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Autocorrelated errors cause the Ordinary Least Squares (OLS) estimators to become 

inefficient. Hence, it is very essential to detect the autocorrelated errors. The 

Breusch-Godfrey (BG) test is the most commonly used test for detection of 

autocorrelated errors. Since this test is easily affected by high leverage points, the 

robust Modified Breusch-Godfrey (MBG) test is proposed. The results of the study 

indicate that the MBG test is a robust test to detect the autocorrelated errors.  

 

Thus far, there is no specific method proposed to identify high leverage points in 

linear model with autocorrelated errors. Hence, the Diagnostic Robust Generalized 

Potentials Based on Index Set Equality (DRGP(ISE)) is proposed to close the gap in 

the literature. The findings indicate that DRGP(ISE) is an excellent and fast 

identification method to detect the high leverage in linear model with autocorrelated 

errors. 

 

High leverage points have tremendous effect in regression analysis. In this study we 

verified that high leverage points is another cause of autocorrelation.  

 

Not much research has been done to investigate autocorrelation-influential 

observations. Hence, the Robust Autocorrelation-Influential Measure based on DRGP 

(RAIM(DRGP)) is formulated to identify the autocorrelation-influential observations in 

autocorrelated data. The RAIM(DRGP) is found to do a credible job to identify the high 

leverage autocorrelation-enhancing and autocorrelation-reducing observations and 

autocorrelation-influential observations.  

 

Cochrane-Orcutt Prais-Winsten (COPW) iterative method is the most commonly 

used remedial measure to rectify the autocorrelation problems. However, this 

procedure is extremely vulnerable in the presence of high leverage points. On the 

other hand, the autocorrelation may be caused by the presence of high leverage 

points. The Robust Cochrane-Orcutt Prais-Winsten (RCOPW) iterative method is 
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therefore developed. The results of the study show that RCOPW estimation is a 

robust remedial measure in the case when the autocorrelated data come together with 

the presence of high leverage points and also in the autocorrelation caused by the 

high leverage points.  

 

The existing diagnostic plot does not take into the consideration of autocorrelated 

errors. Thus, the robust remedial of autocorrelated errors - Robust Cochrane-Orcutt 

Prais-Winsten (RCOPW) is incorporated in the diagnostic plot to form the 

Diagnostic Plot for Autocorrelation Based on Standardized Cochrane-Orcutt Prais-

Winsten Residuals (DPA-RCOPW). The results based on simulated autocorrelated 

data and well known outlying datasets show that DPA-RCOPW successfully 

identifies and classifies the outlying observations according to its types precisely.  

 

In this study, an alternative method of finding confidence intervals of regression 

parameters for autocorrelated data in the presence of high leverage points and for 

autocorrelation caused by high leverage points is proposed. The findings provide 

strong evidences that the Diagnostic Before Bootstrap based on Robust Cochrane-

Orcutt Prais-Winsten estimate (DBB RCOPW) estimate is a robust procedure and 

consistently provides close answers to the actual confidence intervals of the 

regression parameters for data with autocorrelated errors in the presence of high 

leverage points and for autocorrelation caused by high leverage points.  
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Masalah autokorelasi menyebabkan anggaran Pengangar Kuasadua Terkecil Biasa 

(OLS) tidak cekap. Oleh sebab itu, adalah sangat penting untuk mengesan masalah 

ralat berautokorelasi. Ujian Breusch-Godfrey (BG) adalah antara ujian yang paling 

biasa digunakan untuk mengesan ralat berautokrelasi. Oleh kerana ujian ini senang 

dipengaruhi oleh titik tuasan tinggi, ujian Terubahsuai Breucsh-Godfrey (MBG) 

dicadangkan. Keputusan kajian menunjukkan ujian MBG adalah ujian pengesahan 

yang teguh dalam pengesahan ralat berautokorelasi.  

