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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science 

 

DIRECT TWO-POINT BLOCK METHODS FOR SOLVING NONSTIFF 

HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING 

BACKWARD DIFFERENCE FORMULATION 

 

By 

HAZIZAH BINTI MOHD IJAM 

September 2014 

 

Chair      : Mohamed bin Suleiman, PhD 

Faculty   : Science 

 

This thesis describes the development of a Two-Point Block Backward Difference 

method (2PBBD) for solving system of nonstiff higher order Ordinary Differential 

Equations (ODEs) directly. The method computes the approximate solutions;  and 

 at two points  and  simultaneously within an equidistant block.  

This method has the advantages of calculating the integration coefficients only once at 

the beginning of the integration. The relationship between the explicit and implicit 

coefficients has also been derived. These motivate us to formulate the association 

between the formula for predictor and corrector. The relationship between the lower 

and higher order derivative also have been established. 

New explicit and implicit block methods using constant step sizes and three back 

values have also been derived. The algorithm developed is implemented using 

Microsoft Visual C++ 6.0 and run by High Performance Computer (HPC) using the 

Message Passing Interface (MPI) library.  

The stability properties for the 2PBBD methods are analyzed to ensure its suitability for 

solving nonstiff Initial Value Problems (IVPs). The stability analysis shows that the 

method is stable.  
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Numerical results are presented to compare the performances of this method with the 

previously published One-Point Backward Difference (1PBD) and Two-Point Block 

Divided Difference (2PBDD) methods. The numerical results indicated that for finer 

step sizes, 2PBBD performs better than 1PBD and 2PBDD. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk  ijazah Master Sains 

 

KAEDAH BLOK DUA-TITIK SECARA LANGSUNG BAGI 

MENYELESAIKAN SISTEM PERSAMAAN PEMBEZAAN BIASA TAK 

KAKU PERINGKAT TINGGI MENGGUNAKAN FORMULA PEMBEZAAN 

KE BELAKANG 

 

Oleh  

HAZIZAH BINTI MOHD IJAM  

September 2014 

 

Pengerusi      : Mohamed bin Suleiman, PhD 

Fakulti          : Sains 

 

Tesis ini menerangkan tentang pembentukan kaedah Dua-Titik Blok Pembezaan Ke 

Belakang (2TBPB) bagi menyelesaikan sistem pembezaan biasa tak kaku peringkat 

tinggi secara langsung. Kaedah ini menghitung penyelesaian anggaran;  dan  

pada dua titik  dan  secara serentak dalam blok yang sama jarak. 

Kaedah ini mempunyai kelebihan dimana pekali kamiran yang digunakan diperoleh 

hanya sekali pada awal proses pengamiran. Hubungan antara pekali tersurat dan tersirat 

juga telah diperoleh. Maka, ia mendorong untuk merumuskan hubungan di antara 

peramal dan pembetul. Hubungan di antara peringkat pembezaan terendah dan tertinggi 

juga diperoleh. 

Kaedah baru blok tersurat dan tersirat dengan menggunakan saiz langkah malar dan 

tiga nilai belakang dibentuk dalam tesis ini. Algoritma yang terhasil dilaksanakan 

dengan menggunakan Microsoft Visual C++ 6.0 dan dijalankan oleh Komputer Prestasi 

Tinggi (KPT) dengan menggunakan perpustakaan Mesej Antara Muka (MAM).  

Sifat-sifat kestabilan bagi kaedah 2TBPB dianalisis untuk memastikan kesesuaiannya 

untuk menyelesaikan Masalah Nilai Awal (MNA) tak kaku. Analisis kestabilan 

menunjukkan bahawa kaedah ini stabil. 
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Keputusan berangka dikemukakan untuk membandingkan pencapaian kaedah ini 

dengan kaedah yang telah diterbitkan Satu-Titik Pembezaan ke Belakang (1TPB) dan 

Dua-Titik Blok Pembezaan Dibahagi (2TBPD). Keputusan berangkanya menunjukkan 

bahawa untuk saiz langkah yang lebih kecil, 2TBPB lebih baik daripada 1TPB dan 

2TBPD. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Many mathematical models used in science and technology are developed based on 

differential equations. Differential equations play a prominent role in many disciplines, 

for example in physics, chemistry, biology, electronics, engineering, economics e.t.c. 

The theory of differential equations has been developed by numerous mathematicians. 

In general, it can be divided into these two categories; ordinary differential equations 

(ODEs) and partial differential equations (PDEs). We are focusing on ODEs which can 

be divided in two subsystems; one stiff and the other nonstiff. 

The problem of determining the charge or current in an electric circuit, the problem of 

determining the vibrations of a wire or membrane and the reactions of chemicals can be 

formulated into differential equations. Since many differential equations have no 

analytic solution, hence a numerical approximation to the solution is often suggested.  

