UNIVERSITI PUTRA MALAYSIA

FORMULATION OF NANOEMULSIONS ENCAPSULATED WITH POTENTIAL ANTICANCER DRUG, BETULINIC ACID

NUR NADIAH BINTI ABDUL RASHID

FS 2014 7
FORMULATION OF NANOEMULSIONS ENCAPSULATED WITH POTENTIAL ANTICANCER DRUG, BETULINIC ACID

By

NUR NADIAH BINTI ABDUL RASHID

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of
the requirement for the degree of Master of Science

FORMULATION OF NANOEMULSIONS ENCAPSULATED WITH
POTENTIAL ANTICANCER DRUG, BETULINIC ACID

By

NUR NADIAH BINTI ABDUL RASHID

January 2014

Chairman : Assoc. Prof. Intan Safinar Ismail, PhD
Faculty : Science

The betulinic acid provided was recrystallized in order to obtain high purity compound
and was confirmed by spectroscopic analysis. Betulinic acid was incorporated in the oil
phase prior to the construction of ternary phase diagram. Phase behaviours of soybean
oil and non-ionic surfactants were determined through the construction of ternary phase
diagrams. The phase behaviours were affected by hydrophilic-lipophilic balance (HLB)
value of surfactants. Higher HLB values produced larger one-phase regions: homogenous and isotropic, in ternary phase diagrams of soybean oil/non-ionic surfactant/deionized water and soybean oil/non-ionic surfactant-co-surfactant/deionized water. The largest one-phase regions were formed by soybean oil/Cremophor EL-Span 20/deionized water formulation.

A few compositions with 70% water content were selected on the ternary phase diagram
of soybean oil/Cremophor EL/deionized water system as the formulation of emulsions.
The selected compositions were 15:15:70, 18:12:70, 21:9:70 and 24:6:70. The first set of
emulsions was prepared via low-energy emulsification method, while the other set was
formulated via high-energy emulsification method using a high-pressure homogenizer
with homogenizing cycle of 2, 4, 6 and 8. Characteristics of emulsions were studied. The
average particle size of low-energy formulated emulsions was larger than 130 nm at
week 1 and the size increased rapidly throughout 12-weeks of study while for emulsions
formulated via 8 homogenizing cycles, the average particle size was below 57 nm at
week 1 and remained below 100 nm after 12-weeks. Formulation of 24:6:70 produced
the smallest average size which was 59 nm.

The surface charge values for all formulations with betulinic acid were more negative
than -26.7 mV which indicates moderate stability of the emulsions. The stability of
emulsions was also studied via visual observation for 6 months. All high-energy formulated emulsions were still in one phase without any separation of layers observed. The pH values were between 3.9 to 4.1 for all formulations. Betulinic acid can still be detected by HPLC-RI detector in the selected 24:6:70 formulation even after 6 months of storage.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN NANOEMULSI YANG MENGANDUNGI UBAT ANTI KANSER YANG BERPOTENSI, ASID BETULINIK

Oleh

NUR NADIAH BINTI ABDUL RASHID

Januari 2014

Pengerusi : Prof. Madya Intan Safinar Ismail, PhD
Fakulti : Sains

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Allah S.W.T for the opportunity and strength given in completing this study. Million appreciations to my helpful supervisor, Assoc. Prof. Dr. Intan Safinar Ismail for all the guidance and knowledge given throughout this hard-earned success but yet beautiful journey. Thank you for all the patience and advice. My appreciation also goes to my former supervisor, Prof. Dr. Faujan bin Ahmad who has joined Universiti Teknologi Mara recently for initiating the ideas and giving full support in starting the whole research. Not to be missed, I would also like to thank my co-supervisors, Dr. Siti Salwa Abd Gani and Assoc. Prof. Dr. Latifah Saiful Yazan for sparing their time for discussions, encouragement and moral supports.

Special thanks to the staffs of the Department of Chemistry, Faculty of Science and Institute of Bioscience (IBS), Universiti Putra Malaysia for providing the facilities and lending their hands in this research. I would like to thank Ms. Nur Diyana Syamim, research assistant from Faculty of Food Science and Technology for analyzing my samples and providing information on my chromatograms. To my housemates, labmates and other master and PhD students who have helped me directly or indirectly, thank you.

My endless appreciation to my family especially my parents; Dr. Abdul Rashid bin Baba and Mrs. Halilah binti Midon for supporting me this whole time with patience. To my dearest husband, Dr. Hijaz bin Hj Ridzwan, my true supporter, who picked me up when I was down; and to my twin boys, my little cheerers: Aiman Yusuf and Adam Mikail, I cannot thank all of you enough.