 

Setakat ini, tidak ada kaedah spesifik yang dicadangkan untuk mengenal pasti titik 

tuasan tinggi dalam model linear ralat berautokorrelasi. Degan itu, Kaedah Teguh 

Berdiagnostik Potensi Teritlak Berasaskan Indeks Set Kesaksamaan (DRGP(ISE))  

dicadangkan untuk menutup jurang kesusasteraan ini. Hasil kajian menunjukkan 

bahawa DRGP (ISE) adalah kaedah yang sangat baik and pantas untuk mengesan 

titik tuasan tinggi dalam model linear bermasalah ralat berautokorelasi. 

 

Titik tuasan tinggi mempunyai kesan yang amat besar dalam analisis regresi. Dalam 

kajian ini kita mengesahkan bahawa titik tuasan tinggi adalah penyebab lain 

autokorelasi. 

 

Tidak banyak penyelidikan telah dijalankan untuk menyiasat cerapan autokorelasi-

berpengaruh. Dengan itu, Pengukur Autokorerlasi-Berpengaruh Teguh berdasarkan 

DRGP (RAIM(DRGP)) dibina bagi mengenal pasti cerapan autokorelasi 

berpengaruh dalam data berautokorelasi. Didapati RAIM(DRGP) telah menunjukkan 

kecemerlangan untuk mengenal pasti cerapan tuasan tinggi autokorelasi-meningkat 

dan autokorelasi-menurun dan cerapan autokorelasi berpengaruh. 

 

Kaedah lelaran Cochrane-Orcutt Prais-Winsten (COPW) adalah langkah pemulihan 

yang paling biasa digunakan untuk membetulkan masalah autokorelasi. Walau 

bagaimanapun, prosedur ini sangat terdedah dengan kehadiran titik tuasan tinggi. 
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Pada masa yang sama, masalah autokorelasi mungkin disebabkan oleh kehadiran titik 

tuasan tinggi.  Dengan itu, Kaedah lelaran Cochrane-Orcutt Prais-Winsten Teguh 

(RCOPW) dicadangkan. Keputusan kajian menunjukkan anggaran RCOPW langkah 

pembaikan yang teguh dalam kes data berautokorelasi bersama dengan kehadiran 

titik tuasan tinggi dan masalah autokorelasi disebabkan oleh titik tuasan tinggi.  

 

Plot diagnostik sedia ada tidak mengambil kira masalah autokerelasi. Dengan itu, 

kaedah pemulihan teguh masalah autokorelasi - Cochrane-Orcutt Prais-Winsten 

Teguh (RCOPW) digabungkan ke dalam plot diagnostic untuk membentuk Plot 

Diagnostik Untuk Autokorelasi Berdasarkan Piawaian Sisa Cochrane-Orcutt Prais-

Winsten (DPA-RCOPW). Keputusan berdasarkan simulasi dan data terpencil 

terkenal menunjukkan DPA-RCOPW berjaya mengenal pasti dan mengklasifikasikan 

cerapan terpencil mengikut jenisnya dengan tepat.  

 

Dalam kajian ini, kaedah alternatif mencari selang keyakinan parameter regresi bagi 

data bermasalah autokorelasi dengan kehadiran titik tuasan tinggi dan autokorelasi 

yang disebabkan oleh titik tuasan tinggi dicadangkan. Hasil kajian menunjukkan 

Diagnostik Sebelum Bootstrap berdasarkan anggaran Cochrane-Orcutt Prais-Winsten 

Teguh (DBB RCOPW) adalah prosedur yang mantap dan konsisten dalam 

memberikan jawapan dekat dengan selang keyakinan sebenar parameter regresi 

untuk data ralat berautokorelasi dengan kehadiran titik tuasan tinggi dan autokorelasi 

disebabkan oleh titik tuasan tinggi. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction and Background of the Study 
 

Linear regression is widely used in all areas of human efforts. It was the primary 

regression analysis to be studied rigorously. Modeling and analysis using linear 

regression is comparatively easier than non-linear regression as the properties of 

parameters estimate is easier to be determined in linear regression.  It has become a 

traditional practice to regress linear regression models using the predominant Ordinary 

