PREPARATION AND CHARACTERISATION OF BISMUTH ZINC TANTALATE PYROCHLORE MATERIALS

By

KHAW CHWIN CHIEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

February 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

PREPARATION AND CHARACTERISATION OF BISMUTH ZINC TANTALATE PYROCHLORE MATERIALS

By

KHAW CHWIN CHIEH

February 2007

Chairman: Professor Zulkarnain Zainal, PhD

Faculty : Science

Pyrochlore materials in Bi₂O₃-ZnO-Ta₂O₅ ternary system were synthesized by solid-state reaction at 1050°C for 48 hours. The X-ray diffraction (XRD) pattern of the material of composition $Bi_3Zn_2Ta_3O_{14}$ could be fully indexed on a cubic cell with a = 10.5437(9) Å. A study on the phase formation mechanism indicated that Bi_2O_3 played an important role only in the initial stage of the formation of the pyrochlore phase. The subsolidus phase diagram of Bi₂O₃-ZnO-Ta₂O₅ in the region of the cubic pyrochlore has been determined at 1050°C. This phase forms a solid solution area that includes the ideal composition P, Bi₃Zn₂Ta₃O₁₄. Density measurement was used to identify the possible mechanism of solid solution formation. The solid solution area in the phase diagram can be described by the combination of two mechanisms: Bi₃Zn_{2-x}Ta₃O_{14-x} and Bi_{3+y}Zn₂Ta_{3-y}O_{14-y}, to yield the formula $Bi_{3+y}Zn_{2-x}Ta_{3-y}O_{14-x-y}$, $-0.20 \le y \le 0.16$ and $0.00 \le x \le 0.40$. XRD in combination with neutron diffraction data were used for Rietveld Refinement for the elucidation of the crystal structure of selected materials. The results show that there is a degree of insensitivity of the refinement to certain changes in the cation content and the oxygen stoichiometry is refined to a value similar to the expected

values.

Various possible sources of error and variation in permittivity measurements were investigated and the results showed that pellet density was the parameter that had the greatest effect on the determination of capacitance value. Optimisation of sintering conditions was carried out to obtain pellets with highest density and capacitance value. Cubic Bi₃Zn₂Ta₃O₁₄ (BZT) has ε ' of 58, dielectric loss (tan δ) of 0.0023 at 30°C and 1 MHz; temperature coefficient of capacitance (TCC) of -156 ppm/°C in the range of 30°C to 300°C at 1 MHz. Slight variations of permittivity and dielectric loss with compositions were observed in the solid solutions. Conductivities of the solid solutions are higher than that of BZT with activation energy, E_a, in the range of 1.55 – 1.67 eV. The structurally related monoclinic phase Bi₂(Zn_{1/3}Ta_{2/3})₂O₇ has ε ' of 62, tan δ of 0.0084 at 30°C and 1 MHz and TCC of +110 ppm/°C in the range of 30°C to 300°C to 300°C at 1 MHz. The conductivity at 649°C is 6.68 x10⁻⁶ ohm⁻¹ cm⁻¹ with E_a = 1.75 eV.

Chemical doping using divalent, tetravalent, trivalent, tetra/hexavalent and pentavalent cations was carried out in the search for better performance materials; only di-, tetra- and pentavalent dopants could be successfully introduced into BZT. Results show that permittivity and dielectric loss of di- and tetravalent doped solid solutions did not vary greatly with dopant concentration. On the other hand, ε ' and tan δ greatly increased or decreased with variations in composition for pentavalent doped materials. Conductivities of the doped materials are higher than that of Bi₃Zn₂Ta₃O₁₄ with E_a of 1.36 – 1.62 eV.

Elemental analysis using inductively-coupled plasma optical emission spectrometry (ICP-OES) confirmed the stoichiometric compositions of single phase materials. Fourier transform infra red (FTIR) spectroscopy was used to identify functional groups of the materials and Raman spectroscopy was used as a complement to FTIR. Four absorption bands were observed in FTIR and Raman spectra which can be assigned to different bond stretching or bending modes. There is a correlation between the frequency of the absorption bands and dopant concentration in pentavalent doped materials. Thermal analysis showed no phase transition and weight loss in the temperature range of 35 to 1000°C. Scanning Electron Microscopy was performed to study the morphology of the materials. All the materials show grains of polyhedral shapes which are randomly distributed with visible open pores in the materials.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYEDIAAN DAN PENCIRIAN DALAM BAHAN PIROKLOR BISMUTH ZINK TANTALAT

