EVALUATION OF ANTI-NOCICEPTIVE ACTIVITY OF ACMELLA ULIGINOSA (SW.) CASS. METHANOLIC CRUDE EXTRACT IN MICE

ONG HUI MING

FPSK(m) 2013 39
EVALUATION OF ANTINOCICEPTIVE ACTIVITY OF ACMELLA ULIGINOSA (SW.) CASS. METHANOLIC CRUDE EXTRACT IN MICE

ONG HUI MING

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2013
EVALUATION OF ANTINOCICEPTIVE ACTIVITY OF ACMELLA ULIGINOSA (SW.) CASS. METHANOLIC CRUDE EXTRACT IN MICE

By

ONG HUI MING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2013
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia
in fulfilment of the requirement for the degree of Master of Science

EVALUATION OF ANTINOCICEPTIVE ACTIVITY OF ACMELLA
ULIGINOSA (SW.) CASS. METHANOLIC CRUDE EXTRACT IN MICE

By

ONG HUI MING

October 2013

Chairman: Prof. Mohd Roslan Sulaiman, PhD

Faculty: Medicine and Health Sciences

In Malaysia, there are various plants being used as a remedy to overcome many types
of pain for centuries. However, the actual mechanisms and compounds of these
medicinal plants against nociception are yet to be investigated. The present study
examined the potential antinociceptive activity of Acmella uliginosa (Sw.) Cass.
methanolic crude extract (MEAU) by using both chemicals and thermal models of
nociception in mice. The antinociceptive activity of the extract was investigated
using acetic acid-induced abdominal constriction test, formalin-induced paw licking
test and hot plate test. Then the possible mechanisms of its antinociception through
capsaicin, glutamatergic, opioidergic, dopaminergic, serotoninergic, noradrenergic,
adenosinergic, nitric oxide-cGMP-PKC pathways and potassium channels systems
were studied. Mice that were pretreated with the extract (100 mg/kg, p.o.) were also
subjected to the rota-rod test to evaluate the possible non-specific sedative effects by
using Ugo Basile, model 47600. Evaluation of acute and chronic toxicity of MEAU
were also carried out to determine its safety in oral consumption. It was
demonstrated in the present study that MEAU (p.o.) at doses of 3, 10, 30 and 100
mg/kg produced significant dose-dependent inhibition in acetic acid-induced
abdominal constriction test, hot plate test, formalin-, capsaicin- and glutamate-
induced paw licking test as compared to control. Furthermore, the antinociception
caused by the MEAU (100 mg/kg, p.o.) in the acetic acid-induced abdominal
constriction test was significantly attenuated by intraperitoneal (i.p.) treatment of
mice with naloxone (opioid receptor antagonist, 5 mg/kg), pindolol (a 5-HT1A/1B
receptor antagonist, 1 mg/kg) and WAY100635 (a 5-HT1A receptor antagonist, 0.7
mg/kg). It is also worth to mention that MEAU had greatly reversed its
antinociception in α2-noradrenergic system (yohimbine, α2-adrenoreceptor
antagonist). At the same time, MEAU was found to inhibit pain in the acetic acid-
induced abdominal constriction test through nitric oxide pathway by deactivating the
L-arginine-NO-cGMP-PKC pathways as well as potassium channels. In contrast,
MEAU neither participate in the attenuation of antinociception in the dopaminergic,
adenosinergic nor noradrenergic (prazosin, α1 receptor antagonist) systems. MEAU
was not associated with non-specific effects such as muscle relaxation or sedation.
In addition, MEAU at the dosage of 300 mg/kg (p.o.) did not cause occurrence of death
or abnormal behaviour during the period of observation. Together, these results
indicate that the methanolic crude extract of A. uliginosa (Sw.) Cass. produced dose-
related antinociception in several models of chemical and thermal pain through
mechanisms that involve an interaction with opioid system, serotoninergic system
(i.e., through 5-HT$_{1A/1B}$ and 5-HT$_{1A}$ receptors), adrenergic system (i.e., through α_2 receptor), nitric oxide-cGMP-PKC pathways and potassium channels.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENILAIAN AKTIVITI ANTINOSISEPTIF EKSTRAK KASAR METANOL ACMELLA ULIGINOSA (SW.) CASS PADA MENCIT

