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By
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December 2014

Chair: Mohd Bakri Adam, Ph.D.

Faculty: Institute for Mathematical Research

Student’s academic performance is a prime concern to high level educational in-
stitution since it will reflect the performance of the institution. The differences in
academic performance among students are topics that has drawn interest of many
academic researchers and our society. One of the biggest challenges in universities
decision making and planning today is to predict the performance of their stu-
dents at the early stage prior to their admission. We address the application of
inferring the degree classification of students using their background data in the
dataset obtained from one of the high level educational institutions in Malaysia.
We present the results of a detailed statistical analysis relating to the final degree
classification obtained at the end of their studies and their backgrounds. Clas-
sification tree model produce the highest accuracy in predicting student’s degree
classification using their background data as compared to Bayesion network and
naive Bayes. The significance of the prediction depends closely on the quality of
the database and on the chosen sample dataset to be used for model training and
testing. Missing values either in predictor or in response variables are a very com-
mon problem in statistics and data mining. Cases with missing values are often
ignored which results in loss of information and possible bias. Surrogate split in
standard classification tree is a possible choice in handling missing values for large
dataset contains at most ten percent missing values. However, for dataset contains
more than 10 percent missing values, there is an adverse impact on the structure
of classification tree and also the accuracy. In this thesis, we propose classification
tree with imputation model to handle missing values in dataset. We investigate
the application of classification tree, Bayesian network and naive Bayes as the
imputation techniques to handle missing values in classification tree model. The
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investigation includes all three types of missing values machanism; missing com-
pletely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR). Imputation using classification tree outperform the imputatation using
Bayesian network and naive Bayes for all MCAR, MAR and MNAR. We also com-
pare the performance of classification tree with imputation with surrogate splits in
classification and regression tree (CART). Fifteen percent of student’s background
data are eliminated and classification tree with imputation is used to predict stu-
dent’s degree classification. Classification tree with imputation model produces
more accurate model as compared to surrogate splits.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PERMODELAN LATARBELAKANG DAN PENCAPAIAN
AKADEMIK PELAJAR DENGAN NILAI HILANG

MENGGUNAKAN POKOK KLASIFIKASI

Oleh

NORSIDA BINTI HASAN

December 2014

Pengerusi: Mohd Bakri Adam, Ph.D.