Oleh

KHAW CHWIN CHIEH

Februari 2007

Pengerusi: Professor Zulkarnain Zainal, PhD

Fakulti : Sains

Dalam kajian ini, bahan-bahan piroklor dalam sistem ternari Bi₃Zn₂Ta₃O₁₄ disintesis melalui tindak balas keadaan pepejal pada 1050°C selama 48 jam. Data pembelauan sinar X (XRD) untuk satu bahan dengan komposisi Bi₃Zn₂Ta₃O₁₄ boleh diindeks sepenuhnya bagi satu sel kubus dengan a = 10.5437(9) Å. Kajian mekanisme pembetukan fasa menunjukkan bahawa Bi₂O₃ memainkan peranan penting dalam langkah permulaan bagi pembetukan fasa piroklor. Gambarajah fasa subsolidus untuk sistem Bi₂O₃-ZnO-Ta₂O₅ dalam kawasan piroklor kubus telah ditentukan pada 1050°C. Fasa ini membentuk satu kawasan larutan pepejal yang termasuk komposisi unggul P, Bi₃Zn₂Ta₃O₁₄. Ukuran ketumpatan telah digunakan untuk menentukan mekanisme pembetukan larutan pepejal yang mungkin. Kawasan larutan pepejal dalam gambarajah fasa boleh digambarkan dengan kombinasi dua mekanisme: Bi₃Zn_{2-x}Ta₃O_{14-x} dan Bi_{3+v}Zn₂Ta_{3-v}O_{14-v}, untuk menghasilkan formula $Bi_{3+y}Zn_{2-x}Ta_{3-y}O_{14-x-y}$, $-0.20 \le y \le 0.16$ and $0.00 \le x \le 0.40$. XRD dengan kombinasi data pembelauan neutron digunakan dalam 'Rietveld Refinement' untuk elusidasi struktur hablur bagi bahan -bahan terpilih. Keputusan menunjukkan bahawa terdapat satu darjah ketidakpekaan terhadap penukaran tertentu dalam kandungan kation dan stoikiometri oksigen telah dihalusi ke satu nilai yang sama dengan nilai yang dijangkakan.

Pelbagai sumber ralat yang mungkin dan variasi dalam ukuran permitiviti disiasat dan keputusan menunjukkan bahawa ketumpatan pelet merupakan parameter terpenting yang berkaitan dengan nilai kapasitan. Optimisasi keadaan pengsinteran dilakukan untuk mendapatkan pelet dengan ketumpatan dan nilai kapasitan tertinggi. Bi₃Zn₂Ta₃O₁₄ (BZT) kubus mempunyai ε ' dengan nilai 58, kehilangan dielektrik (tan δ) sebanyak 0.0023 pada 30°C dan 1 MHz; pekali suhu kapasitan (TCC) sebanyak -156 ppm/°C dalam lingkungan 30°C hingga 300°C pada 1 MHz. Sedikit variasi untuk permitiviti dan kehilangan dielektrik diperhatikan dalam larutan pepejal. Kekonduksian larutan pepejal lebih tinggi berbanding dengan BZT dengan tenaga pengaktifan, E_a, dalam linkungan 1.55 – 1.67 eV. Fasa monoklinik Bi₂(Zn_{1/3}Ta_{2/3})₂O₇ mempunyai ε ' dengan nilai 62, tan δ sebanyak 0.0084 pada 30°C dan 1 MHz dan TCC sebanyak +110 ppm/°C dalam lingkungan 30°C hingga 300°C pada 1 MHz. Kekonduksian pada 649°C adalah 6.68 x10⁻⁶ ohm⁻¹ cm⁻¹ dengan E_a = 1.75 eV.

Pendopan kimia dengan menggunakan kation divalens, tetravalens, trivalens, tetra/heksaavalens dan pentavalens telah dilakukan dengan tujuan untuk mencari bahan dengan prestasi yang lebih baik dan hanya dopan di-, tetra and pentavalens telah berjaya didopkan ke dalam BZT. Keputusan menunjukkan bahawa permitiviti dan kehilangan dielektrik tidak banyak berubah bagi larutan pepejal yang didopkan dengan di- dan tetravalens dengan kepekatan dopan. Bagi larutan pepejal yang terhasil dengan dopan pentavalens, ε ' dan tan δ meningkat dengan banyak atau

menurun dengan komposisi bahan yang didopkan. Kekonduksian bagi bahan yang didop adalah lebih tinggi dariapada $Bi_3Zn_2Ta_3O_{14}$ dengan E_a yang tinggi, 1.36 – 1.62 eV.