Last but not least, I would like to acknowledge Universiti Putra Malaysia and Ministry of Higher Education (MOHE) for the financial support via GRF scholarship and MyMaster under MyBrain15 program respectively.
I certify that a Thesis Examination Committee has met on 28 January 2014 to conduct the final examination of Nur Nadiah binti Abdul Rashid on her thesis entitled "Formulation of Nanoemulsions Encapsulated with Potential Anticancer Drug Betulinic Acid" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Asollah bin Hj Md Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd Zobir bin Hussein, PhD
Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Internal Examiner)

Thahira Begum, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sivakumar Manickam, PhD
Professor
University of Nottingham (Malaysia Campus)
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 April 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement of the degree of Master of Science. The members of supervisory committee were as follows:-

Intan Safinar Ismail, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Siti Salwa Abdul Gani, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Latifah Saiful Yazan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously and concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed, or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date:__________________

Name and Matric No.: Nur Nadiah binti Abdul Rashid (GS28075)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Intan Safinar Ismail, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Latifah Saiful Yazan, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Siti Salwa Abdul Gani, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1

2 LITERATURE REVIEW

2.1 Pharmaceuticals

2.1.1 Market demand and values

2.1.2 Importance

2.1.3 Anticancer drugs in pharmaceutical industry

2.2 Cancer

2.2.1 The nature of cancer cells

2.3 Betulinic acid

2.3.1 Anticancer activity

2.4 Delivery system

2.4.1 Emulsions

2.4.2 Types of emulsion

i. Oil-in-water

ii. Water-in-oil

2.4.3 Nanoemulsion

2.5 Surfactant

2.5.1 Types of surfactant

i. Anionic

ii. Cationic

iii. Amphoteric

iv. Non-ionic

2.6 Characteristics of emulsion

2.6.1 Particle size

2.6.2 Electrical charge: Zeta potential

3 MATERIALS AND METHODS

3.1 Materials

3.2 Methods

3.2.1 Recrystallization of betulinic acid
3.2.2 Betulinic acid incorporation 16
3.2.3 Construction of ternary phase diagrams 17
i. Soybean oil/non-ionic surfactant/deionized water 17
ii. Soybean oil/non-ionic surfactant-co-surfactant/deionized water 17
3.2.4 Selection of composition points 18
3.2.5 Formulation of emulsion 19
i. Low-energy emulsification method 19
ii. High-energy emulsification method 19
3.2.6 Characteristics of emulsion 19
i. Particle size measurement 19
ii. Surface charge measurement 19
iii. Stability study 20
iv. pH measurement 20
v. Qualitative analysis of betulinic acid 20

4 RESULTS AND DISCUSSION
4.1 Spectral characterization of betulinic acid 21
4.2 Phase behaviour study 24
Effect of phase behaviour of soybean oil with respect to different non-ionic surfactants 24
i. Soybean oil/Span 20/deionized water 24
ii. Soybean oil/Cremophor EL/deionized water 24
iii. Soybean oil/Tween 80/deionized water 26
Effect of phase behaviour of soybean oil with respect to Different combinations of non-ionic surfactants 27
i. Soybean oil/Cremophor EL-Span 20/deionized water 27
ii. Soybean oil/Cremophor EL-Tween 80/deionized water 28
4.3 Selection of composition points in the ternary phase diagram 29
4.4 Preparation of emulsions using Cremophor EL as surfactant 30
4.5 Characteristics of emulsion 31
4.5.1 Particle size 31
i. Low-energy emulsification method 31
ii. High-energy emulsification method 33
4.5.2 Surface charge 36
4.5.3 Stability study 39
i. Effect of different soybean oil/Cremophor EL/deionized water compositions 39
ii. Effect of high-pressure homogenization cycle 39
5 CONCLUSIONS

