

UNIVERSITI PUTRA MALAYSIA
DIRECT TWO-POINT BLOCK METHODS FOR SOLVING NONSTIFF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING BACKWARD DIFFERENCE FORMULATION

DIRECT TWO-POINT BLOCK METHODS FOR SOLVING NONSTIFF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING BACKWARD DIFFERENCE FORMULATION

HAZIZAH BINTI MOHD IJAM

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2014

DIRECT TWO-POINT BLOCK METHODS FOR SOLVING NONSTIFF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING BACKWARD DIFFERENCE FORMULATION

By

HAZIZAH BINTI MOHD IJAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for noncommercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DIRECT TWO-POINT BLOCK METHODS FOR SOLVING NONSTIFF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING BACKWARD DIFFERENCE FORMULATION

By
 HAZIZAH BINTI MOHD IJAM

September 2014

Chair : Mohamed bin Suleiman, PhD

Faculty : Science

This thesis describes the development of a Two-Point Block Backward Difference method (2PBBD) for solving system of nonstiff higher order Ordinary Differential Equations (ODEs) directly. The method computes the approximate solutions; y_{n+1} and y_{n+2} at two points x_{n+1} and x_{n+2} simultaneously within an equidistant block.

This method has the advantages of calculating the integration coefficients only once at the beginning of the integration. The relationship between the explicit and implicit coefficients has also been derived. These motivate us to formulate the association between the formula for predictor and corrector. The relationship between the lower and higher order derivative also have been established.

New explicit and implicit block methods using constant step sizes and three back values have also been derived. The algorithm developed is implemented using Microsoft Visual C++ 6.0 and run by High Performance Computer (HPC) using the Message Passing Interface (MPI) library.

The stability properties for the 2PBBD methods are analyzed to ensure its suitability for solving nonstiff Initial Value Problems (IVPs). The stability analysis shows that the method is stable.

Numerical results are presented to compare the performances of this method with the previously published One-Point Backward Difference (1PBD) and Two-Point Block Divided Difference (2PBDD) methods. The numerical results indicated that for finer step sizes, 2 PBBD performs better than 1 PBD and 2 PBDD .

KAEDAH BLOK DUA-TITIK SECARA LANGSUNG BAGI MENYELESAIKAN SISTEM PERSAMAAN PEMBEZAAN BIASA TAK KAKU PERINGKAT TINGGI MENGGUNAKAN FORMULA PEMBEZAAN KE BELAKANG

Oleh

HAZIZAH BINTI MOHD IJAM

September 2014

Pengerusi : Mohamed bin Suleiman, PhD

Fakulti : Sains

Tesis ini menerangkan tentang pembentukan kaedah Dua-Titik Blok Pembezaan Ke Belakang (2TBPB) bagi menyelesaikan sistem pembezaan biasa tak kaku peringkat tinggi secara langsung. Kaedah ini menghitung penyelesaian anggaran; y_{n+1} dan y_{n+2} pada dua titik x_{n+1} dan x_{n+2} secara serentak dalam blok yang sama jarak.

Kaedah ini mempunyai kelebihan dimana pekali kamiran yang digunakan diperoleh hanya sekali pada awal proses pengamiran. Hubungan antara pekali tersurat dan tersirat juga telah diperoleh. Maka, ia mendorong untuk merumuskan hubungan di antara peramal dan pembetul. Hubungan di antara peringkat pembezaan terendah dan tertinggi juga diperoleh.

Kaedah baru blok tersurat dan tersirat dengan menggunakan saiz langkah malar dan tiga nilai belakang dibentuk dalam tesis ini. Algoritma yang terhasil dilaksanakan dengan menggunakan Microsoft Visual C++ 6.0 dan dijalankan oleh Komputer Prestasi Tinggi (KPT) dengan menggunakan perpustakaan Mesej Antara Muka (MAM).