Least Squares (OLS) estimator. The reason for the universally acceptance of OLS is 

because of its computational simplicity. However, the OLS estimate has its optimum 

properties only when all the underlying model assumptions are met. Unfortunately, in 

reality the assumption of random and uncorrelated errors is always violated. The 

classical model assumes that the error term relating to any observation is not influenced 

by the error term relating to any other observation. However, the errors might be 

correlated with the previous errors which means that  0),( ji uuE  or 0),cov( 
ji

uu  

for ji  . Although autocorrelated errors do not cause any biasness in the OLS 

coefficients estimates, but the OLS coefficients estimates become less efficient in the 

presence of  autocorrelated errors. The standard errors of the parameters estimate tend to 

be underestimated and this lead to misleading conclusion about the statistical 

significance of the estimated regression coefficients. 

 

On the other hand, the OLS estimate which minimizes the sum of squared between the 

fitted values and the observed responses in the dataset is obviously affected by high 

leverage points. Research done by Harter (1974) confirmed that squaring of the residual 

causes the least square becomes extremely weak to the presence of high leverage points. 

Thus, it caused the violation from the least squares assumption. At the same time, 

routine dataset cannot be guaranteed free from outlying observations such as outliers and 

high leverage points. It is a necessity to introduce the robust methods in linear regression 

to address both autocorrelation and high leverage points problems.   

 

1.2 Importance and Motivation of the Study 

 

Autocorrelation violates the important properties of the OLS estimates (White and 

Brisbon, 1980). The parameters estimates obtained by the OLS estimation procedure no 

longer the Best Linear Unbiased Estimators (BLUE) in the sense that we are able to 

obtain the parameters estimate with lower standard errors. As the result, the usual t and 

F test of significance are no longer convincing as the tests tend to be statistically 

significant when in fact it is not. In addition, the coefficient of determination, 2R  

becomes inflated, the estimators would look more accurate as compared to its actual 

values. In short, the existence of autocorrelated errors will most likely causing the wrong 

conclusions about the statistical significance of the estimated regression coefficients. 

http://en.wikipedia.org/wiki/Dataset
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(Gujarati and Porter, 2009). Therefore, detection of autocorrelation problems is very 

critical. Breusch-Godfrey (BG) test (Breusch, 1978; Godfrey, 1978) is the most general 

test to detect the presence of autocorrelated errors in economics. However, this test is 

based on OLS estimate which is not robust, the poor performance of BG test is 

anticipated in the presence of high leverage points. High leverage points may be defined 

as the data points which are bulky different from the rest of the data points in X-

direction. Many robust literatures have pointed out that high leverage points have great 

impact on the OLS estimates. (Habshah et al., 2009; Rana et al., 2008; Norazan, 

2008).This motivates us to develop a robust autocorrelation detection method which 

shall perform equally good as BG test for detecting the autocorrelation problems in clean 

time series and cross sectional datasets. At the same time, it can detect the 

autocorrelation problems in the contaminated high leverage time series and cross 

sectional datasets. This is certainly a first attempt in statistics to develop robust 

autocorrelation detection technique which is resisting of the influence of high leverage 

points.   

 

When the OLS estimate is applied for fitting the linear regression line, the resulting 

residuals are function of the leverages and true errors. The masking effect occurs when 

the high leverage points pull the fitted regression line in a way that the fitted residuals 

corresponding to that high leverage points. Similarly, the swamping effect happens when 

the residuals corresponding to inliers are too large to cause the case to be declared as 

high leverage cases. Péna and Yohai (1995) pointed out that high leverage points are the 

cause of masking and swamping of data points in linear regression. Therefore, 

identifying high leverage points in the data is very essential before any inferential is 

made. Although much works have been done on the identification of high leverage 

points in linear regression such as leverages method, Hadi’s Potential (Hadi, 1992), 

Mahalanobis Distance (Mahalanobis, 1936) and Diagnostic-Robust Generalized 

Potentials (Habshah et al., 2009) but no specific method was proposed to identify the 

high leverage points in linear regression with autocorrelated errors. In this thesis, we 

would like to take up the challenge to find out the most reliable approach in identifying 

high leverage points in linear regression with autocorrelated errors.  