REFERENCES 45
APPENDICES 49
BIODATA OF STUDENT 60
LIST OF PUBLICATIONS 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>32</td>
</tr>
<tr>
<td>4.3</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>36</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>4.8</td>
<td>40</td>
</tr>
<tr>
<td>4.9</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Table 2.1**: Global pharmaceutical top markets, 2009-2011
- **Table 2.2**: Formation of different type of emulsions by using surfactants with different HLB values
- **Table 3.1**: The compositions of each soybean oil/non-ionic surfactant sample mixture
- **Table 4.1**: The \(^1\)H NMR and \(^{13}\)C NMR data of betulinic acid
- **Table 4.2**: Particle size of soybean oil/Cremophor EL/deionized water formulation without betulinic acid
- **Table 4.3**: Particle size of soybean oil/Cremophor EL/deionized water formulation with betulinic acid
- **Table 4.4**: Particle size of soybean oil/Cremophor EL/deionized water formulation without betulinic acid at 8 homogenizing cycle
- **Table 4.5**: Particle size of soybean oil/Cremophor EL/deionized water formulation with betulinic acid at 8 homogenizing cycle
- **Table 4.6**: The stability behaviour of emulsion based on zeta potential value
- **Table 4.7**: The stability study in 6 months at 2 different temperatures on emulsions without betulinic acid formulated via low-energy emulsification method
- **Table 4.8**: The stability study in 6 months at 2 different temperatures on emulsions with betulinic acid formulated via low-energy emulsification method
- **Table 4.9**: The stability behaviour of emulsions with and without betulinic acid formulated at 8 homogenizing cycles
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Global pharmaceutical forecast 2009-2014</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustrations of normal and cancer cells</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of betulinic acid</td>
</tr>
<tr>
<td>2.4</td>
<td>Surfactant interaction for oil-in-water emulsion and water-in-oil emulsion</td>
</tr>
<tr>
<td>2.5</td>
<td>Structure of sodium dodecyl sulphate</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure of benzethonium chloride</td>
</tr>
<tr>
<td>2.7</td>
<td>General structure of imino acetates</td>
</tr>
<tr>
<td>2.8</td>
<td>Structure of sorbitanmonolaurate (Span 20)</td>
</tr>
<tr>
<td>2.9</td>
<td>Structure of polyoxyethylene (20) sorbitan mono-oleate (Tween 80)</td>
</tr>
<tr>
<td>2.10</td>
<td>Illustration of zeta potential technique</td>
</tr>
<tr>
<td>3.1</td>
<td>An example of soybean oil/non-ionic surfactant/deionized water ternary phase diagram</td>
</tr>
<tr>
<td>4.1</td>
<td>Infrared spectrum of betulinic acid</td>
</tr>
<tr>
<td>4.2</td>
<td>NMR spectrum of betulinic acid</td>
</tr>
<tr>
<td>4.3</td>
<td>Ternary phase diagram of soybean oil/Span 20/deionized water</td>
</tr>
<tr>
<td>4.4</td>
<td>Ternary phase diagram of soybean oil/Cremophor EL/deionized water</td>
</tr>
<tr>
<td>4.5</td>
<td>Ternary phase diagram of soybean oil/Tween 80/deionized water</td>
</tr>
<tr>
<td>4.6</td>
<td>Ternary phase diagram of soybean oil/Cremophor EL-Span 20/deionized water</td>
</tr>
<tr>
<td>4.7</td>
<td>Ternary phase diagram of soybean oil/Cremophor EL-Tween 80/deionized water</td>
</tr>
<tr>
<td>4.8</td>
<td>Selection points of composition on soybean oil/Cremophor EL/deionized water ternary phase diagram</td>
</tr>
<tr>
<td>4.9</td>
<td>Average particle size of soybean oil/Cremophor EL/deionized water formulations prepared under low-energy emulsification method</td>
</tr>
<tr>
<td>4.10</td>
<td>Average particle size of soybean oil/Cremophor EL/deionized water formulations at 8 homogenizing cycles</td>
</tr>
<tr>
<td>4.11</td>
<td>The average surface charge (zeta potential) of soybean oil/Cremophor EL/deionized water formulations via low-energy method without betulinic acid</td>
</tr>
<tr>
<td>4.12</td>
<td>The average surface charge (zeta potential) of soybean oil/Cremophor EL/deionized water formulations via low-energy method with betulinic acid</td>
</tr>
<tr>
<td>4.13</td>
<td>The average surface charge (zeta potential) of soybean oil/Cremophor EL/deionized water formulations after 8 homogenizing cycles without betulinic acid</td>
</tr>
<tr>
<td>4.14</td>
<td>The average surface charge (zeta potential) of soybean oil/Cremophor EL/deionized water formulations after 8 homogenizing cycles with betulinic acid</td>
</tr>
<tr>
<td>4.15</td>
<td>HPLC chromatogram of betulinic acid standard solution</td>
</tr>
<tr>
<td>4.16</td>
<td>HPLC chromatogram of betulinic acid in sample</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>betulinic acid</td>
</tr>
<tr>
<td>DLS</td>
<td>dynamic light scattering</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HLB</td>
<td>hydrophilic-lipophilic balance</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>MOPI</td>
<td>Malaysian Organization of Pharmaceutical Industries</td>
</tr>
<tr>
<td>o/w</td>
<td>oil-in-water</td>
</tr>
<tr>
<td>o/w/o</td>
<td>oil-in-water-in-oil</td>
</tr>
<tr>
<td>PCCS</td>
<td>Photon cross correlation spectroscopy</td>
</tr>
<tr>
<td>PIT</td>
<td>phase inversion temperature</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>Span 20</td>
<td>sorbitan mono-laurate</td>
</tr>
<tr>
<td>Tween 80</td>
<td>polyoxyethylene(20) sorbitan mono-oleate</td>
</tr>
<tr>
<td>w/o</td>
<td>water-in-oil</td>
</tr>
<tr>
<td>w/o/w</td>
<td>water-in-oil-in-water</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Pharmaceutical products or more commonly known as medicines or drugs are fundamental components of both modern and traditional medicines. It is essential that such products are safe, effective, of good quality, and are prescribed and used rationally. The worldwide pharmaceuticals market growth is accelerating in this 21st century as the number of demand from consumer increases. This is due to increment of number of patients for all sorts of illnesses including cancer. Cancer is currently a fast recurring illness among men and women. According to World Health Organization (WHO), the global cancer rates could increase by 50% to 15 million by 2020. In many countries, more than a quarter of deaths are attributable to cancer.