Sifat-sifat kestabilan bagi kaedah 2TBPB dianalisis untuk memastikan kesesuaiannya untuk menyelesaikan Masalah Nilai Awal (MNA) tak kaku. Analisis kestabilan menunjukkan bahawa kaedah ini stabil.

Keputusan berangka dikemukakan untuk membandingkan pencapaian kaedah ini dengan kaedah yang telah diterbitkan Satu-Titik Pembezaan ke Belakang (1TPB) dan Dua-Titik Blok Pembezaan Dibahagi (2TBPD). Keputusan berangkanya menunjukkan bahawa untuk saiz langkah yang lebih kecil, 2TBPB lebih baik daripada 1TPB dan 2TBPD.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim. In the Name of Allah, the most Compassionate and the most Merciful. Praise be to Allah, Lord of the Worlds. Alhamdulillah, for His blessings showered upon me for making the writing of this thesis a successful one. I would like to express my great appreciation for the guidance and assistance received throughout the journey of the thesis writing.

First and foremost, I would like to express my sincere and deepest gratitude to the chairman of the supervisory committee, Prof. Dato' Dr. Mohamed bin Suleiman for his kind moral support, constructive criticisms, continuous motivation and excellent supervision. This work cannot be done successfully without his help and encouragement.

Many thanks are due to the co-supervisors; Dr. Zarina Bibi Ibrahim and Dr. Norazak Senu for their valuable advice, guidance and encouragement throughout my research.

I am also indebted to Ministry of Higher Education Malaysia and School of Graduate Studies for the financial support that enabled me to pursue this research.

My deepest appreciations are to my friends who kindly provided valuable, helpful and constructive comments in the preparation of this thesis. Special acknowledgement is extended to my research colleague, Ahmad Fadly Nurullah who have spend great amount of valuable time in discussing and developing the algorithms during the course of my research. Finally, thank you very much to my family for their continuous understanding, encouragement, patience and love.

I certify that a Thesis Examination Committee has met on 5 September 2014 to conduct the final examination of Hazizah binti Mohd Ijam on her thesis entitled "Direct TwoPoint Block Methods for Solving Nonstiff Higher Order Ordinary Differential Equations using Backward Difference Formulation" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Azmi bin Jaafar, PhD

Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Fudziah binti Ismail, PhD

Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Rushdan bin Md. Said, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Shaharuddin Salleh, PhD

Professor
Universiti Teknologi Malaysia
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Dato' Mohamed bin Suleiman, PhD Professor
Institute for Mathematical Research
Universiti Putra Malaysia
(Chairman)

Zarina Bibi Ibrahim, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Norazak Senu, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully - owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice - Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 - 2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: \qquad Date: \qquad

Name and Matric No.: Hazizah Binti Mohd Ijam GS24555

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:

Prof. Dato' Dr.
Mohamed bin
Suleiman

Signature:
Name of
Member
of Supervisory Dr. Norazak Senu
Committee:

TABLE OF CONTENTS

Page
ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF ABREVIATIONS xv
CHAPTER
1 INTRODUCTION 1
1.1 Introduction 1
1.2 The Initial Value Problems (IVPs) 1
1.3 Linear Multistep Method (LMM) 2
2 LITERATURE REVIEW 6
2.1 Literature Review 6
2.2 Objective of the Study 7
2.3 Thesis Outline 8
3 SOLVING NONSTIFF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS USING TWO-POINT BLOCK METHODS 9
3.1 Introduction 9
3.2 Derivation of Higher Order Explicit Integration Coefficients for First Point 11
3.2.1 Integration of $1^{\text {st }}$ Derivative 11
3.2.2 Integration of $2^{\text {nd }}$ Derivative 13
3.2.3 Integration of $(\mathrm{d}-1)^{\text {th }}$ Derivative 16
3.2.4 Integration of (d) ${ }^{\text {th }}$ Derivative 19
3.3 Derivation of Higher Order Implicit Integration Coefficients for First Point 22
3.3.1 Integration of $1^{\text {st }}$ Derivative 22
3.3.2 Integration of $2^{\text {nd }}$ Derivative 24
3.3.3 Integration of $(\mathrm{d}-1)^{\text {th }}$ Derivative 25
3.3.4 Integration of (d) ${ }^{\text {th }}$ Derivative 27
3.4 Relationship between the Explicit and Implicit Integration Coefficient for First Point 30
3.5 Derivation of Higher Order Explicit Integration Coefficients for Second Point 34
3.5.1 Integration of $1^{\text {st }}$ Derivative 34
3.5.2 Integration of $2^{\text {nd }}$ Derivative 35
3.5.3 Integration of (d-1) ${ }^{\text {th }}$ Derivative 37
3.5.4 Integration of (d) ${ }^{\text {th }}$ Derivative 39
3.6 Derivation of Higher Order Implicit Integration Coefficients for Second Point 42
3.6.1 Integration of $1^{\text {st }}$ Derivative 42
3.6.2 Integration of $2^{\text {nd }}$ Derivative 44
3.6.3 Integration of (d-1 $)^{\text {th }}$ Derivative 46
3.6.4 Integration of (d) ${ }^{\text {th }}$ Derivative 48
3.7 Relationship between the Explicit and Implicit Integration Coefficient for Second Point 50
3.8 Conclusion 54
4 ORDER AND STABILITY OF THE METHOD 55
4.1 Order of the Method 55
4.1.1 Explicit Two-Point Block Method 55
4.1.2 Implicit Two-Point Block Method 58
4.2 Stability of the Method 61
4.2.1 Explicit Two-Point Block Method 61
4.2.2 Implicit Two-Point Block Method 63
4.3 Conclusion 65
5 RESULT AND DISCUSSION 66
5.1 Test Problems 66
5.2 Numerical Results 68
5.3 Discussion 89
5.4 Conclusion 89
6 CONCLUSION AND FURTHER RESEARCH 91
6.1 Summary of Research 91
6.2 Further Research 91
REFERENCES 93
APPENDICES 96
BIODATA OF STUDENT 109
LIST OF PUBLICATION 110

LIST OF TABLES

Table Page
3.1 The Explicit Integration Coefficients for k from 0 to 6 for y_{n+1} 21
3.2 The Implicit Integration Coefficients for k from 0 to 6 for y_{n+1} 29
3.3 The Explicit Integration Coefficients for k from 0 to 6 for y_{n+2} 41
3.4 The Implicit Integration Coefficients for k from 0 to 6 for y_{n+2} 50
5.1 Numerical Results for Problem 1 69
5.2 Numerical Results for Problem 2 70
5.3 Numerical Results for Problem 3 71
5.4 Numerical Results for Problem 4 72
5.5 Numerical Results for Problem 5 73
5.6 Numerical Results for Problem 6 74
5.7 Numerical Results for Problem 7 75
5.8 Numerical Results for Problem 8 76
5.9 Numerical Results for Problem 9 77
5.10 Numerical Results for Problem 10 78

LIST OF FIGURES

Figure Page
3.1 Two-Point Method 9
3.2 Two-Point Two-Block Method 9
4.1 Stability Region of Explicit Two-Point Block Method 62
4.2 Stability Region of Implicit Two-Point Block Method 65
5.1 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 1 79
5.2 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}$ (TIME) for Problem 1 79
5.3 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 2 80
5.4 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 2 80
5.5 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 3 81
5.6 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 3 81
5.7 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}(H)$ for Problem 4 82
5.8 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 4 82
5.9 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 5 83
5.10 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 5 83
5.11 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}(H)$ for Problem 6 84
5.12 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 6 84
5.13 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}(H)$ for Problem 7 85
5.14 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}$ (TIME) for Problem 7 85
5.15 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 8 86
5.16 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 8 86
5.17 Graph of $\log _{10}(\mathrm{MAXE})$ Plotted Against $\log _{10}(\mathrm{H})$ for Problem 9 87
5.18 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}$ (TIME) for Problem 9 87
5.19 Graph of $\log _{10}($ MAXE $)$ Plotted Against $\log _{10}(H)$ for Problem $10 \quad 88$
5.20 Graph of $\log _{10}$ (MAXE) Plotted Against $\log _{10}$ (TIME) for Problem 1088