 

The recent researches done by Bagheri et al. (2012) and  Riazoshams et al. (2010) have 

further confirmed that high leverage points have tremendous effect on the OLS 

estimates. However, the effect of high leverage points in data with autocorrelated errors 

has not been fully discussed. No study is done to justify the autocorrelation in time 

series and cross sectional data is due to the presence of high leverage points. This 

literature gap motivates us to go a step further to verify that the high leverage points are 

the cause of autocorrelation in time series and cross sectional data.  

 

Bagheri et al. (2012) proposed a novel method for collinearity-influential observation 

diagnostic measure based on group deletion approach to measure the contribution of 

each observation towards the collinearity in the dataset. However, to the best of our 

knowledge, no research has been done to study the autocorrelation-influential 

observations diagnostic measures in linear model. The existing diagnostic measure  only 

focused on time series model where the observations are viewed in the time domain. An 
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observation is omitted and the resultant effect on the interested statistic values is noted. 

Observations which give relatively large changes in the calculated values are deemed to 

be the influential observations. This diagnostic measure can only be applied to time 

series model. Since no diagnostic measure has been proposed to evaluate the 

autocorrelation-influential observations in linear model, in this thesis we take the 

initiative to develop a novel robust diagnostic measure for identification of 

autocorrelation-influential observations in linear model to close the gap in the literature. 

On the other hand, high leverage points are discovered as a new source of 

autocorrelation, it may be considered to be a special case of the autocorrelation–

enhancing influential observations. It is reasonable to conclude that autocorrelation-

influential measure which observes the influential effect of an observation at a time may 

not be efficient in the presence of high leverage points as high leverage points have 

unduly effect on the classical estimates. In addition, an autocorrelated dataset may 

change its nature to a non-autocorrelated dataset in the presence of high leverage points. 

To our knowledge, nothing has yet been done to diagnose autocorrelation reducing-

influential points. It is also interesting to find out whether all the autocorrelation-

influential observations are caused by high leverage points and also whether all the high 

leverage points in the autocorrelated data are the high leverage autocorrelation-

influential observations. These further encouraged us to develop a novel robust 

diagnostic measure for identification of autocorrelation-enhancing and reducing-

influential observations for linear model with autocorrelated errors in the presence of 

high leverage points. 

 

This thesis also addresses the parameter estimation of linear model with autocorrelated 

errors.  A large number of novel works in the literatures about the parameter estimation 

of linear model with autocorrelated errors. Cochrane-Orcutt Prais-Winsten iterative 

method (COPW) iterative method (Prais and Winsten, 1954) is the most popular 

remedial measure in econometrics to obtain estimators with the optimum Best Linear 

Unbiased Estimators (BLUE) properties. However, the COPW iterative method is based 

on the OLS estimate which is expected to be easily affected by high leverage points.  

The shortcoming of COPW iterative procedure has inspired us to develop a robust 

parameter estimation method to get rid both the autocorrelation and high leverage points 

problems in the time series and cross sectional datasets. To the best of our knowledge, 

this is indeed the first attempt to remedy the autocorrelation problems in the presence of 

high leverage points. At the same time, we also examined the usefulness of this 

proposed robust parameter estimation in rectifying the autocorrelation caused by high 

leverage points. The proposed robust parameter estimation is indeed working well in 

rectifying both autocorrelation and high leverage points problems. This is also another 

new discovery in statistics to remedy the autocorrelation caused by high leverage points.   

 

According to Hampel et al. (1986), a normal dataset usually contains about 1 to 10 

percent outlying observations. There is no guarantee that the high quality data will be 

free from outlying observations. The outlying observations in univariate dataset with 

autocorrelated errors may be detected by visual inspection of scatter plot. However, the 

identification of outlying observations based on scatter diagram is not convincing 

enough. In addition, the graphical method does not work in high dimensional datasets. 
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Hubert et al. (2008) also pointed out that the outlying observations are more likely to 

occur in datasets with many variables. Thus, we need specify statistical method to 

identify the outlying observations. Many outlying observations detection methods are 

available in the literatures (Mishra, 2008; Maronna et al., 2006; Rocke and Woodruff, 

