASSER AL-HAMATI
July 2007
Chairman:  Associate Professor Abdul Halim Ghazali, PhD

Faculty: Engineering

Floodings due to the increase in impervious areas as a result of urbanization are still a
main problem in many countries, including Malaysia. The lack of open space in urban
areas may hinder the use of typical stormwater detention/retention systems, which are
normally constructed above ground. Systems installed below the surface (subsurface)
have great potential in such areas. Subsurface detention/retention systems such as pipe
systems, arch chamber systems, and storage tanks systems are available in some
countries abroad, such as Australia and the U.S.A, and importing such systems is not
cheap and it involves the outflow of funds from the country. In this research a new
subsurface detention/retention system has been developed for the purposes of reduction
of volume and flow rate of stormwater runoff and recharging groundwater. It may also
be able to minimise the environmental impact on water quality. Developing a new
system that is manufactured locally and based on a readily available material in the local
market also encourages the growth of local industry and faster achievement for the aim
to reduce the flooding and pollution in urbanized areas in the country. The system that

has been developed in this research is called the Stormwater Infiltration Block (SWIB)
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system and the following criteria have been considered in its development; the system is
designed to be installed in subsurface, it has high structural strength and storage
capacity, it allows water to infiltrate at high rates, it is light in weight and cost effective,
it requires low maintenance, and it is simple and easy to install. The SWIB system is
composed of the Stormwater Infiltration Blocks (SWIBs) to store and infiltrate
stormwater runoff, geotextile, geogrid, adequate soil cover, and porous pavement
surface. The SWIB is formed by nine hollow plastic pipes held vertically together by
two plastic holders, one each at the top and the bottom. Both, the pipes and holders are
made from rigid polyvinyl chloride (PVC-U). The design of the holder takes into
consideration the following criteria; the holder must be strong enough to sustain,
transfer and distribute the loads applied on the holder to the pipes, it is able to allow for
SWIBs to be stacked above each other to achieve the desired height and provide firmly
connected SWIBs, it must hold the pipes tightly without fasteners, and it should have
high percentage of open space to allow water to flow into the SWIB very easily.

Experimental tests were carried out in the laboratory to investigate the structural and
hydraulic performance of the SWIB system. A total of 20 experimental tests were
carried out to investigate the structural performance of the SWIB system under different
conditions. Some of these tests were done to evaluate the system ability to sustain the
design axial compression load of 93 kN, which is the maximum load expected when the
system is installed in a parking area and the results demonstrate that the system has the
strength to sustain the load applied. Ultimate strength tests were also conducted and
they proved that the SWIB has an ability for support the axial compression loads up to
486 kN, which is five times larger than the design load. No significant reduction in the
SWIB strength was found when its height was increased from 348 mm to 648 mm.

Lateral loads tests reveal that the SWIB has good ability for supporting lateral loads
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equivalent to the lateral soil pressure of up to 3 m depth below the ground surface
without any damage observed in the SWIB system. For all the tests performed under the
design load no critical stress that may lead to the SWIB failure occurred and no failure
was observed in the SWIB geogrid or geotextile.

Another 20 experimental tests were carried out to investigate the hydraulic performance
of the SWIB system under different conditions. Some of these tests were done to
evaluate the infiltration rate through the system which revealed that the system has high
infiltration rate and demonstrates an excellent efficiency in preventing the ponding of
water on the surface area even under high rainfall intensities that varied from 300
mm/hr to 420 mm/hr for 5 min and 10 min rainfall durations. The type of block
pavement surface used on top of the system significantly affect its infiltration rate,
therefore, the correct pavement surface should be selected. The block pavement type
which can give the highest infiltration rate is the open-celled type. Evaluation of the
system capacity to store water demonstrates that the system has high storage capacity

that reaches a value of 93% of the total volume of the SWIB.
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Kejadian banjir yang disebabkan oleh pertambahan kawasan tak telap air hasil daripada
pembandaran sesuatu kawasan merupakan satu masalah utama dalam banyak negara,
termasuk Malaysia. Kekurangan ruang terbuka dalam kawasan bandar boleh
menghalang penggunaan sistem tahanan air hujan tipikal, yang biasanya dibina di atas
permukaan tanah. Sistem yang diwujudkan di bawah permukaan (bawah tanah)
mempunyai potensi yang besar bagi kawasan seumpama itu. Sistem tahanan bawah
tanah seperti sistem paip, sistem kebuk arka, dan sistem tangki simpanan boleh
diperolehi daripada beberapa negara luar, seperti Australia dan Amerika Syarikat, tetapi
untuk mengimpot sistem tersebut bukanlah murah dan ia melibatkan aliran keluar
ringgit daripada negara. Di dalam penyelidikan ini, satu sistem tahanan/penyusupan
baharu dibangunkan bagi tujuan mengurangkan isipadu dan kadar alir larian air hujan
dan mengecas semula air bumi. Membangunkan satu sistem yang bersandarkan bahan
yang boleh didapati dalam pasaran tempatan juga menggalakkan pertumbuhan industri
tempatan dan mempercepatkan pencapaian matlamat untuk mengurangkan banjir dan