LIST OF ABBREVIATIONS

ODEs	Ordinary Differential Equations
PDEs	Partial Differential Equations
BDF	Backward Differentiation Formula
BBDF	Block Backward Differentiation Formula
IVPs	Initial Value Problems
LMM	Linear Multistep Method
\mathcal{L}	Linear Operator
LTE	Local Truncation Error
GE	Global Error
PECE	Predict-Evaluate-Correct-Evaluate
2PBBD	Two-Point Block Backward Difference Method
2PBDD	Two-Point Block Divided Difference Method
1PBD	One-Point Backward Difference Method
H	Step size
TS	Total Steps
MAXE	Maximum Error
AVER	Average Error
TIME	Execution Time in microseconds
HPC	High Performance Computer

CHAPTER 1

INTRODUCTION

1.1 Introduction

Many mathematical models used in science and technology are developed based on differential equations. Differential equations play a prominent role in many disciplines, for example in physics, chemistry, biology, electronics, engineering, economics e.t.c. The theory of differential equations has been developed by numerous mathematicians. In general, it can be divided into these two categories; ordinary differential equations (ODEs) and partial differential equations (PDEs). We are focusing on ODEs which can be divided in two subsystems; one stiff and the other nonstiff.

The problem of determining the charge or current in an electric circuit, the problem of determining the vibrations of a wire or membrane and the reactions of chemicals can be formulated into differential equations. Since many differential equations have no analytic solution, hence a numerical approximation to the solution is often suggested.

To solve ODEs numerically, there are two general classes of numerical methods, for instance single step method and multistep method. The single step method is a method which uses only one previous computed value to obtain the next value. Euler's method and Runge-Kutta method are examples of single step methods. On the contrary, the multistep method is a method which requires starting values from several previous steps. This method can be found in Adams formula and Backward Differentiation Formula (BDF).

1.2 The Initial Value Problems (IVPs)

For the sake of simplicity of discussion and without loss of generality, we will discuss the single equation

$$
\begin{equation*}
y^{(d)}=f(x, \tilde{Y}) \tag{1.1}
\end{equation*}
$$

with $\tilde{Y}(a)=\tilde{\eta}$ in the interval $a \leq x \leq b$ where

$$
\begin{gathered}
\tilde{Y}(x)=\left(y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(d-1)}\right) \\
\tilde{\eta}=\left(\eta, \eta^{\prime}, \eta^{\prime \prime}, \ldots, \eta^{(d-1)}\right) .
\end{gathered}
$$

With regard to (1.1), we make an assumption that for each $f(x, \tilde{Y})$, it satisfies the following conditions;
a) $f(x, \tilde{Y})$ is defined and continuous in the interval $a \leq x \leq b,-\infty<y<\infty$, where a and b are finite.
b) There exists a constant L, known as Lipschitz constant, such that for arbitrary $x \in[a, b]$ and any \tilde{Y} and $\tilde{Y}^{*},\left|f(x, \tilde{Y})-f\left(x, \tilde{Y}^{*}\right)\right| \leq L\left\|\tilde{Y}-\tilde{Y}^{*}\right\|$. This condition is known as Lipschitz condition.

Theorem 1.1 (Existence and Uniqueness)

If the equation (1.1) satisfies the condition in a) and b), then there exists a unique solution of $y(x)$ with the following three properties:
i) $\quad y(x)$ is continuous and d times differentiable for $x \in[a, b]$,
ii) $\quad y^{(d)}(x)=f(x, \tilde{Y})$ for $x \in[a, b]$,
iii) $\quad \tilde{Y}(a)=\widetilde{\eta}$.