1996; Kashyap and Maiyuran, 1993). However, not much studies have been carried out 

in classifying outlying observations according to its inference locations. Although 

Hubert et al. (2008) have proposed a robust diagnostic plot of classifying outlying 

observations. However, the method proposed does not take into the consideration of 

autocorrelated errors in time series and cross sectional data. The autocorrelation 

problems remain as it is without any concern. In the autocorrelated dataset, the residuals 

are correlated with the previous errors which means 0),( 
ji

uuE  for ji  . An 

observation may be far from the bulk, but due to the autocorrelated errors, it may not 

really an outlying observation in the autocorrelated data. This inspires us to design a first 

ever exclusive diagnostic plot which incorporates the corrective action of autocorrelation 

to classify the outlying observations according to it types in the presence of 

autocorrelated errors in time series and cross sectional data. Since the outlying 

observations are presence in the dataset, the robust methods must be incorporated in the 

procedures of designing this comprehensive diagnostic plot.  

 

Confidence interval is one of the favorite topics in linear regression analysis. It is used to 

indicate the reliability of an estimate. The classical confidence interval is constructed 

based on the sample finding. Thus, it is too obviously affected by the sample with 

unusual observations. At the same time, the distribution assumptions need to be made 

for the classical approach of finding the confidence interval. In contrast, bootstrap 

methods have a practical point that it does not require normality assumption of the 

parameters estimate. At the same time, it also enjoys the benefit of not requiring any 

theoretical calculations to estimate the standard errors of complicated model. This 

encourages us to find an alternative ways of finding confidence interval of regression 

parameters using bootstrap methods which do not subject to the statistical distribution 

requirement and applicable in unwell behaved dataset. The focus here is on the linear 

model with autocorrelation problems. We have seen that high leverage points have 

tremendous effect on the parameters estimate. The study here discusses the robust 

bootstrapping alternative approaches of finding the confidence intervals of regression 

parameters for data with autocorrelated errors in the presence of high leverage points. 

Autocorrelation may be due to the presence of high leverage points. Thus, in this study, 

some robust bootstrapping alternatives of finding the confidence intervals of regression 

parameters for autocorrelation due to the presence of high leverage in time series and 

cross sectional datasets are also examined.     

 

1.3 Research Objectives 

 

The main purpose of this thesis is to investigate the autocorrelation problems in  linear 

regression model. Currently, the diagnostic and estimation methods dealing with 

autocorrelated errors are based on OLS estimates. Unfortunately, OLS estimate is easily 

effected by high leverage points. It will be a big success in statistics if we can have 

robust identification and estimation methods for autocorrelated data in the presence of 
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high leverage points. Moreover, the autocorrelation may be caused by the presence of 

high leverage points. It will be interesting to have the autocorrelation correction 

measures to remedy the existence of autocorrelation because of the presence of high 

leverage points. Nevertheless, identification of autocorrelation influential observations is 

very essential in linear regression analysis. A comprehensive approach has yet to be 

developed to identify the autocorrelation influential observations in the presence of high 

leverage points. In addition, detection and classification of outlying observations is an 

interesting area in robust statistics. It would be great if we could have customised 

methods for identifying and classifying outlying observations in data with autocorrelated 

errors. Moreover, robust alternative approach of finding the confidence interval for 

regression coefficients in autocorrelated data is also an interesting area to be explored.  

 

The main objectives of this research can be outlined systematically as follows: 

1. To formulate a robust autocorrelation diagnostic method and to develop a reliable 

high leverage identification technique for linear model with autocorrelated errors 

in the presence of high leverage points. 

2. To develop a diagnostic measure of autocorrelation influential observation which 

can successfully distinguish the autocorrelation-enhancing and autocorrelation-

reducing observations for linear model with autocorrelated errors in the presence 

of high leverage points. 

3. To develop a robust parameter estimation method of autocorrelated data in the 

presence of high leverage points and autocorrelation caused by high leverage 

points.  

