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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science 

 

SYNTHESIS OF MoVTeNb OXIDE CATALYSTS FOR PROPANE OXIDATION 

TO ACRYLIC ACID VIA MICROWAVE IRRADIATION-ASSISTED SLURRY 

METHOD 

 
  

By  

AHMAD AFANDI BIN MUDA 

AUGUST 2014 

 

Chairman : Assoc. Prof. Irmawati Ramli, PhD 

Faculty     : Science 

MoVTeNb mixed metal oxide catalyst has attracted great attention due to its ability to 

selectively oxidise propane to acrylic acid. In this work, the physicochemical properties 

of Mo1V0.3Te0.23Nb0.13 oxide catalysts synthesized via slurry method assisted with 

microwave irradiation were obtained. The catalysts were prepared in different pH of 

1.19, 1.80, 2.67 and 3.20. The resulting precursors were calcined in air at 553 K for        

1 hour followed by in nitrogen at 873 K for 2 hours. The catalysts were also post-treated 

through washing with hydrogen peroxide. All of the solids obtained were characterized 

by X-ray Diffraction (XRD), BET surface area measurement (SBET), Fourier Transform 

Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Temperature 

Programmed Reduction in hydrogen (H2–TPR), Transmission Electron Microscope 

(TEM) and Induced Couple Plasma-Atomic Emission Spectroscopy (ICP-AES).  XRD 

results of the calcined samples displayed the formation of mixed orthorhombic M1 and 

hexagonal M2 phases. However, when washed with hydrogen peroxide, the hexagonal 

M2 phase was eliminated and only orthorhombic M1 phase was found.  The removal of 

hexagonal phase contributes to the improved SBET values up to four times from its 

original value for each sample.  H2-TPR profiles revealed higher amount of removable 

lattice oxygen for after washed with H2O2 catalysts. TEM analysis found that the washed 

MoVTeNbOx catalyst showed rod structure which was in line with the observed 

morphology in SEM. ICP-AES analysis for washed catalysts revealed that the 

composition of Te less than that of the theoretical value. Catalytic test showed that the 

catalysts achieved up to 25 % propane selectivity towards acrylic acid with propane 

conversion reached up to 38 %.     

   



© C
OPYRIG

HT U
PM

ii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

  

PENGHASILAN MANGKIN MoVTeNb OKSIDA UNTUK PENGOKSIDAAN 

PROPANA KEPADA ASID AKRILIK MELALUI KAEDAH BUBURAN 

DIBANTU OLEH SINARAN GELOMBANG MIKRO  
 

 

Oleh 

AHMAD AFANDI BIN MUDA 

OGOS 2014 

Pengerusi : Prof. Madya Irmawati Ramli, PhD 

Fakulti     : Sains 

Campuran oksida logam MoVTeNb telah menarik perhatian kerana kebolehannya untuk 

mengoksida secara selektif propana kepada asid akrilik. Dalam kajian ini, sifat 

fisikokimia mangkin oksida Mo1V0.3Te0.23Nb0.13 yang dihasilkan dengan kaedah buburan 

dibantu oleh penyinaran gelombang mikro telah diperolehi. Mangkin berkenaan telah 

disediakan pada pH berbeza iaitu 1.19, 1.80, 2.67 dan 3.20. Prekursor terhasil telah 

dikalsin dalam udara pada 553 K selama 1 jam diikuti dengan nitrogen pada 873 K 

selama 2 jam. Mangkin juga dirawat lanjut dengan membasuh menggunakan hidrogen 

peroksida, H2O2. Semua pepejal diperolehi telah dianalisis oleh Pembelauan Sinar-X 