Oleh

ONG HUI MING

Oktober 2013

Pengerusi: Prof. Mohd Roslan Sulaiman, PhD

Fakulti: Perubatan dan Sains Kesihatan

Di Malaysia, terdapat pelbagai tumbuh-tumbuhan yang digunakan sebagai ubat untuk mengatasi pelbagai jenis kesakitan selama berabad-abad. Walau bagaimanapun, mekanisme sebenar sebatian tumbuh-tumbuhan tersebut terhadap kesakitan masih belum diselidik. Penyelidikan ini bertujuan untuk mengkaji aktiviti antinosiseptif ekstrak kasar metanol Acmella uliginosa (Sw.) Cass. (MEAU) pada mencit ICR. Kegiatan antinosiseptif ekstrak ini diuji dengan ujian penggeliatan perut mencit, ujian penjilatan tapak kaki mencit dan ujian plat panas. Selain itu, mekanisme antinosiseptif MEAU juga dikaji melalui model eksperimen capsacin, glutamate, sistem opioid, sistem dopaminergik, sistem serotoninerigik, sistem noradrenergik, sistem adenosinerigik, sistem nitrik oksida-cGMP-PKC dan juga saluran K⁺. Tikus yang dirawat dengan ekstrak kasar metanol A. uliginosa (Sw.) Cass. (100 mg/kg, po) turut diuji dengan model eksperimen rod berputar untuk menilai kesan tumbuhan ini ke atas sistem motor dengan menggunakan mesin Ugo Basile, model 47600. Ujian toksik MEAU juga dilakukan untuk menentukan keselamatan penggunaan tumbuhan ini. Kajian ini menunjukkan ekstrak A. uliginosa (Sw.) Cass. ini (p.o.) pada dos 3, 10, 30 dan 100 mg/kg telah menghasilkan penghambatan secara signifikan dalam ujian penggeliatan perut mencit, ujian penjilatan tapak kaki mencit, ujian plat panas, ujian capsacin dan ujian glutamate. Selain itu, MEAU (100 mg/kg, p.o.) telah mengurangkan kesakitan secara signifikan apabila dicabar dengan naloxone, pindolol dan WAY100635. MEAU juga menunjukkan bahawa ia melibatkan sistem noradrenergik-α₂ dalam aktiviti antinosiseptifnya. Pada masa yang sama, MEAU juga didapati bahawa penghambatan kesakitannya melibatkan sistem L-arginina-NO-cGMP-PKC dan saluran K⁺. Sebaliknya, MEAU tidak menggunakan sistem dopaminergik, adenosinerigik dan noradrenergik-α₁. Penggunaan ekstrak metanol A. uliginosa (Sw.) Cass. ini juga tidak menjejaskan sistem motor. Selain itu, MEAU pada dos 300 mg/kg (p.o.) tidak menyebabkan kematian atau kelakuan tidak normal selama tempoh pemerhatian dalam ujian toksik. Sebagai kesimpulan, keputusan dari penyelidikan ini telah membuktikan bahawa ekstrak kasar metanol A. uliginosa (Sw.) Cass. dapat menghasilkan aktiviti antinosiseptif melalui mekanisme yang melibatkan sistem opioid, sistem serotoninerigik (reseptor 5-HT₁₁/A₁B dan 5-HT₁₅A) dan sistem adrenergik (reseptor-α₂), sistem nitrik oksida-cGMP-PKC dan juga saluran K⁺.
ACKNOWLEDGEMENTS

Praise to God Almighty for granting me grace and strength to persevere throughout my master study and to overcome all the challenges that I had gone through in the study.

First of all, I am very grateful to my supervisor, Prof. Dr. Mohd Roslan Sulaiman, for his unrelenting guidance, understanding, and support throughout this study. I truly thank him for giving me an opportunity to be his postgraduate student without any hesitation.

A million thanks to my co-supervisors, Prof. Dr. Daud Ali Israf, Prof. Dr. Nordin Lajis and Dr. Zainul Amiruddin Zakaria particularly for their kindness to provide me the invaluable advice and motivation. My greatest gratitude to Ms. Siti Nurulhuda Mastuki who had kindly carried out extraction of the plant for this study.

My sincere appreciation dedicates to the Faculty of Medicine and Health Sciences, Universiti Putra Malaysia for giving me the opportunity to carry out this project.