The proof for the first order case was given by Henrici (1962). For the case of higher order system $(d>1)$, the problem (1.1) is reduced to a system of first order equations and then the theorem applies.

For the following discussion, we will consider the IVPs for the single equation, which can be written in the form

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y(a)=\eta, \quad a \leq x \leq b . \tag{1.2}
\end{equation*}
$$

1.3 Linear Multistep Method (LMM)

These methods require the information computed from the previous steps to approximate the solution at the current step. For example, in the k-step method the values of y computed at the previous k step i.e. at $x_{n+j}=x_{n}+j h, j=0,1, \ldots, k-1$ are used to calculate x_{n+k}. The general LMM is given by

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=o}^{k} \beta_{j} f_{n+j} \tag{1.3}
\end{equation*}
$$

where α_{j} and β_{j} are constants. We also assume that $\alpha_{k} \neq 0$ and that not both α_{0} and β_{0} are zero. If $\beta_{k}=0, y_{n+k}$ occurs only on the left side of (1.3), the method is called an explicit method. If $\beta_{k} \neq 0, y_{n+k}$ is present on both sides of (1.2) and the method is known as an implicit method.

Lambert (1973) discusses the specific linear multistep methods can be derived using Taylor expansions, numerical integration and interpolation.

Definition 1.1

The LMM (1.3) is convergent if for all initial value problems (1.2) subject to the hypotheses of Theorem 1.1, we have

$$
\lim _{\substack{h \rightarrow 0 \\ n h=x-a}} y_{n}=y\left(x_{n}\right)
$$

holds for all $x \in[a, b]$, and for all solution $\left\{y_{n}\right\}$ of the difference equation (1.3) satisfying starting conditions $y_{\mu}=\eta_{\mu}(h)$ for which $\lim _{h \rightarrow 0} \eta_{\mu}(h)=\eta, \mu=0,1, \ldots$, $k-1$.

Define the linear difference operator \mathcal{L} associated with (1.3) as

$$
\begin{equation*}
\mathcal{L}[y(x) ; h]=\sum_{j=0}^{k}\left[\alpha_{j} y(x+j h)-h \beta_{j} y^{\prime}(x+j h)\right] \tag{1.4}
\end{equation*}
$$

where $y(x)$ is an arbitrary function continuously differentiable on $[a, b]$. Expanding $y(x+j h)$ and $y^{\prime}(x+j h)$ in (1.4) as Taylor series about x yields

$$
\begin{equation*}
\mathcal{L}[y(x) ; h]=C_{0} y(x)+C_{1} h y^{\prime}(x)+\cdots+C_{q} h^{q} y^{(q)}(x)+\cdots \tag{1.5}
\end{equation*}
$$

where,

$$
\begin{gather*}
C_{0}=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{k} \\
C_{1}=\alpha_{1}+2 \alpha_{2}+\cdots+k \alpha_{k}-\left(\beta_{1}+\beta_{2}+\cdots+\beta_{k}\right) \\
\vdots \tag{1.6}\\
\vdots \\
C_{q}=\frac{1}{q!}\left(\alpha_{1}+2^{q} \alpha_{2}+\cdots+k^{q} \alpha_{k}\right) \\
-\frac{1}{(q-1)!}\left(\beta_{1}+2^{(q-1)} \beta_{2}+\cdots+k^{(q-1)} \beta_{k}\right) \\
q=2,3, \ldots
\end{gather*}
$$

Definition 1.2

The difference operator (1.4) and the associated LMM (1.3) are said to be of the order p if $C_{0}=C_{1}=\cdots=C_{p}=0, C_{p+1} \neq 0$. The first of non-vanishing coefficient, C_{p+1} is called the error constant.

Definition 1.3

The local truncation error (LTE) at x_{n+k} of the linear multistep method (1.3) is the linear difference operator $\mathcal{L}[y(x) ; h]$ as defined in (1.4) when $y(x)$ is the exact solution of the IVP (1.2).