To solve ODEs numerically, there are two general classes of numerical methods, for 

instance single step method and multistep method. The single step method is a method 

which uses only one previous computed value to obtain the next value. Euler’s method 

and Runge-Kutta method are examples of single step methods. On the contrary, the 

multistep method is a method which requires starting values from several previous 

steps. This method can be found in Adams formula and Backward Differentiation 

Formula (BDF). 

 

1.2 The Initial Value Problems (IVPs) 

For the sake of simplicity of discussion and without loss of generality, we will discuss 

the single equation 

  (1.1)  

 

with  in the interval  where 

 

 

With regard to (1.1), we make an assumption that for each  it satisfies the 

following conditions; 
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a)  is defined and continuous in the interval    

where a and b are finite. 

b) There exists a constant L, known as Lipschitz constant, such that for arbitrary 

 and any  and  This condition 

is known as Lipschitz condition. 

 

Theorem 1.1 (Existence and Uniqueness) 

If the equation (1.1) satisfies the condition in a) and b), then there exists a unique 

solution of  with the following three properties: 

i)  is continuous and d times differentiable for  

ii)  for  

iii)  

The proof for the first order case was given by Henrici (1962). For the case of higher 

order system   the problem (1.1) is reduced to a system of first order equations 

and then the theorem applies. 

For the following discussion, we will consider the IVPs for the single equation, which 

can be written in the form 

  (1.2)  

 

1.3 Linear Multistep Method (LMM) 

These methods require the information computed from the previous steps to 

approximate the solution at the current step. For example, in the k-step method the 

values of y computed at the previous k step i.e. at  are 

used to calculate  The general LMM is given by 

 

 (1.3)  

 

where  and  are constants. We also assume that  and that not both  and  

are zero. If   occurs only on the left side of (1.3), the method is called an 

explicit method. If  is present on both sides of (1.2) and the method is 

known as an implicit method.  

Lambert (1973) discusses the specific linear multistep methods can be derived using 

Taylor expansions, numerical integration and interpolation.  
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Definition 1.1 

The LMM (1.3) is convergent if for all initial value problems (1.2) subject to the 

hypotheses of Theorem 1.1, we have  

 

holds for all  and for all solution  of the difference equation (1.3) 

satisfying starting conditions  for which 

  

Define the linear difference operator  associated with (1.3) as 

 

 (1.4)  

 

where  is an arbitrary function continuously differentiable on  Expanding 

 and  in (1.4) as Taylor series about  yields 

  (1.5)  

 

 where, 

  
 

                                                 

 

 

(1.6)  

 

Definition 1.2 

The difference operator (1.4) and the associated LMM (1.3) are said to be of the order 

 if  The first of non-vanishing coefficient,  is 

called the error constant. 

 

Definition 1.3 

The local truncation error (LTE) at  of the linear multistep method (1.3) is the 

linear difference operator  as defined in (1.4) when  is the exact solution 

of the IVP (1.2). 
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In order to compute LTE at  we made the localizing assumption that no previous 

truncation errors have been made, that is  If no 

such assumption is made, then the difference between the exact and computed solution, 

i.e.   gives the global error (GE). 

 

Definition 1.4 

If the LMM (1.3) has order  the method is then said to be consistent. Referring to 

(1.6), the method (1.3) is consistent if and only if 

 

 (1.7)  

 

The equation  and  are defined to be the first and 

second characteristic polynomials respectively. It follows from (1.7) that the linear 

multistep method is consistent if and only if  and . Therefore, 

the first characteristic polynomial  always has a root at 1 for a consistent method. 

This root is better known as the principal root and denoted by . The other 

roots,  are called spurious roots. Since consistency controls only the 

principal and not the spurious roots, it implies that a consistent method is not 

necessarily convergent. 

 

Definition 1.5 

The LMM (1.3) is zero-stable if the first characteristic polynomial  has no root 

whose modulus is greater than 1 and every root with modulus 1 is simple. 

 

Definition 1.6 

The method (1.3) is said to be absolutely stable in a region  of the complex plane if, 

for all ˆ ,h  all roots of the stability polynomial ˆ,r h  associated with the method, 

satisfy 1, 1,2,..., .sr s k  

 

Theorem 1.2 

A LMM is convergent if and only if it is consistent and zero-stable. The proof of the 

theorem can be found in Henrici (1962). 
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Definition 1.7 (Block Method) 

According to Hall (1976), r-point block method is a method which simultaneously 

produce a block of approximations 1 2, ,...,n n n ry y y .  

Generally, ODEs can be classified into 2 types that is; stiff and nonstiff. Here we use 

the definition given by Lambert (1991). 

 

Definition 1.8  

The systems of ODEs (1.1) is said to be stiff if 

(i) Re 0, 1,2,...,t t m  and 

(ii) max Re min Ret t t t
 where t  are the eigenvalues of the Jacobian 

matrix, .
f

J
y

 

Otherwise it is defined as nonstiff. 
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