My special dedication to all the physiology labmates, especially Dr. Azam, Dr. Akira, Dr. Enoch, Anib, Mimi, Azyyati, Ming Tatt, Jac, Dilla, Ina, Izzati, Nasier and Yatie Shamsul for their constant companion, inspiration and assistance throughout the study. I must also thank the cell signalling labmates, Revathee, Ayien, Chau Ling, Choi Yi, Omar, Sally and Asma for their friendship and care towards me.

The deepest gratitude from my heart to Encik Ramli (animal house), Kak Yatie (physio lab), Kak Ngah (physio lab), Anas (physio lab), Ayien (cell signalling lab), Encik Zul (cell signalling lab), Kak Juita (histopath lab) and Encik Akhir (Euroscience) for their assistance and patience.

Last but not least, to my beloved Ong family, especially my dearest parents, thanks for their unwavering love, encouragement and comfort that helped me to accomplish my master study successfully. I must thank my dearest father in personal for being the most loyal supporter in my master study.
I certify that a Thesis Examination Committee has met on 4th October 2013 to conduct the final examination of Ong Hui Ming on her thesis entitled “Evaluation of antinociceptive activity of Acmella uliginosa (Sw.) Cass. methanolic crude extract in mice” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD
Title (e.g. Professor / Associate Professor / Ir)
Name of Faculty
Universiti Putra Malaysia
(Chairman)

Name of Examiners, PhD
Title (e.g. Professor / Associate Professor / Ir)
Name of Faculty
Universiti Putra Malaysia
(Internal Examiners)

Name of External Examiner, PhD
Title (e.g. Professor / Associate Professor / Ir)
Name of Department and / or Faculty
Name of Organisation (University / Institute)
Country
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd. Roslan Sulaiman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Daud Ahmad Israf, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Nordin Lajis, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Zainul Amiruddin Zakaria, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ONG HUI MING

Date: 4th October 2013
TABLE OF CONTENTS

ABSTRACT ... ii
ABSTRAK .. iv
ACKNOWLEDGEMENTS ... v
APPROVAL ... vi
DECLARATION .. viii
LIST OF TABLES ... xii
LIST OF FIGURES .. xiii
LIST OF ABBREVIATIONS .. xvi

CHAPTER

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 3
 2.1 Pain ... 3
 2.1.1 Definition of Pain .. 3
 2.1.2 Classification of Pain 3
 2.1.2.1 Acute Pain ... 3
 2.1.2.2 Chronic Pain ... 4
 2.1.2.3 Nociceptive Pain 4
 2.1.2.4 Neuropathic Pain 4
 2.1.3 Pain Pathways .. 5
 2.1.4 Nociceptors ... 6
 2.1.5 Classes of Nociceptors 7
 2.1.5.1 The C Fibres Nociceptors 7
 2.1.5.2 The Aδ fibre Nociceptors 7
 2.1.6 Involvement of Various Systems in Pain 8
 2.1.6.1 Capsaicin Receptors 8
 2.1.6.2 Glutamate Receptors 8
 2.1.6.3 Involvement of Opioid System 9
 2.1.6.4 Involvement of Adenosinergic System 10
 2.1.6.5 Involvement of Serotoninergic System 10
 2.1.6.6 Involvement of Noradrenergic System 10
 2.1.6.7 Involvement of Dopaminergic System 11
 2.1.6.8 Involvement of Nitric Oxide Pathway and Cyclic Guanosine Monophosphate (cGMP) 12
 2.1.6.9 Involvement of Protein Kinase C (PKC) 12
 2.1.6.10 Involvement of Potassium Channels 12
 2.2 Therapeutic Plants .. 12
 2.3 *Acmella uliginosa* (Sw.) Cass. 13