In order to compute LTE at x_{n+k}, we made the localizing assumption that no previous truncation errors have been made, that is $y_{n+j}=y\left(x_{n+j}\right), j=0,1, \ldots, k-1$. If no such assumption is made, then the difference between the exact and computed solution, i.e. $y\left(x_{n+k}\right)-y_{n+k}$ gives the global error (GE).

Definition 1.4

If the LMM (1.3) has order $p \geq 1$ the method is then said to be consistent. Referring to (1.6), the method (1.3) is consistent if and only if

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j}=0 \text { and } \sum_{j=0}^{k} j \alpha_{j}=\sum_{j=0}^{k} \beta_{j} \tag{1.7}
\end{equation*}
$$

The equation $\rho(\xi)=\sum_{j=0}^{k} \alpha_{j} \xi^{j}$ and $\sigma(\xi)=\sum_{j=0}^{k} \beta_{j} \xi^{j}$ are defined to be the first and second characteristic polynomials respectively. It follows from (1.7) that the linear multistep method is consistent if and only if $\rho(1)=0$ and $\rho^{\prime}(1)=\sigma(1)$. Therefore, the first characteristic polynomial $\rho(\xi)$ always has a root at 1 for a consistent method. This root is better known as the principal root and denoted by ξ_{1}. The other roots, $\xi_{s}, s=2,3, \ldots, k$, are called spurious roots. Since consistency controls only the principal and not the spurious roots, it implies that a consistent method is not necessarily convergent.

Definition 1.5

The LMM (1.3) is zero-stable if the first characteristic polynomial $\rho(\xi)$ has no root whose modulus is greater than 1 and every root with modulus 1 is simple.

Definition 1.6

The method (1.3) is said to be absolutely stable in a region \mathfrak{R} of the complex plane if, for all $\hat{h} \in \mathfrak{R}$, all roots of the stability polynomial $\pi r, \hat{h}$ associated with the method, satisfy $\left|r_{s}\right|<1, s=1,2, \ldots, k$.

Theorem 1.2

A LMM is convergent if and only if it is consistent and zero-stable. The proof of the theorem can be found in Henrici (1962).

Definition 1.7 (Block Method)

According to Hall (1976), r-point block method is a method which simultaneously produce a block of approximations $y_{n+1}, y_{n+2}, \ldots, y_{n+r}$.

Generally, ODEs can be classified into 2 types that is; stiff and nonstiff. Here we use the definition given by Lambert (1991).

Definition 1.8

The systems of ODEs (1.1) is said to be stiff if
(i) $\operatorname{Re} \lambda_{t}<0, t=1,2, \ldots, m$ and
(ii) $\max _{t}\left|\operatorname{Re} \lambda_{t}\right| \gg \min _{t}\left|\operatorname{Re} \lambda_{t}\right|$ where λ_{t} are the eigenvalues of the Jacobian matrix, $J=\left(\frac{\partial f}{\partial y}\right)$.
Otherwise it is defined as nonstiff.

REFERENCES

Awoyemi, D. O. (2003). A P-stable linear multistep methods for solving general third order ordinary differential equations. International Journal of Computer Matematics , 80 (8), 985-991.

Burrage, K. (1993). Parallel Methods for Initial Value Problems. Applied Numerical Mathematics, 11, 5-25.

Butcher, J. C. (1965). A modified multistep method for the numerical integration of ordinary differential equations. Journal of the Association for Computing Machinery, 12 (1), 124-135.

Chu, M. T., \& Hamilton, H. (1987). Parallel Solution of ODE's by Multi-Block Methods. SIAM J. Sci. Stat. Comp. , 8 (3), 342-353.

Daele, M. V., Berghe, G. V., \& Meyer, H. D. (1996). A general theory of stabilized extended one-step methods for ODEs. International Journal of Computer Mathematics , 60 (3-4), 253-263.

Edward Jr, C. H., \& Penny, D. E. (1993). Elementary Differential Equations with Boundary Value Problem. Englewood Cliffs, New Jersey: Prentice-Hall.