(XRD), Pengukuran Luas Permukaan (SBET), Spektroskopi Inframerah Transformasi 

Fourier (FTIR), Mikroskop Imbasan Elektron (SEM), Penurunan Terprogram Suhu 

dengan hidrogen (H2-TPR), Mikroskop Electron Transmisi (TEM) dan Plasma 

Gandingan Teraruh-Spektroskopi Pancaran Atom (ICP-AES). Keputusan XRD ke atas 

sampel mangkin yang telah dikalsinasi menunjukan pembentukan fasa campuran iaitu 

ortorombik M1 dan heksagonal M2. Walau bagaimanapun, apabila dirawat dengan 

hidrogen peroksida, fasa heksagonal M2 hilang dan hanya fasa ortorombik M1 yang 

tinggal. Penyingkiran fasa heksagonal menyumbang kepada luas permukaan SBET yang 

lebih tinggi sehingga empat kali ganda daripada nilai asal bagi setiap sampel. Profil TPR 

menunjukkan peningkatan jumlah oksigen kekisi tersingkir selepas dibasuh dengan  

H2O2. Analisis TEM mendapati mangkin MoVTeNbOx yang dibasuh menunjukkan 

struktur rod yang sejajar dengan morfologi yang diperhatikan dalam analisa SEM. 

Analisis ICP- AES pula meunjukkan mangkin yang dibasuh  mempunyai komposisi Te 

berkurangan daripada nilai sebenar. Ujian pemangkinan menunjukkan mangkin tersebut 

adalah aktif dengan pemilihan tindakbalas pengoksidaan propana kepada asid akrilik 

sebanyak 25 % dengan penukaran propana mencapai sehingga 38 %.   
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CHAPTER ONE 

INTRODUCTION 

1.1 General introduction 

At the end of 20th century, petrochemical industrialist recognizes the increasing 

availability of cheap C1 (methane), C2 (ethane), C3 (propane) and C4 (butane) alkanes 

and their potential as feedstock for fuels and chemicals (Lange, 2005). Since then, it has 

attracted the attention of scientists, engineers and researchers to investigate further on 

the applicability of these alkanes especially on replacing related olefins. The discovery 

of catalysts that shows some promising activity for the always inactive saturated 

hydrocarbons contributed to this interest.    

 

In petrochemical industry upgrading of a cheaper feedstock to higher valuable products 

is a continuous effort. One of the reaction used is a selective reaction of propane, 

substituting propene which is more expensive to produce a highly demanded oxygenated 

compounds (Bettahar et  al., 1996). The reactions utilize catalysts, which made of 25 % 

of catalyst market in petrochemical industry. Table 1 shows the fractions of the global 

petrochemical market of petrochemical (Mulla et al., 2002).  It is shown that the 

oxidation process becomes the second important contribution for the chemical catalyst 

world market in 2001.  

 

 

  Table 1: The 2001 global market of petrochemicals (Mulla et al., 2002) 

Area Billion US$ 

Ammonia and methanol 698 

Oxidation 537 

Hydrogenation 350 

Organic synthesis 292 

Aromatics 206 

Dehydrogenation 202 
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1.2 Catalysis 

 

Catalysis is defined as an acceleration process of chemical reaction due to the 

involvement of any catalyst substances. Thus, catalysis is believed as an essential part of 

manufacturing processes due to the efficiency of production. Catalysis occurs when 

there is a chemical interaction between catalyst and the reactant-product system without 

changing the chemical nature of the catalyst except at the surface. This means that there 

is a surface interaction and does not penetrate into the interior of the catalyst (Widegren 

et al., 2003). 

 

The explanation of a catalyst has been discussed many times (Lin, 2001). For instance, a 

catalyst is a substance that transforms reactants into products, through an uninterrupted 

and repeated cycle of elementary steps in which the catalyst participates while being 

regenerated to its original form at the end of each cycle during its lifetime. A catalyst 

changes the kinetics of the reaction, but does not change the thermodynamics       

(Grasselli, 1999). 