Fakulti: Institut Penyelidikan Matematik

Pencapaian akademik pelajar menjadi keutamaan di institusi pengajian tinggi ker-
ana ia mencerminkan prestasi institusi tersebut. Perbezaan pencapaian aka-demik
di kalangan pelajar sentiasa menjadi topik perbincangan yang menarik minat ra-
mai penyelidik dan masyarakat umum. Di dalam kajian ini, analisis statistik
memperlihatkan perkaitan di antara pencapaian akademik pelajar semasa bergrad-
uat dan latarbelakang mereka. Salah satu daripada cabaran besar yang dihadapi
oleh pembuat dasar serta perancangan universiti hari ini adalah untuk meramal
pencapaian pelajar semasa awal kemasukan mereka ke universiti. Kami menan-
gani aplikasi penafsiran klasifikasi ijazah pelajar menggunakan data latarbelakang
dalam set data yang diperolehi daripada salah satu Institusi Pengajian Tinggi
Awam (IPTA) di Malaysia. Kami paparkan hasil analisis statistik yang terper-
inci berkaitan dengan klasifikasi ijazah yang diperolehi semasa tamat pengajian
berdasarkan latarbelakang mereka. Model pokok klasifikasi menghasilkan kejituan
tertinggi berbanding dengan rangkaian Bayesian dan Bayes naif. Signifikasi ra-
malan sangat bergantung kepada kualiti pangkalan data serta bergantung juga
kepada sampel yang akan digunakan untuk model latihan dan model pengujian.
Nilai hilang samada dalam pembolehubah peramal atau pembolehubah tindak-
balas merupakan masalah yang biasa dalam bidang statistik dan perlombongan
data. Kes-kes nilai hilang yang selalunya diabaikan menyebabkan kehilangan mak-
lumat dan boleh meghasilkan keputusan yang berpihak. Pemisah gantian (surro-
gate split) dalam pokok klasifikasi piawai boleh menjadi pilihan semasa mengenda-
likan nilai-nilai yang hilang bagi set data besar yang mengandungi paling banyak
10 peratus nilai hilang. Walau bagaimanapun bagi set data yang mengandungi
lebih daripada 10 pratus nilai hilang, terdapat impak yang buruk ke atas struktur
pokok klasifikasi dan kejituan klasifikasi. Di dalam tesis ini, kami mencadangkan
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model pokok klasifikasi dengan imputasi untuk menangani nilai hilang dalam set
data. Kami mengkaji penggunaan pokok klasifikasi, rangkaian Bayesian dan Bayes
naif sebagai teknik imputasi untuk menangani nilai hilang dalam model pokok
klasifikasi. Kajian ini meliputi kesemua tiga jenis mekanisma nilai hilang: hilang
sepenuhnya secara rawak (MCAR), hilang secara rawak (MAR) dan hilang bukan
secara rawak (MNAR). Imputasi menggunakan pokok klasifikasi mempunyai ke-
jituan mengatasi imputasi menggunakan rangkaian Bayesian dan Bayes naif bagi
kesemua mekanisma iaitu MCAR, MAR dan MNAR. kami juga membandingkan
pencapaian model pokok klasifikasi dengan imputasi dengan kaedah pemisah gan-
tian dalam pokok klasifikasi dan regresi piawai (CART). Lima belas peratus dari-
pada data latarbelakang pelajar dihapuskan dan model pokok klasifikasi dengan
imputasi digunakan untuk meramalkan kelas ijazah pelajar. Model pokok klasi-
fikasi dengan imputasi menghasilkan model yang lebih jitu berbanding dengan
pemisah gantian.
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CHAPTER 1

INTRODUCTION

1.1 Student’s Academic Performance

Student performance is a prime concern to high level educational institution since
it will reflect the performance of the institution. Researchers and educators con-
ducted many studies and experiments to determine the factors that affect student’s
performance. Socio-demographic characteristics such as age, gender, marital sta-
tus, family status, ethnicity and previous achievement are shown to affect their
undergraduate academic performance (Brown and Burkhardt, 1999; Clayton and
Cate, 2004; Stevens et al., 2004; Ding et al., 2006; Ismail and Othman, 2006; Lietz,
2006; Gibb et al., 2008).

One of the biggest challenges in university decision making and planning today
is to predict the performance of their students at the early stage prior to their
admission. This is not an easy task but the findings is important to assist the
university in determining future policy on student admissions and to provide the
necessary plans to improve student performance. One of the significant facts in
universities is the explosive growth of students’ information in databases system.
As the amount of these data increasing rapidly, the interest has grown in tapping
these data to extract the hidden information that is valuable to the management.
The discipline concern with this task is known as data mining. Data mining tech-
niques can be used to extract meaningfull information and to develop significant
relationships among variables stored in the students’ background data.

1.2 Classification Tree

In this thesis, we applied classification tree because it produced the best accuracy
as compared to naive Bayes and bayesian network. Classification and Regression
tree (CART) is a supervised learning method that constructs a flow-chart-like tree
as the classification model from the data and uses the tree model to classify the
future data. Classification tree is a flow-chart-like tree structure consists of one
root, branches, nodes and leaves. Classification tree analysis is a form of binary
recursive partitioning where a node (parent node) in a decision tree, can only be
split into two child nodes. The term ”recursive” refers to the fact that the binary
partitioning process can be applied over and over again (Breiman et al., 1984).