pencemaran di kawasan bandar dalam negara.
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Sistem yang dibangunkan dalam penyelidikan ini dipanggil sistem Blok Simpanan-
Penyusupan (SWIB), dan kriteria berikut telah diambilkira dalam pembangunannya:
sistem ini direka bentuk untuk digunapakai di bawah permukaan, ia mempunyai
kekuatan dan kapasiti simpanan yang tinggi, ia membenarkan air menyusup pada kadar
yang tinggi, ia adalah ringan dan menjimatkan, ia memerlukan penyenggaraan yang
rendah, dan ia adalah mudah untuk ditempatkan. Sistem SWIB mengandungi Blok
Simpanan-Penyusupan (SWIB), geotekstil, geogrid, tutup tanah yang mencukupi, dan
permukaan turapan telap air. SWIB dibentuk oleh sembilan batang paip plastik yang
dipegang secara menegak oleh dua pemegang, satu di atas dan satu lagi di bawah.
Kedua-dua paip dan pemegang diperbuat daripada klorida polyvinyl tegap (PVC-U).
Reka bentuk pemegang mengambil kira kriteria berikut: ia mesti mempunyai kekuatan
mencukupi untuk menanggung beban, serta memindah dan menagihkan beban tersebut
kepada paip, ia boleh membenarkan SWIB disusun secara bertingkat untuk mencapai
ketinggian yang dikehendaki dan menghasilkan SWIB yang bersambung, ia mesti dapat
memegang paip dengan kemas tanpa sebarang bahan pelekat, dan ia mesti mempunyai
peratusan ruang terbuka yang tinggi untuk membenarkan air mengalir ke dalam SWIB
dengan mudabh.

Ujikaji dilakukan di makmal untuk menilai prestasi sturuktur dan hidraulik sistem
SWIB. Sejumlah 20 ujikaji telah dilaksanakan untuk menilai kekuatan struktur sistem
SWIB di dalam keadaan berlainan. Sebahagian daripada ujian ini dilakukan untuk
menilai keupayaan sistem SWIB untuk menanggung beban mampatan reka bentuk
sebanyak 93 kN, iaitu beban jangkaan maksimum apabila sistem ini digunapakai
sebagai kawasan letak kereta dan keputusan menunjukkan sistem ini mempunyai
kekuatan yang mampu menanggung beban itu. Ujian kekuatan muktamad telah juga

dilakukan dan hasilnya menunjukkan sistem ini mampu menanggung beban sehingga
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486 kN, iaitu lima kali ganda lebih besar daripada beban jangkaan. Tiada pengurangan
ketara telah didapati apabila ketinggian blok ditambah daripada 348 mm kepada 648
mm. Ujian beban sisi menunjukkan bahawa SWIB mempunyai keupayaan yang baik
untuk menanggung beban sisi yang bersamaan dengan tekanan tanah sehingga 3 m
dalam, tanpa sebarang kerosakan pada sistem SWIB ini. Bagi semua ujian yang
dilakukan menggunakan beban reka bentuk tiada tegasan kritikal yang boleh
menyebabkan kegagalan SWIB berlaku dan tiada kegagalan didapati pada geogrid dan
geotekstil.

Sebanyak 20 ujikaji yang lain telah dilakukan untuk menilai prestasi hidraulik sistem
SWIB di dalam keadaan yang berlainan. Sebahagian daripada ujian itu dilakukan untuk
menentukan kadar penyusupan melalui sistem ini, yang mana hasilnya menunjukkan
bahawa sistem ini mempunyai kadar penyusupan yang tinggi dan keupayaan yang baik
untuk mengelak air bertakung di atas permukaan walaupun dalam keadaan keamatan
hujan yang tinggi, iaitu di antara 300 mm/jam dan 420 mm/jam, dalam tempoh hujan
selama 5 minit dan 10 minit. Jenis permukaan turapan yang digunakan pada bahagian
atas sistem ini memberi kesan yang besar ke atas kadar penyusupan, oleh itu permukaan
turapan yang betul mesti digunakan. Turapan yang menghasilkan kadar penyusupan
yang paling tinggi adalah jenis sel terbuka. Penilaian ke atas keupayaan sistem ini untuk
menyimpan air menunjukkan bahawa ia boleh mencapai 93% daripada keseluruhan

isipadu SWIB.
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