3 MATERIALS AND METHODS 15
 3.1 Sample Collection and Identification 15
 3.2 Extraction .. 15
 3.3 Preliminary Phytochemical Analysis 15
3.4 Experimental Animals 16
3.5 Chemicals and Drugs 16
3.6 Toxicity Studies 16
 3.6.1 Single Oral Dose Acute Toxicity 16
 3.6.2 Sub-acute and Sub-chronic Toxicity Tests 17
 3.6.2.1 Hematological and Biochemical Analyses 17
 3.6.2.2 Histological Study 17
3.7 Antinociceptive Studies 18
 3.7.1 Acetic Acid-induced Abdominal Constriction Test 18
 3.7.2 Formalin-induced Paw Licking Test 18
 3.7.3 Hot Plate Test 18
 3.7.4 Rota-rod Test 19
3.8 Analysis of the Possible Antinociceptive Mechanisms of Action of MEAU 19
 3.8.1 Capsaicin-induced Paw Licking Test 19
 3.8.2 Glutamate-induced Paw Licking Test 19
 3.8.3 Involvement of Opioid System 19
 3.8.4 Involvement of Adenosinergic System 20
 3.8.5 Involvement of Serotoninergic System 20
 3.8.6 Involvement of Noradrenergic System 20
 3.8.7 Involvement of Dopaminergic System 20
 3.8.8 Involvement of Nitric Oxide Pathway 20
 3.8.9 Involvement of Cyclic Guanosine Monophosphate (cGMP) 21
 3.8.10 Involvement of Protein Kinase C (PKC) 21
 3.8.11 Involvement of Potassium Channels 21
3.9 Statistical Analysis 21

4 RESULTS 22
4.1 Preliminary Phytochemical Analysis 22
4.2 Toxicity Studies 22
 4.2.1 Single Oral Dose Acute Toxicity 22
 4.2.2 Sub-acute and Sub-chronic Toxicity Tests 22
 4.2.2.1 Hematological and Biochemical Analyses 23
 4.2.2.2 Histological Study 24
4.3 Antinociceptive Studies 37
 4.3.1 Acetic Acid-induced Abdominal Constriction Test 37
 4.3.2 Formalin-induced Paw Licking Test 39
 4.3.3 Hot Plate Test 39
 4.3.4 Rota-rod Test 42
4.4 Analysis of the Possible Antinociceptive Mechanisms of Action of MEAU 42
 4.4.1 Capsaicin-induced Paw Licking Test 42
 4.4.2 Glutamate-induced Paw Licking Test 42
 4.4.3 Possible Involvement of Opioid System 45
 4.4.4 Involvement of Adenosinergic System 45
 4.4.5 Involvement of Serotoninergic System 49
 4.4.6 Involvement of Noradrenergic System 49
4.4.7 Involvement of Dopaminergic System 49
4.4.8 Involvement of Nitric Oxide Pathway 56
4.4.9 Involvement of Cyclic Guanosine 56
 Monophosphate (cGMP)
4.4.10 Involvement of Protein Kinase C (PKC) 56
4.4.11 Involvement of Potassium Channels 60