Classification tree is usually obtained in two steps. Initially a large tree is grown
using a greedy algorithm, and then this tree is pruned by deleting bottom nodes
through a process of statistical estimation. The greedy algorithm typically grows
a tree by sequentially choosing splitting rules for nodes on the basis of maximizing
some fitting criterion. All possible splits consist of possible splits of each predictor
variable. This step generates a sequence of trees, each of which is an extension of
previous trees. A single tree is then selected by pruning the largest tree according



© C
OPYRIG

HT U
PM

to a model selection criterion such as cost-complexity pruning, cross-validation,
or even multiple tests of whether two adjoining nodes should be collapsed into a
single node (Breiman et al., 1984). This pruning process ensures the tree which
fits the information in the learning dataset, but does not overfit the information.

The CART begins with the entire sample of student’s data. This entire sample is
heterogeneous, consisting of all students. It then divides up the sample according
to a splitting rule and a goodness of split criterion. Each internal node has an
associated splitting rule which uses a predictor variable to assign observations to
either its left child node or right child node. The splitting rules for our sample are
question of the form, ”Is the FACULTY F2, F3 or F6?” or put more generally, is
X ∈ d, where X are some variables and d is some elements within that variable. If
the criterion is satisfied, we follow the division to the left and if the said criterion
is not satisfied, we follow the division to the right. Such questions are used to
divide or split the sample. The CART algorithm considers all possible variables
and all possible values in order to find the best split. The best split refers to the
question that splits the data into two parts with maximum homogeneity (Breiman
et al., 1984). Maximum homogeneity of child nodes is defined by impurity function
i(t) which is equivalent to the maximization of change of impurity function ∆it as
shown by

∆it = i(tp)− Pli(tl)− Pri(tr),

where

• tp is a parent node,

• i(tp) is the impurity measure for the parent node,

• Pl is the proportion of the samples in node t that go to the left node tl,

• Pr is the proportion of the samples in node t that go to the right node tr,

• i(tl) is the impurity measure for left child node,

• i(tr) is the impurity measure for right child node.

Since the parent node is constant for any split, then, the maximization problem is
equivalent to minimizing the following expression

Pli(tl) + Pri(tr). (1.1)

Equation (1.1) implies that CART will compare different splits and determines
which of these will produce the most homogeneous subsamples. Common measures
are:

1.3 Problem Statements

Student’s performance is a prime concern to high level educational institution be-
cause it will reflect the performance of the institution. The differences in academic
performance among students are a topic that has drawn interest of many academic

2
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researchers and our society. However, the student’s performance is not encourag-
ing since less than 4 percent of student in public university in Malaysia obtained
first class degree classification upon graduation (Graduate Tracer Study Report
2009, Retrieved 14/11/2012).

Even though there is a weak relationship between employees performance with
CGPA as reported by Hashim (2012), employers usually use the students aca-
demic performance as the selection criteria to shortlist the candidates for the
interview. Hashim (2012) also stated that several well-established companies in
Malaysia limit their recruitment only to those students who achieve 3.00 CGPA
and above. Therefore, the biggest challenges in university decision making and
planning today is to understand the student’s performance pattern and then to
predict the performance of the students at the early stage prior to their admis-
sion. To our knowledge, there is no study has yet been made to model student’s
background data from all faculties in a university to classify and predict the final
degree classification. The findings can assist the university in determining future
policy on student admissions and to provide the necessary plans to improve stu-
dent performance.

The significance of the prediction depends closely on the quality of the database
and on the chosen sample dataset to be used for model training and testing. Un-
fortunately, missing values either in predictor or in response variables are a very
common problem in statistics and data mining. Cases with missing values are
often ignored and standard methods for complete data are run on the remaining
data cases. If the rate of missing values is less than 1 percent, missing values
are considered trivial, 1 percent to 5 percent missing values are considered man-
ageable, 5 percent to 15 percent missing values require sophisticated methods to
handle and more than 15 percent may severely impact any kind of interpretation
(Acuna and Rodriguez, 2004; Peng et al., 2005). To our knowledge, there is no
study has yet been made of sensitivity of missing data in the classification tree
structure and classification accuracy with big sample size.