One defining feature of cancer is the rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then invade adjoining parts of the body and spread to other organs. Statistically, there were 7.6 million people worldwide died because of cancer. Approximately 70% of cancer deaths occur in low and middle income countries (World Health Organization, 2011). World Cancer Report provides clear evidence that action on smoking, diet and infections can prevent one third of cancers and another one third can be cured by the modern treatments.

Betulinic acid has attracted the interests of researchers due to its variety of biological and pharmacological activities. It can be easily extracted from barks of huge trees. Betulinic acid is a naturally occurring pentacyclic triterpenoid which exhibits the anticancer, anti-HIV, antibacterial, antimalarial and anthelmintic activities. In addition, it is also reported to exhibit analgesic and anti-inflammatory properties (Fulda & Debatin, 2000; Yogeeswari & Sriram, 2005).

In these modern days, pharmaceutical products in the form of emulsions have been increasing in numbers. The main concern about emulsions is regarding its stability. According to Tadros in 2005, emulsions are thermodynamically stable. Emulsions with small particle size, generally below 500 nm are called as nanoemulsions. The idea of nanoemulsions formations has caught the attentions of industries due to its small average particle size. This small particle size property contributes to the improvement of drug carrier for active ingredients. It has been suggested that the encapsulation of poor-water soluble agents such as betulinic acid in nanoemulsions can improve the solubility.

Nanoemulsions, which have an average droplet size of 20 to 200 nm, have the ability to penetrate the membranes and have higher chances of reaching the targeted areas and
improve absorption of the active ingredients. The physical appearance of nanoemulsions is translucent but it depends on the materials used in the formulation. This property is due to the fact that light waves are scattered by the droplets.

The basic compositions of nanoemulsions formation are water, surfactant and oil or ester. The purpose of surfactant is to lower the surface tension of a liquid or the interfacial tension between two different liquids. Nanoemulsions can be successfully formed through high-energy emulsification method. In this research, the high-energy emulsification method used is high-pressure homogenization. Before the formulation undergoes high-pressure homogenization process, the emulsions are initially formulated through low-energy emulsification method which involves the stepwise addition of water to oil-surfactant mixture or stepwise addition of oil to water-surfactant mixture and mixed vigorously using vortex mixer.

Problem Statements

Betulinic acid has been discovered as an anticancer agent for more than a decade. The main disadvantage of betulinic acid is the poor water-solubility property. Human's body consist of more than 55% of water, which relates to the lower efficiency of betulinic acid. In contrast, betulinic acid has higher solubility property in oil and lipid phase. To combat solubility problem, betulinic acid is solubilised in oil-phase which is soybean oil, prior to the formulation of emulsion. Emulsions with large particle size are often related to low stability. In order to form small particle size emulsions with high stability, alternative preparation methods were used.

Objectives

i. To construct the ternary phase diagram of soybean oil/non-ionic surfactant/deionized water and soybean oil/non-ionic surfactant-co-surfactant/deionized water.

ii. To study the phase behaviour of the constructed phase diagrams and select the compositions based from the ternary phase diagram for formulation of nanoemulsions.

iii. To formulate nanoemulsion as drug carrier with encapsulation of betulinic acid based on soybean oil.

iv. To characterize the formulations through the stability study, particle size, zeta potential, pH value and drug analysis.
REFERENCES