Analisis unsur menggunakan spektrometri pancaran optik plasma ganding-induktif (ICP-OES) mengesahkan komposisi stoikiometri bagi bahan fasa tunggal. Spektroskopi Fourier Inframerah (FTIR) digunakan untuk mengenalpasti kumpulan berfungsi bahan dan spektroskopi Raman digunakan sebagai tambahan kepada FTIR. Empat jalur penyerapan diperhatikan dalam spektrum FTIR dan Raman yang boleh dilabelkan sama ada mod ikatan regangan atau bengkokan. Terdapat korelasi di antara frekuensi jalur penyerapan dan kepekatan bagi bahan yang didopkan dengan dopan pentavalens. Analisis terma menunjukkan bahawa tiada peralihan fasa dan kehilangan berat dalam lingkungan suhu 35 hingga 1000°C. Mikroskopi Pengimbasan Elektron telah dilakukan untuk mengkaji morfologi bahan. Semua bahan menunjukkan butir berbentuk polihedron yang tersusun secara rawak dengan liang terbuka pada bahan tersebut.

ACKNOWLEDGEMENTS

First of all I would like to express my truly appreciation and deep gratitude to Professor Dr. Lee Chnoong Kheng for her guidance, constructive comments, patience, continuous support, kindness and invaluable advice and suggestions throughout the duration of this study. I extend my sincere appreciation to Professor Dr. Zulkarnain Zainal, Associate Professor Dr. Taufiq Yap Yun Hin and Dr. Tan Yen Ping for their guidance and suggestions throughout the research work.

Special thanks are due to Professor Dr. A. R. West at the Department of Engineering Materials, University of Sheffield for sponsoring my three months' attachment at his department and fruitful discussions and comments on this work. Besides I would like to thank Dr. Gabrielle Miles of University of Sheffield for her comments and guidance especially on Rietveld refinement.

I am grateful to Professor Dr. Mohd. Zobir Hussein for the assistance in density measurements at the Laboratory of Multifunctional Nanomaterials of Industrial Applications (MULIA) Research Group. I would like to thank the UPM Chemistry Department staff especially Madam Choo (ICP-AES), Madam Rusnani Amirudin (IR), Mr. Kamal Margona (DTA, TGA) for their technical assistance and guidance in operating the instruments. Also special thanks are due to Associate Professor Dr Elias and postgraduate student Mr. Iskandar of UPM Physics Department for their helpful assistance in operating the Raman instrument. I also wish to express my appreciation to all the staff in Electron Microscopy Unit, UPM, especially to Mrs Faridah for their kind assistance.

I would like to express my gratitude to my lab senior Dr. Lee Chiu Sze for her patience and guidance for my research study and I also like to thank all my lab mates and friends, Mr. Tan Kar Ban, Mr. Lim Chia Meng and Ms. Ong Siew Teng for their endless support and providing me with laughter and joy all the way through.

The financial support from the Ministry of Science, Technology and Innovation through National Science Fellowship (NSF) scholarship and IRPA grant is gratefully acknowledged.

Last but not least, my deepest affection and gratitude to my beloved family members for their love, continuous support, encouragement and understanding throughout the period of my study. This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Zulkarnain Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Lee Chnoong Kheng, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Taufiq Yap Yun Hin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Tan Yen Ping, PhD Lecturer Faculty of Science Universiti Putra Malaysia (Member)

> **AINI IDERIS, PhD** Professor/Dean School of Graduate Studies

Universiti Putra Malaysia

Date: 10 MAY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHAW CHWIN CHIEH

Date: 6 MAC 2007

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xxvii

CHAPTER

1	INTRODUCTION					
	1.1	Electroceramics				
		1.1.1 Dielectric Materials	3			
		1.1.1.1 Dielectric Polarisation	4			
		1.1.1.2 Properties and Applications	7			
		1.1.2 Microwave Dielectrics	16			
		1.1.3 Overview of Pyrochlore and Applications	19			
	1.2	Solid Solutions				
	1.3	Objectives				
2	LITERATURE REVIEW					
	2.1	Pyrochlore Structure	26			
	2.2	Bismuth Based Pyrochlore	32			
		2.2.1 Bismuth Zinc Antimonate (BZS)	35			
		2.2.2 Bismuth Zinc Niobate (BZN)	38			
		2.2.3 Bismuth Zinc Tantalate (BZT)	55			
3	MATERIALS AND METHODS					
	3.1	Sample Preparation	62			
		3.1.1 Chemical Doping	64			
		3.1.1.1 Divalent Dopants	64			
		3.1.1.2 Tetravalent Dopants	64			
		3.1.1.3 Trivalent, Tetra/Hexavalent and Pentavalent	64			
		Dopants				
	3.2	Phase Diagram				
	3.3	Pellet Preparation				
	3.4	Characterisation	65			
		3.4.1 X-ray Diffraction (XRD)	67			
		3.4.2 Elemental Analysis – Inductively Coupled Plasma-Optical	68			
		Emission Spectrometry (ICP-OES)				
		3.4.3 Scanning Electron Microscopy (SEM)	69			