 

Catalyst works by lowering the activation energy of a reaction. This allows less energy 

to be used, thus speeding up the reaction. Therefore, more molecular collisions have the 

minimal amount of energy needed to reach the transition state. At the same time, catalyst 

may increase reaction rate or selectivity, or enable the reaction at lower temperatures 

(Hagen, 2006).  
 

Although catalysts can greatly affect the rate of a reaction, the equilibrium composition 

of reactants and products is still determined solely by thermodynamics. This effect can 

be illustrated with a Boltzmann distribution and energy profile (Figure 1).  

 

 

 

 

 

 

 

 

Figure 1: Activation energy, Ea profile for reaction with (black) and without (red) 

present of the catalyst 
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Potential energy diagram showing the effect of a catalyst in a hypothetical exothermic 

chemical reaction X+Y to give Z. The presence of the catalyst shows a different reaction 

pathway (shown in red) with lower activation energy. The final results and the overall 

thermodynamic are the same. It has no effect on the chemical equilibrium of a reaction 

although the rate of both forward and reverse reaction was affected and consequently 

affects the rate of reaction. If a catalyst does change the equilibrium, then it must be 

consumed as the reaction proceeds, and thus it is also a reactant.  

 

1.3 Heterogeneous catalyst 

 

Catalysts can be divided into two main types which are heterogeneous and 

homogeneous. The different between these two types of catalyst is the phase present in 

the reaction. Homogeneous catalysts are catalysts which have a same phase as the 

reactants or substrates and there is no phase boundary existing between both of them. 

Typically the homogeneous catalysts are dissolved in a solvent with substrates 

(Widegren et al., 2003). Heterogeneous catalyst on the other hand present in solid state 

in a liquid or gaseous reaction system.  The advantage of using heterogeneous catalyst is 

that, being a solid, it is easy to separate from the gas and/or liquid reactants and products 

of the overall catalytic reaction. Furthermore, heterogeneous catalysts are typically more 

tolerant of extreme operating conditions than their homogeneous counterpart. The heart 

of a heterogeneous catalyst is the active sites (or active canters) is at the surface of the 

solid. The catalyst is typically a high surface area material from 10 up to 1000 m2g−1, 

and it is usually desirable to maximize the number of active sites per reactor volume. 

Identifying the reaction intermediates and hence the mechanism for a heterogeneous 

catalytic reaction is often difficult, because many of these intermediates are difficult to 

detect using conventional methods (e.g., gas chromatography or mass spectrometry) 

because they do not desorbed at significant rates from the surface of the catalyst 

(especially for gas-phase reactions) (Grasselli et al., 2004).  

                                                              

Heterogeneous catalysts normally contain different types of surface sites, because 

crystalline solids exhibit different crystallographic orientation or crystalline anisotropy. 

Equilibrated single crystals expose different face with different atomic structure so as to 

minimize total surface energy. The different crystallographic planes exposing sites with 

different coordination conditions possessed identical properties for chemisorptions and 

catalytic reactions. Moreover, most solids catalysts are polycrystalline. Furthermore, in 

order to achieve high surface area of the catalyst, most of the catalysts contain 

nanometres size of particles. If the catalyst contains more than one component, the 

surface composition might be different from the bulk and differently with each exposed 

crystallographic plane (Grasselli et al., 2004).    

 

 

http://en.wikipedia.org/wiki/Chemical_equilibrium
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Generally, the key factors that contribute to the good performance of heterogeneous 

catalyst are: 

 

1) The catalysts must have excellent selectivity to the desired products and at the 

same time lowest the selectivity to undesired product. 

2) The catalyst should achieve adequate rates of reaction at desired reaction 

conditions of the of the process; need to mentioned that basically achieving high 

selectivity towards desired products is more important than achieving high 

catalytic activity (conversion). 

3) The catalysts must have highly stability of catalytic performance at optimum 

conditions for longer duration time of the reactions. 

4) The active sites on the catalysts must have better accessibility of reactants and 

products so that high rates can be achieved per reactor volume.  