5 DISCUSSION 65

6 SUMMARY, CONCLUSION AND RECOMMENDATION 72
 FOR FUTURE STUDY

REFERENCES/BIBLIOGRAPHY 73
APPENDICES 84
BIODATA OF STUDENT 86
LIST OF PUBLICATIONS 87
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>The phytochemical constituents of MEAU</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>The average body and liver weights for sub-acute and sub-chronic toxicity tests</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>The blood biochemistry analysis of sub-acute toxicity</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>The blood biochemistry analysis of sub-chronic toxicity</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>Effect of MEAU in the hot plate test</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>47</td>
</tr>
<tr>
<td>Effect of naloxone on antinociception caused by MEAU in the hot plate test</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Acmella uliginosa (Sw.) Cass.</td>
</tr>
<tr>
<td>2</td>
<td>The histology of the liver sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-acute toxicity test showed normal architecture of hepatocytes</td>
</tr>
<tr>
<td>3</td>
<td>The histology of the liver sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-acute toxicity test showed normal architecture of hepatocytes</td>
</tr>
<tr>
<td>4</td>
<td>The histology of the stomach sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-acute toxicity test showed normal architecture of stomach cells</td>
</tr>
<tr>
<td>5</td>
<td>The histology of the stomach sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-acute toxicity test showed normal architecture of stomach cells</td>
</tr>
<tr>
<td>6</td>
<td>The histology of the kidney sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-acute toxicity test showed normal architecture of kidney cells</td>
</tr>
<tr>
<td>7</td>
<td>The histology of the kidney sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-acute toxicity test showed normal architecture of kidney cells</td>
</tr>
<tr>
<td>8</td>
<td>The histology of the liver sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-chronic toxicity test showed normal architecture of hepatocytes</td>
</tr>
<tr>
<td>9</td>
<td>The histology of the liver sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-chronic toxicity test showed normal architecture of hepatocytes</td>
</tr>
<tr>
<td>10</td>
<td>The histology of the stomach sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-chronic toxicity test showed normal architecture of stomach cells</td>
</tr>
<tr>
<td>11</td>
<td>The histology of the stomach sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-chronic toxicity test showed normal architecture of stomach cells</td>
</tr>
<tr>
<td>12</td>
<td>The histology of the kidney sections of control mice (10 ml/kg of vehicle, p.o.) in the sub-chronic toxicity test showed normal architecture of kidney cells</td>
</tr>
<tr>
<td></td>
<td>Effect of MEAU in the sub-chronic toxicity test in mice</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>The histology of the kidney sections of treated mice (100 mg/kg of MEAU, p.o.) in the sub-chronic toxicity test showed normal architecture of kidney cells</td>
</tr>
<tr>
<td>14</td>
<td>Effect of MEAU in the acetic acid-induced abdominal constriction test in mice</td>
</tr>
<tr>
<td>15</td>
<td>Effect of MEAU in formalin-induced paw licking test in mice</td>
</tr>
<tr>
<td>16</td>
<td>Effect of MEAU against capsaicin-induced paw licking test in mice</td>
</tr>
<tr>
<td>17</td>
<td>Effect of MEAU against glutamate-induced paw licking test in mice</td>
</tr>
<tr>
<td>18</td>
<td>Effect of naloxone on antinociception caused by MEAU in formalin-induced paw licking test</td>
</tr>
<tr>
<td>19</td>
<td>Effect of caffeine on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>20</td>
<td>Effect of pindolol on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>21</td>
<td>Effect of WAY100635 on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>22</td>
<td>Effect of ketanserin on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>23</td>
<td>Effect of prazosin on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>24</td>
<td>Effect of yohimbine on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>25</td>
<td>Effect of haloperidol on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>26</td>
<td>Effect of L-arginine on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>27</td>
<td>Effect of ODQ on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
<tr>
<td>28</td>
<td>Effect of MEAU in PMA-induced paw licking test in mice</td>
</tr>
<tr>
<td>29</td>
<td>Effect of glibenclamide on antinociception caused by MEAU in acetic acid-induced abdominal constriction test</td>
</tr>
</tbody>
</table>
30 Effect of tetraethylammonium (TEA) on antinociception caused by MEAU in acetic acid-induced abdominal constriction test

31 Effect of charybdotoxin on antinociception caused by MEAU in acetic acid-induced abdominal constriction test

32 Effect of apamin on antinociception caused by MEAU in acetic acid-induced abdominal constriction test
LIST OF ABBREVIATIONS