4. To construct a diagnostic plot which is able to identify and classify the outlying 

observations according to their inferential locations in data with autocorrelated 

errors.  

5. To develop a robust bootstrapping alternative approach of finding the confidence 

intervals of the regression coefficients of autocorrelated data in the presence of 

high leverage points and autocorrelation caused by high leverage points. 

 

1.4  Significance of Study 

 

Linear regression is used extensively in many areas of studies such as business, 

engineering, education, medicine and social science. It has many practical applications. 

The foremost application of linear regression is to make a prediction of the dependence 

variable based of the fitted model. Linear regression models are often fitted using the 

OLS estimator. The OLS estimates have optimum properties if all the underlying model 

assumptions are met. Unfortunately, in reality the assumption of random and 

uncorrelated errors is always violated. On the other hand, the OLS estimates is not a 

robust estimates, it is easily effected by high leverage points. Many researchers are 

unaware of violation of autocorrelation and the effect of high leverage points on the 

linear regression parameters estimates. The robust autocorrelation diagnostic and 

estimation methods developed in this thesis are working well in good and contaminated 

autocorrelated data. Their excellence performances were verified by the assessments 

done by Monte Carlo simulation study together with some real time series and cross 

sectional datasets.    
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This research also pointed out that the high leverage points are the cause of 

autocorrelation problems. Therefore, the identification of high leverage points in linear 

regression is very crucial before any remedial action is taken. A credible diagnostic 

measure was also developed for identifying autocorrelation–influential observations in 

autocorrelated dataset in the presence of high leverage points. The diagnostic measure 

working excellently in detecting all the autocorrelation enhancing and reducing 

influential observations and other autocorrelation influential observations which are not 

the high leverage points. 

 

In this research, a comprehensive diagnostic plot was also designed for the first time in 

statistics specifically to identify and classify the outlying observations according to their 

inferential location in autocorrelated data. The designed diagnostic plot performs superb 

in identifying and classifying the outlying observations according to their types in 

autocorrelated data. 

 

Robust alternative approach of finding the confidence intervals of regression parameters 

in autocorrelated data was also proposed in this study. For all these discoveries, we 

expect there will be a good application for researchers and industry experts in the future. 

 

1.5 Scope and Limitation of the Study 

 

Robust statistics is still a new area in statistics. Thus, not many statistical software are 

equipped with robust statistics applications. For the existing software with robust 

statistics applications, the applications are not really diversified. Most of the time, there 

is no direct method to get the solution of the desired robustified method. Writing our 

own programming codes are most of the time required in this case. Although we may get 

the desired results, but we cannot guarantee that the programming codes are perfect 

without mistake.  

 

Again, since the robust statistics is a newly developed field of statistics studies, not 

many well referred outlying datasets are available in the literature for discussion 

purpose. Not to mention that the outlying datasets with autocorrelation problems. Thus, 

the same datasets are used repeatedly in this thesis for difference objectives of study.   

 

Alciaturi et al. (2005) proposed the use of the autocorrelation function with lag 1 

residual in model selection. Following their suggestion, in this thesis we only focus 

autocorrelation problems at first-order autoregressive AR(1).  

 

There are many existing robust estimators such as S-estimator, M-estimator, Least 

Median Squares estimator and etc. In this study, we concentrate only on MM-estimator 

because it is a bounded influence estimator has high breakdown point (50 percent) and 

high efficiency (approximately 95 percent) relative to the OLS under the Gauss-Markov 

assumptions.The MM-estimator is incorporated into the existing procedures in the 

formulation of robustified methods in the topics of the study.    
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1.6 Outline of the Thesis 

 

In accordance with the objectives and the scope of the study, the contents of this thesis 

are organized in such a way that the research objectives are apparent and are conducted 

in the sequence outlined.  

 

Chapter Two: This chapter presents a brief literature review of the OLS estimations of 

linear regression parameters and the violations from least squares assumptions. The 

review on autocorrelation problems and its consequences, diagnostic methods, remedial 

actions and the sources of autocorrelation problems are also discussed. Moreover, basic 

concepts of robust regression and some important existing robust regression methods are 

also highlighted. Diagnostic methods of outlying observations are also reviewed. 