 

The first three key factors that contributed to the better catalysts are affected by the 

interaction between the surface of the catalysts with the reactants, products as well as 

intermediates of the catalysts reaction scheme. The above key factors are based on the 

principle of Sabatier (Cavani et al., 1998 and Levy et al., 1974).  

 

The principle of Sabatier states that good heterogeneous catalysts are the substance 

exhibits an intermediate strength of the interaction between surface of the catalysts with 

reactants, intermediates and products of the catalytic reaction. As a result, the contact 

time between the active sites of the catalysts with reactant becomes longer. Thus, the 

production of unwanted products was higher. Meanwhile, when the interactions are too 

strong between the surfaces of the catalysts with the absorbed species of the catalytic 

reaction are causes the excessive blocking of the surface of the catalysts leading to low 

catalytic activity. As well as, when interactions between the surfaces of the catalysts 

with these species of the catalytic reaction are too weak lead to highly activation 

energies for the surface of the catalysts, thus low catalytic activity.  This condition cause 

the contact time between reactant and the active sites of the catalyst become too short. 

Thus, part of the reactant leaves the surface of the catalyst without reacting. This 

resulting in decreasing conversion of reactant and increasing selectivity to unwanted 

products.  

 

1.4 Propane 

 

Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of 

buried dead organisms. The age of the organisms and their resulting fossil fuels is 

typically millions of years. It contains high percentages of carbon and includes coal, 

petroleum, and natural gas (Liang et al., 2012).  The main composition of natural gas is 

saturated aliphatic hydrocarbon such as methane (C1), ethane (C2), propane (C3) and 

butane (C4). Propane (C3) is a gas formed from natural gas and petroleum. It is found 

http://en.wikipedia.org/wiki/Fuel
http://en.wikipedia.org/wiki/Anaerobic_decomposition
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Coal
http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Natural_gas
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mixed with petroleum and natural gas deposits. Propane is one of the fossil fuels 

included in the liquefied petroleum gas (LPG). At atmospheric temperature and pressure, 

propane form in a gaseous state, colorless and odorless. 

 

Propane produced from petrochemical mixtures via refinement of crude oil and 

separation from the natural gas. Natural gas and petroleum refinery off-gases are big 

industries and represents abundant resources of lower alkanes like liquefied petroleum 

gas (LPG) which contains mainly propane and butanes. The conversions of propane and 

butanes to valuable chemicals have received much attention. Therefore, more efforts 

have been undertaken to convert the alkanes into more valuable petrochemicals product 

by selective oxidation catalysts.  

 

However, due to the low polarity of the C-H bonds in saturated hydrocarbons, their 

effective activation is a challenging task. Furthermore, increased reactivity of 

intermediates like olefins  involves the risk of consecutive reactions including C-C bond 

cleavage or deep oxidation leading to unwanted oxygenates and, finally, to COx  (CO 

and CO2). Thus, the reaction conditions needed to obtain the acrylic acid must be mild; 

therefore, the catalysts for propane oxidation have to be able to activate propane in an 

efficient manner. 

 

1.5 Acrylic acid 

 

Acrylic acid is the common name for prop-2-enoic acid is the simplest unsaturated 

carboxylic acid with carboxylic acid terminus and vinyl group attached at the α-carbon 

position. In its pure physical characteristic form, acrylic acid is a clear and colorless 

liquid. Besides that it is miscible with alcohols, water, chloroform and ethers. Mostly, 

acrylic acid is produced from propene, a gaseous product of oil refineries. It was used as 

an essential monomer for variety of polymers that have gives advantages such as 

plastics, coating and textile industries. Figure 2 shows the chemical structure of acrylic 

acid. It consists of two functional group, namely as carbon-carbon double bond and 

carboxyl group.  