		3.4.4	Thermal Analysis	70
		3.4.5	Density Measurement	72
		3.4.6	Fourier-transform Infrared Spectroscopy (FT-IR)	72
		3.4.7	Raman Spectroscopy	73
		3.4.8	Neutron Diffraction (ND)	73
		3.4.9	Rietveld Refinement	75
	3.5	Electr	ical Properties	76
		3.5.1	Ac Impedance Spectroscopy	76
		3.5.2	Cole-cole Plot	82
		3.5.3	Electric Modulus Spectroscopy	87
		3.5.4	Experimental Procedure	88
	3.6	Estim	ation of Error	90
4	RESU	JLTS A	ND DISCUSSION	
	4.1	Phase	Diagram of Bi ₂ O ₃ -ZnO-Ta ₂ O ₅	91
		4.1.1	Background	91
		4.1.2	Cubic BZT pyrochlore and Solid Solutions	92
			4.1.2.1 Phase Formation and Reaction Pathways	92
			4.1.2.2 Elemental Analysis	96
			4.1.2.3 Thermal Analysis	99
		4.1.3	Phase Diagram	99
		4.1.4	Conclusion	123
	4.2	Struct	ural Studies	128
		4.2.1	Rietveld Refinement	128
			4.2.1.1 Rietveld refinement of P phase	131
			4.2.1.2 Rietveld refinement of $B_{13.097}Zn_{1.742}Ta_{2.903}O_{13.645}$	137
			4.2.1.3 Conclusion	140
		4.2.2	FT-IR and Raman Spectroscopy	142
		4.0.0	4.2.2.1 Conclusion	160
	4.2	4.2.3	Scanning Electron Microscopy	160
	4.3	Electr	ical Properties	164
		4.3.1	Optimisation of Sintering Conditions	104
		4.3.2	Cubic BZ1 and Solid Solidions	100
			4.3.2.1 Conductivity and Modulus Spectra	100
			4.3.2.2 Ferminulvity and Dielectric Loss 4.3.2.3 Temperature Coefficient of Canacitance (TCC)	202
		133	4.5.2.5 Temperature Coefficient of Capacitance (TCC) Monoclinic B7T	213
		4.5.5	A 3 3 1 Conductivity and Modulus Spectra	219
			4.3.3.2 Permittivity and Dielectric Loss	221
			4.3.3.3 Temperature Coefficient of Canacitance (TCC)	220
		434	Conclusion	231
	ΔΔ	T.J.T Doned	1 Systems	233
	т.т	<u>4</u> 4 1	Divalent Donants	237
		7.7.1	4.4.1.1 Possible Mechanism and Solid Solution Limits	237
			4 4 1 2 Flectrical Properties of Divalent Cations Doned R7T	245
		442	Tetravalent Donants	255
			reau arent D'opunto	200

		4.4.2.1	Possible Mechanism and Solid Solution Limits	255
		4.4.2.2	Electrical Properties of Tetravalent Cations Doped	264
			BZT	
	4.4.3	Trivaler	nt, Tetra/Hexavalent and Pentavalent Dopants	273
		4.4.3.1	Possible Mechanism and Solid Solution Limits	273
		4.4.3.2	Electrical Properties of Pentavalent Cations Doped	284
			BZT	
	4.4.4	Element	tal Analysis	289
	4.4.5	Therma	l Analysis	295
	4.4.6	FT-IR a	nd Raman Spectroscopy	300
	4.4.7	Scannin	g Electron Microscopy	312
	4.4.8	Conclus	sion	321
5	CONCLUSI	ON		323
FUR'	THER WORK			326
REF	REFERENCES			327
APPI	ENDICES			335

APPENDICES	335
BIODATA OF THE AUTHOR	340
LIST OF PUBLICATIONS	341