Case deletion method discards valuable information about features that are ob-
served which results in loss of information and possible bias (Shafer, 2002; Little
and Rubin, 2002). One effective way of dealing with missing values is to im-
pute them with some reasonable value before proceed with inference. The key to
imputation techniques is to substitute with the most probable values and mean-
while preserve the joint relationships between variables. Imputation by a constant
using mean or mode values will ignore the between-attribute relationships and
assumes that all missing values represent the same value, probably leading to con-
siderable distortions. Surrogate split in standard classification tree is a possible
choice for large dataset contains at most ten percent missing values. However, for
dataset contains more than 20 percent missing values, there is an adverse impact
on the accuracy of the classification tree (Peng et al., 2005). Peng et al. (2005);
Saar-Tsechansky and Provost (2007) showed that imputation methods are able to
increase the accuracy in classifcation model. However, these research are limited
to missing completely at random (MCAR). Tree-based approach for missing values

3



© C
OPYRIG

HT U
PM

imputation was proposed by Vateekul and Sarinnapakorn (2009). However, this
method is applicable for quantitative data.

In this thesis, we propose classification tree model with imputation to handle
missing values in dataset. We investigate the application of classification tree,
Bayesian network and naive Bayes as the imputation techniques to handle missing
values in classification tree model. The investigation includes all three types of
missing values machanism; missing completely at random (MCAR), missing at
random (MAR) and missing not at random (MNAR).

1.4 Research Objectives

The main objective of this research is to develop an accurate model to predict
student’s academic performance using their background data with the present of
missing values. To achieve the objective, the following sub-objectives are adopted:

1. To propose classification tree model with imputation to handle dataset with
missing data.

2. To propose an imputation method for three types of missing data mechanism:
MCAR, MAR and MNAR.

3. To propose the predictor variable for student’s academic performance.

1.5 Research Contributions

There are three main contibution of this research:

1. Classification tree model with missing data imputation for predicting the
student’s academic performance based on their background data.

2. Imputation method for three types of missing data mechanism: MCAR,
MAR and MNAR.

3. Predictor variables for student’s academic performance.

1.6 Organization of Thesis

This thesis contains seven chapters; Introduction, Literature Review, Research
Methodology, Data Pre-processing and Missing Data Injection, Model Develop-
ment, Experimental Results and Conclusion and Future Work. The details of the
chapter are as follow:

Chapter 1 provides an overview of the thesis, such as background studies, problem
statement, objectives and reseach contribution.

Chapter 2 presens the literature reviews on the existing work to determine the
factors that affect student’s performance. This description is particularly focused
on socio-demographic characteristics such as age, gender, marital status, family
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status and ethnicity. We present an overview of the major data mining techniques
used in predicting student’s academic performance. Classification tree is the com-
mon method for mining student’s data. However it is sensitive to the presence of
missing values. The reviews on sensitivity of missing values and how to handle
missing values in data mining are also presented.

Chapter 3 provides the methodology applied in this study. Research framework in-
cluding data, data pre-processing and missing data injection, model design, model
development and model implementation are briefly explained in this chapter.

Chapter 4 presents the data pre-processing and missing data injection. The de-
scriptive data analysis is carried out to investigate the relationship between cat-
egorical variables of student’s academic performance according to their gender,
university academic intake category, age and race. Data mining techniques namely
classification tree, Bayesian network and naive Bayes are applied to student’s back-
ground data to predict student’s degree classification. We also simulate the stu-
dent’s background data using the correlation of the actual data, then, we simulate
the three types of missing data mechanism (MCAR, MAR and MNAR). The in-
fluence of missing values in classification tree, Bayesian network and naive Bayes
are then investigated by removing levels of student’s background data.

Chapter 5 provides a detailed explaination on the development of classification tree
with imputation model. The imputation of missing values using three imputation
techniques; classification tree, Bayesian Network and naive Bayes are explained.
All three imputation techniques are implemented on datasets having three types
of missing values mechanism; MCAR, MAR and MNAR.

Chapter 6 presents the results of experiments applied to real student’s background
and academic performance dataset to evaluate the performance of proposed algo-
rithms.

Chapter 7 gives concluding remarks and directions of future research.
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