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Faculty: Engineering

Abstract: These days, there has been an increasing interest in virtual reality sim-

ulation of the geotechnical field. More recently, literature has emerged that of-

fers linear experimental Equation which positively correlates the maximum and

minimum void ratio of sandy-soil particles. However, far too little attention has

been paid to virtually simulate one of this parameter in order to rapidly compute

these main parameters of the relative density without any need to do experimen-

tal works. Gravitational sphere packing which arranges non-overlapping spheres

within a confined space has powerful capability to simulate the interaction of large

number of particles. The goal of this research is to employ gravitational sphere

packing to compute maximum void ratio of sandy-soil particles with particle size

distribution as input data.

In this study, pre-processing, processing, and post-processing codes of the op-
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timized gravitational sphere packing were developed in MATLAB software. In

pre-processing stage, the initial position of the spheres was determined in (x-y)

plane by applying different random number distributions. At the stage of process-

ing, three manners of rolling, collision, and stability conditions were considered

to pack particles for each incoming sphere within the cylindrical container. The

post-process code computes porosity of packed particles through the cylindrical

container for both with and without boundary effects. The simulated model was

validated by ASTM D 4254 standard method for measuring the maximum void

ratio in metal cylindrical container, in which soil particles with different types of

sorting are employed for comparison.

Results showed that maximum void ratio of dry sandy-soil particles was computed

by considering wall-sphere interaction condition in gravitational sphere packing.

However, deactivation of boundary effects led to calculate the porosity of the

unconsolidated wet sandy-soil particles. Both above mentioned results had close

values in agreement with the experimental works. The study also revealed that

log-normally particle size distribution provides the lowest value of the porosity. In

addition, particles had high potential to be packed in square container with the

lowest value of the porosity.

All in all, the new presented method of optimized gravitational sphere packing

rapidly simulates arrangement of the soil particles in dilute suspension. The rapid

code implementation of this method can compute the main parameters of the

relative density with high accuracy which was verified by ASTM D 4254 standard

test.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN SUATU KAEDAH PENGIRAAN BAGI
MENENTUKAN LOMPANG MAKSIMUM PARTIKEL-PARTIKEL

TANAH BERPASIR DENGAN MENGGUNAKAN KAEDAH
PEMBUNGKUSAN SFERA GRAVITI

Oleh

MOHAMMAD MAHDI ROOZBAHANI

Oktober 2012

Pengerusi: Professor Bujang Bin Kim Huat, PhD

Fakulti: Kejuruteraan

Pada masa kini, minat terhadap simulasi realiti maya dalam bidang geoteknik se-

makin meningkat. Baru baru ini, kesusasteraan menawarkan persaman eksperimen

linear yang mana menghubungkaitkan nisbah lompang maksimum dan minimum

partikel tanah pepejal secara positif. Walaubagaimanapun, perhatian yang amat

sedikit telah diberikan kepada kaedah simulasi maya untuk mengira salah satu

parameter tersebut bagi secara pantas mengira parameter-parameter penting bagi

ketumpatan relatif tanpa menjalankan sebarang eksperimen. Kaedah pembungku-

san sfera graviti yang menyusun sfera-sfera yang tidak bertindih di dalam ruang

yang terbatas mempunyai kebolehan untuk menjalankan simulasi bagi sebilangan

besar partikel-partikel. Matlamat penyelidikan ini adalah untuk menggunakan

pembungkusan sfera graviti untuk mengira nisbah lompang maksimum bagi tanah

zarah berpasir dengan menggunakan taburan saiz partikel sebagai data input.

Di dalam penyelidikan ini, pre-pemprosesan, pemprosesan serta pemprosesan pasca
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bagi pembungkusan sfera graviti yang mengoptimumkan telah diperolehi dengan

menggunakan perisian MATLAB. Pada peringkat pre-pemprosesan, kedudukan

awal sfera-sfera di plane (x-y) telah ditentukan dengan menggunakan nombor

taburan rawak yang berbeza. Pada peringkat pemprosesan, tiga kaedah jatuh,

perlanggaran dan keadaan stabil telah diambilkira bagi membungkus setiap sfera

yang masuk ke dalam silinder. Kod yang digunakan pada peringkat pemprosesan

pasca pula mengira keporosan partikel-partikel yang dibungkus melalui silinder

bagi keadaan kesan dengan sempadan serta keadaan tanpa kesan sempadan. Model

simulasi telah disahkan oleh piawai ASTM D 4254 yang digunakan bagi mengukur

nisbah lompang maksimum dalam bekas silinder , di mana partikel-partikel tanah

di dalam susunan yang berbeza telah dibandingkan.

Keputusan menunjukkan nisbah lompang maksimum bagi partikel tanah zarah

berpasir yang kering, telah diukur dengan mengambil kira interaksi dinding sfera

di dalam pembungkusan sfera graviti. Walaubagaimanapun, penyahaktifan ke-

san sempadan telah membawa kepada pengiraan keporosan partikel tanah zarah

berpasir yang basah dan tidak tepu. Kedua-dua keputusan yang dibincangkan,

mempunyai nilai-nilai yang hampir sama dengan keputusan yang diperolehi melalui

eksperimen. Penyelidikan ini juga mendedahkan taburan saiz partikel log-biasa

mempunyai nilai keporosan paling rendah. Partikel-partikel tersebut juga mem-

puyai potensi yang tinggi untuk dibungkus di dalam bekas segiempat sama dengan

nilai keporosan yang paling rendah.