 

These functional groups made the acrylic acid very versatile since it is widely used in a 

variety of chemical reactions and its modification to outfit the variety of usages. Figure 3 

shows uses of acrylic acid. In industry, acrylic acid and its esters are important 

monomers for the manufacture of homo- and co-polymers such as paints, adhesives, 

textile finishing, leather processing, and superabsorbent (Lin, 2003).  

 

 

http://en.wikipedia.org/wiki/Propene
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Figure 2: Chemical structure of acrylic acid 
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Figure 3: Uses of Acrylic acid (Grasselli, 1997)  

 

1.6 Problem statements 

 

Recently, due to the rising costs of chemicals from natural gas and awareness of 

environmental problems, researchers have been looking for alternatives for the 

production of processed chemicals that are cheaper and also less pollution impact. One 

of the processes is by the use of propane as an alternative to propene in the production of 

acrylic acid. However, commercially 87% of acrylic acid is produced from propene 

oxidation (Cavani et al., 1997) compared to 50% acrylic acid is produced in lab scale by 

using propane (Lin, 2001), yet still awaiting its commercial breakthrough. This is due to 

the high amount of by-products such as CO and CO2. Thus, the best catalysts so far that 

can decrease the production of the byproducts is MoVTeNbOx, a quaternary mixed 

metal oxide.                                                                                                                            

Usually, the common synthesis had been used in the synthesis of MoVTeNbOx catalyst 

are slurry and lab-scale hydrothermal method. In lab-scale hydrothermal, the structure of 

catalysts MoVTeNbOx obtained is better in terms of compositionally and structurally 

due to the better control over crystalline growth condition. However, there are some 

problems in the use of this synthesis method. Among them are the requirement of high 
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pressure and high synthesis temperature (normally 448 K) to synthesize the active 

catalyst. Therefore, the preparation requires a special tool called autoclave, where the 

cost of it is expensive. Usually it has an inside volume 150 – 200 mL which translated 

that the yield of the catalyst formed is low, roughly in the range of 10 g. Therefore it 

requires high production cost if the process to be upgraded to pilot scale. In the slurry 

method, the aqueous slurry was formed from mixtures of ammonium heptamolybdate, 

ammonium metavanadate, ammonium niobium oxalate and telluric acid. The slurry was 

calcined in inert condition. One of the problems is the MoVTeNbOx catalysts obtained 

via this method is under poor control of the catalyst structures and compositions since 

the different metal salts are in aqueous slurry form. As the result, this will lead to 

inhomogeneity of the mixture and consequently resulted in a mixed phases of the 

catalyst structure.  

 

Recently, Ramli et al., (2011) was successfully attempted the orthorhombic structure via 

reflux method. In this work, however, the longer period needed to obtain the desired 

phase which is 3 – 4 days. This leaves the opportunity to improve synthesis technique by 

reducing the period of synthesis.  

 

Therefore a conventional and controlled synthesis technique is interesting to be 

embarked in preparing the MoVTeNbOx catalysts.  This can achieve by using the slurry 

method assisted with microwave irradiation followed by washing with H2O2. 

 

Thus, the ability to obtain the suitable crystallinity structure and its composition of the 

MoVTeNbOx catalyst is very important for the study of molecular structure and 

reactivity relationships in propane oxidation to acrylic acid as well as improving 

designing of the catalyst itself. Hence, to acquire the ideal crystallinity structure of the 

catalyst MoVTeNbOx is important for fundamental research to study the active site that 

responsible for basic research for selective oxidation of propane. Therefore, it is a 

critical need to develop efficient methods for catalytic synthesis MoVTeNbOx with 

desirable catalytic properties.  

 

1.7 Objectives of the study 

 

The objectives of this study are: 

 

i) To synthesize single phase orthorhombic M1 of MoVTeNb oxide 

catalysts via slurry method assisted with microwave irradiation. 

ii)  To characterize the physicochemical properties of the synthesized 

catalysts. 

iii) To analyze the catalytic performance of the synthesized catalysts for 

partial oxidation of propane to acrylic acid. 
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