Finally, bootstrapping methods are discussed briefly.  

 

Chapter Three: This chapter presents the failure of autocorrelation diagnostic using the 

Breusch-Godfrey (BG) test developed by Breusch (1978) and Godfrey (1978) in the 

presence of high leverage points in time series and cross sectional data. The BG test is 

then robustified by incorporating the high efficient and high breakdown point MM-

estimator (Yohai, 1978) in the BG test procedure. The merit of using the Modified 

Breusch-Godfrey (MBG) test is studied through Monte Carlo simulation, time series and 

cross sectional datasets.  

 

Chapter Four: In this chapter we suggests the Diagnostic Robust Generalized Potential 

Based on Index Set Equality (DRGP(ISE)) for identifying high leverage points in linear 

regression with autocorrelated errors. The advantages of using this proposed method is 

supported by the evidence from the Montle Carlo simulation and real time series and 

cross sectional datasets.  

 

Chapter Five: This chapter investigates high leverage observations as a cause of 

autocorrelation. Study through Monte Carlo simulation and some well-referred time 

series and cross sectional datasets were supported the finding that the existence of 

autocorrelation was due to the presence of high leverage points.  

 

Chapter Six: In this chapter we propose to use the Robust Autocorrelation-Influential 

Measure based on DRGP (RAIM(DRGP)) to identify the autocorrelation-influential 

observations in autocorrelated data in the presence of high leverage points. The merit and the 

excellent performance of RAIM(DRGP) is assessed by using Monte Carlo simulation 

experiments and so well-known datasets.  

 

Chapter Seven: This chapter deals with the development of robust parameters 

estimation to address the autocorrelation and high leverage points problems. Data with 

autocorrelated errors may be contaminated by the high leverage points. On the other 

hand, autocorrelation may be due to the presence of high leverage points. The Concrane-

Orcutt Prais-Winsten (COPW) iterative method performs miserably in correcting 

autocorrelation problems in the presence of high leverage points in time series and cross 

sectional datasets. The Robust Concrane-Orcutt Prais-Winsten (RCOPW) iterative 
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method is then proposed to remedy both autocorrelation and high leverage points problems. 

The performance of RCOPW procedure is evaluated by using Monte Carlo simulation 

experiments and real datasets.  

 

Chapter Eight: This chapter discussed the disadvantages of Robust Diagnostic Plot 

(RDP) proposed by Hubert et al. (2008) in identifying and classifying the outlying 

observations in data with autocorrelated errors. In this chapter we designed a 

comprehensive plot which is able to identify and classify the outlying observations 

according to its inferential locations accurately for data with autocorrelated errors. The 

plot is called Diagnostic Plot for Autocorrelation Based on Standardized Robust 

Cochrane-Orcutt Prais-Winsten Residuals (DPA-RCOPW). It is a plot of Standardized 

Robust Residuals obtained by Robust Cochrane-Orcutt Pais-Winsten (RCOPW) iterative 

method versus the leverages computed from Diagnostic Robust Generalized Potentials 

based on Index Set Equality (DRGP(ISE)). The excellency of DPA-RCOPW is tested 

using Monte Carlo simulation and some famous robust statistics datasets.   

 

Chapter Nine: This chapter introduced a robust alternative of finding confidence 

intervals of regression parameters for autocorrelation data in the presence of high 

leverage points and autocorrelation caused by high leverage points. The Diagnostic 

Before Bootstrap (DBB) is incorporated in the bootstrapping residuals based on Robust 

Cochran-Orcutt Prais-Winsten (RCOPW) procedure to form the DBB RCOPW 

confidence intervals. The DBB RCOPW confidence intervals constantly provide fairly 

close intervals to the benchmark confidence intervals for autocorrelation data in the 

presence of high leverage points and autocorrelation due to the presence of high leverage 

points. 

 

Chapter Ten: This chapter provides summary and detailed discussions of the thesis 

conclusions. Some areas of future studies are also tabulated.  
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