MEAU *Acmella uliginosa* (Sw.) Cass. methanolic crude extract

NO Nitric oxide

cGMP Cyclic Guanosine Monophosphate

PKC Protein Kinase C

µg Microgram

mg Milligram

g Gram

kg Kilogram

ml Milliliter

µl Microliter

p.o. Orally

i.p. Intraperitoneally

s.c. Subcutaneously

i. pl. Intraplantarly

µg Microgram

TRPV1 Transient receptor potential cation channel subfamily V member 1

Na^+ Sodium ion

K^+ Potassium ion

Ca^{2+} Calcium ion

LC50 Lethal concentration, 50%

ppm Parts per million

HIV Human immunodeficiency virus

AIDS Acquired immunodeficiency syndrome

s second (s)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minute (s)</td>
</tr>
<tr>
<td>h</td>
<td>Hour (s)</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimoles</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromoles</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>AST</td>
<td>Amino Transferase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphate</td>
</tr>
<tr>
<td>ASA</td>
<td>Acetylsalicylic acid</td>
</tr>
<tr>
<td>ODQ</td>
<td>1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol 12-myristate 13-acetate</td>
</tr>
<tr>
<td>L-NAME</td>
<td>L-NG-Nitroarginine Methyl Ester</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>EDTA</td>
<td>Anticoagulant ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-5'-triphosphate</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>p</td>
<td>P-value</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>H & E</td>
<td>Hematoxylin and eosin stain</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-d-aspartic acid receptors</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylyl cyclase</td>
</tr>
<tr>
<td>AR</td>
<td>Adrenoreceptor</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Pain is the most common reason for any individual to seek for health care (Okuse, 2007). The number of people who require the treatment for pain from back disorders, degenerative joint diseases, rheumatologic conditions, visceral diseases and cancer is expected to increase as the population ages (Brookoff, 2000). Thus, relief of pain has always been the ultimate aim in medicines (Melzack et al., 1992). The International Association for the Study of Pain (IASP) defined pain as an “unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage” (Merskey and Bugduk, 1994). Drugs with predominant pain-killing action are generally referred as analgesic or antinociceptive drugs and they can be categorised as narcotic and non-narcotic drugs (Eddy and May, 1973). Although some analgesic drugs like morphine still remains as the most effective narcotic analgesic over the years to treat severe and chronic pain (Lasagna, 1964), prolonged usage of these drugs may present a wide range of side effects while treating pain. In fact, continuous and heavy applications of these analgesic drugs have often led to severe health problems like gastropathy, kidney failure and liver damage. These adverse effects of the contemporary painkillers have accelerated the studies of searching for other antinociceptive compounds with equivalent effects yet limited side effects.

Finding healing powers in plants is an ancient idea (Cowan, 1999). Natural constituents from plants may give a new source of antinociceptive agents with possible novel mechanisms of action in antinociception. Plants have always been a rich source of biochemical compounds. Many of these biochemical compounds are useful drugs in themselves and others have been the basis for synthetic drugs. These herbal plants can be the potential antinociceptive drugs and they are totally natural. To promote the proper use of herbal medicine and to determine their potential as sources for new drugs it is essential to study medicinal plants, which have folklore reputation in a more intensified way (Mothana and Lindequist, 2005). In Malaysia, there are various plants being used as a remedy to overcome many types of pain for centuries. However, the actual mechanisms and compounds of these medicinal plants against nociception are yet to be investigated.

Acmella uliginosa (Sw.) Cass. is one of the frequently used plants in Malaysia to treat pain. It is a perennial herbaceous plant belonging to the daisy family, Asteraceae, which is indigenous and widely distributed in the tropics and sub-tropics especially in the West Indies, Venezuela, Brazil, Africa, Indonesia and Malaysia (Pandey et al., 2007). In Peninsular Malaysia, it is popularly known as ‘Subang Nenek’ or ‘Butang Baju Siti Fatimah’. It grows in abundance as a naturalized weed on open hillsides and the rocky shores of rivers. When consumed, its flowers and leaves have a pungent taste that accompanied by tingling and numbness. In Malaysia, *A. uliginosa* (Sw.) Cass. has been generally used as a traditional herbal medicine for its analgesic and antispasmodic properties. The use of the flowers of *A. uliginosa* (Sw.) Cass. in particular, are more common than other parts of the plant, and are widely used as a remedy for the relief of pain especially in mouth ulcers, toothache, sore throat and stomach ache. The flowers and/or the leaves are crushed and its paste
is topically applied to the affected areas caused by insect bites to alleviate itch, redness and swelling.

Objectives of study

The general objectives of this study were to evaluate:

1. The antinociceptive activity of *A. uliginosa* methanolic crude extracts (MEAU) in mice
2. The possible mechanisms of action involved in MEAU

The specific objectives of this study were to evaluate:

1. The peripheral and central antinociceptive activities of MEAU
2. The sedative effect of MEAU
3. The involvement of capsaicin system in MEAU’s antinociceptive activity
4. The involvement of glutamatergic system in MEAU’s antinociceptive activity
5. The involvement of opioid system in MEAU’s antinociceptive activity
6. The involvement of dopaminergic system in MEAU’s antinociceptive activity
7. The involvement of serotonergic system in MEAU’s antinociceptive activity
8. The involvement of noradrenergic system in MEAU’s antinociceptive activity
9. The involvement of adenosinergic system in MEAU’s antinociceptive activity
10. The involvement of nitric oxide-cGMP-PKC pathways in MEAU’s antinociceptive activity
11. The involvement of potassium channels in MEAU’s antinociceptive activity
REFERENCES

stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102, 171-174.

Sawynok, J. and Reid, A., 1996a. Interactions of descending serotonergic systems with other neurotransmitters in the modulation of nociception. Behav Brain Res 73, 63-68.