Franco, J. M., \& Palacios, M. (1990). High-order P-stable multistep methods. Journal of Computational and Applied Mathematics , 30 (1), 1-10.

Frank, J., Hundsdorfer, W., \& Verwer, J. G. (1997). On the stability of implicit-explicit linear multistep methods. Applied Numerical Mathematics , 25 (2-3), 193-205.

Gear, C. W. (1966). The Numerical Integration of Ordinary Differential Equations. Math. Comp. , 21, 146-156.

Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations. New York: John Wiley \& Sons, Inc.

Ibrahim, Z. B. (2006). Block Multistep Methods for Solving Ordinary Differential Equations. PhD Thesis, Universiti Putra Malaysia.

Jacques, I. B. (1989). Extended one-step methods for the numerical solution of ordinary differential equations. International Journal of Computer Mathematics , 29 (2-4), 247-255.

Jain, M. K., Jain, R. K., \& Krishnaiah, U. A. (1979). P-stable singlestep methods for periodic initial-value problems involving second-order differential equations. Journal of Engineering Mathematics , 13 (4), 317-326.

Krogh, F. T., (1968). A variable step, variable order multistep method for the numerical solution of ordinary differential equations. In Proceedings of the IFIP Congress in Information Processing, vol. 68, pp. 194-199.

Lambert, J. D. (1973). Computational Methods in Ordinary Differential Equations. New York: John Wiley \& Sons, Inc.

Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. New York: John Wiley \& Sons, Inc.

Majid, Z. (2004). Parallel Block Methods for Solving Ordinary Differential Equations . PhD Thesis, Universiti Putra Malaysia.

Milne, W. E. (1953). Numerical Solution of Differential Equations. New York: John Wiley.

Musa, H. (2013). New Classes of Block Backward Differentiation Formula for Solving Stiff Initial Value Problems . PhD Thesis, Universiti Putra Malaysia.

Omar, Z. B. (1999). Parallel Block Method for Solving Higher Order Ordinary Differential Equations Directly . PhD Thesis, Universiti Putra Malaysia.

Rasedee, A. F. (2009). Comparison of Direct Method and Reduction to First Order For Solving Higher Order Ordinary Differential Equations (ODEs) . Master Thesis, Universiti Putra Malaysia.

Rosser, J. B. (1967). A Runge-Kutta for all seasons. Siam Review, 9 (3), 417-452.
Rusel, R. D. (1972). A Collocation Method for Boundary Value Problems. Numer. Math. , 19:1-28.

Russell, R. D., \& Shampine, L. F. (1972). A Collocation Method for Boundary Value Problems. Numerische Mathematics , 19:1-28.

Rutishauser, H. (1960). Bemerkungen zur Numerischen Integration Gewohnlicher Differentialgleichungen n-ter Ordnung. Numer. Math , 2:263-279.

Shampine, L. F., \& Gordon, M. K. (1975). Computed Solutions of Ordinary Differential Equations. Freeman.

Shampine, L. F., \& Watts, H. A. (1969). Block Implicit One-Step Methods. Math. Comp. , 23, 731-740.

Sommeijer, B. P. (1993). Paralleism in the Numerical Integration of Initial Value Problems.

Suleiman, M. B. (1979). Generalised Multistep Adams and Backward Differentiation Methods for the Solution of Stiff and Non-Stiff Ordinary Differential Equations . PhD Thesis, University of Manchester.

Suleiman, M. B. (1989). Solving Higher Order ODEs Directly by the Direct Integration Method. Applied Mathematics and Computation, 33 (3), 197-219.

Watts, H. A., \& Shampine, L. F. (1972). A-stable Block Implicit One-Step Methods. BIT , 12, 252-266.

Worland, P. B. (1976). Parallel Methods for the Numerical Solution of Ordinary Differential Equations. IEEE Transactions on Computers , C-25, 1045-1048.