Rumusannya, kaedah baru yang mengoptimumkan pembungkusan sfera graviti ini

mensimulasikan dengan pantas kedudukan partikel-partikel tanah di dalam peng-

gantungan yang cair. Kod pantas bagi kaedah ini boleh digunakan bagi men-

gira parameter-parameter penting bagi ketumpatan relatif dengan ketepatan yang

tinggi yang telah disahkan oleh Ujian Piawai ASTM D 4254.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Research

These days, simulations of the experimental works in the virtual environment

have been dramatically increased in the geotechnical field because of the rapid

data access and observing inner variations of the soil particles finely. To this end,

many methods have been extended such as sphere packing techniques (Tory et al.,

1973). Such these methods can simulate laboratory works in geotechnical field.

Sphere packing is an arrangement of non-overlapping spheres within a container.

This method is widely employed in two different structures which are statistical

geometric and numerical. The former one is used in models with a small number

of the elements, whereas the latter one is applied for a large number of elements.

The random loose sphere packing was exercised in this research with the statistical

geometric procedure which is founded by Tory and Church (Tory et al., 1973).

This method has been updated to be utilized in different fields such as powder

and nano-technology, chemical, and geological engineering.

The content of this research is concerned with loosely packing of the sandy-soil

particles with gravitational sphere packing method. However, different applica-

tions of this method have been used to compute an ideal system with low value of

the porosity. Thus, a sever optimization is needed to get close this method with

reality conditions in the experimental works of the geotechnical field.

Maximum void ratio, emax, of the sandy-soil particles is defined by this method.

emax is one of the main parameters of the relative density, Dr, based on the

Equation 1.2. Void ratio, e, is the ratio of the volume of voids to the volume

of solids according to Equation 1.1. More recently, literature has emerged that
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offers linear experimental Equation which positively correlates the maximum and

minimum void ratio, emin, of sandy-soil particles (Yilmaz and Mollamahmutoglu,

2009; Cubernovski and Ishihara, 2002). However, far too little attention has been

paid to virtually simulate emax in order to rapidly compute these main parameters

of the relative density (emax and emin) without any need to do experimental works.

Therefore, this project comes to this end to simulate one of these parameters, emax,

with particle size distribution as input data in order to rapid data access to these

parameters in a virtual environment.

e =
VV
VS

=
VV

VT − VV
=

φ

1− φ
;φ =

VV
VT

(1.1)

where;

VV = volume of voids

VS = volume of solids

VT = total volume

φ = porosity

Dr =
emax − e

emax − emin
(1.2)

where;

emax = maximum void ratio in correspondence with a very loose state of the

particles

emin = minimum void ratio in correspondence with a very dense state of the

particles

e = in situ void ratio

2
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In the gravitational or loosely sphere packing, very little research has been reported

on the geotechnical behavior of the elements. This research is going to relate this

method to the geotechnical field.

1.2 Research Objectives

Two main objectives of current research are categorized as follows:

• To find minimum porosity of the unconsolidated sandy soils after mechanical

rearrangement of the sand grains.

• To compute maximum void ratio of dry sandy-soil particles based on the

statistical geometric approach of the gravitational or loosely sphere packing

method.

It should be noted that above objectives are achieved according to the prelimi-

nary objectives mentioned below which are directly related to the fundamental

concepts of the random loose sphere packing (gravitational sphere packing) de-

veloping this method for different applications such as geotechnical field. For

example, better perception to choose an efficient container or random numbers for

the post-processing computations in porosity.

• To investigate the different porosity values of the identical particles in dif-

ferent rectangular containers.

• To find the lowest value of the porosity by examining different distributions

of random numbers into loosely packed multi-sized spheres.

1.3 Scope of the Research

The main scope of this research is divided into two parts which are as follows:

3
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Simulation part: Vital necessities of optimization in the sphere packing method

would play crucial role to provide logical results in agreement with experi-

mental works. In Chapter 2, the different methods of the sphere packing are

briefly introduced, and exclusive literature review of the gravitational sphere

packing has also been described in mentioned Chapter.

Sphere packing method has been optimized in the rapid collision detection

and container interaction with soil particles which are explained in Chapter

3. K Nearest Neighbors based on the KD-tress method and binary search

are applied to find the neighbors of every incoming sphere in the system,

and also 3D Apollonius is applied to break 2 orders equations in simple ones

so as to rapid making tangent of spheres. Two conventional containers are

considered for this method which are rectangular and cylindrical container.

Interactions of the spheres with cylindrical container were solved by applying

complete elliptic integrals. These intersections were resolved by spherical caps

for rectangular container.

It should be noted that some outlier data of the porosity values through the

height and diameter of the container are mathematically filtered by Lowes

Local Regression Smoothing procedure explained in Chapters 3 and 4.

In Chapter 4, The results of the simulated model according to the mentioned

objectives are verified by last simulation models of the literatures and current

experimental work.

Experimental works: Experimental works were done to find the maximum void

ratio for sandy-soil particles with different sorting coefficients which are clas-

sified from very well sorted to the very poorly sorted. In addition, specific

gravity, and sieve analysis are the Lab works which are discussed in Chapters

3 and 4.

4
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