EFFECTS OF TOCOTRIENOL SUPPLEMENTATION ON PLATELET AGGREGATION IN SUBJECTS WITH METABOLIC SYNDROME

GAN YEE LIN

FBSB 2014 16
EFFECTS OF TOCOTRIENOL SUPPLEMENTATION ON PLATELET AGGREGATION IN SUBJECTS WITH METABOLIC SYNDROME

By

GAN YEE LIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF TOCOTRIENOL SUPPLEMENTATION ON PLATELET AGGREGATION IN SUBJECTS WITH METABOLIC SYNDROME

By

GAN YEE LIN

April 2014

Chair : Prof. Lai Oi Ming, PhD

Faculty : Biotechnology and Biomolecular Sciences

An occlusive thrombus in vasculature either in arterial or venous, is a pathological condition that predisposes to most cases of cardiovascular diseases (CVDs). As reported by World Health Organisation (WHO), CVDs were among the major cause of deaths for noncommunicable diseases. Prescription of antithrombotic agents (e.g. aspirin, clopidogrel and warfarin) is a standard treatment given to patients to reduce the risk of death from cardiovascular events. However, presence of side effects and inter-individual variability in response towards these antithrombotic agents may limit the prevention of cardiovascular events throughout the world including Malaysia. Tocotrienols are a group of vitamin E besides tocopherols. Previous animal studies showed significant inhibition of platelet aggregation and antithrombotic effect after tocotrienol administration, but results in human trials are controversial. Therefore, this study was designed to ascertain the effect of tocotrienol supplementation on platelet reactivity in subjects with metabolic syndrome (MetS), by taking into account that MetS subjects are associated with prothrombotic state due to higher platelet reactivity and blood coagulability. Thus, an initiation of antithrombotic therapy is important for them to prevent thrombotic events. In this connection, a randomised, double-blinded, crossover, and placebo-controlled human trial was conducted with a total of 31 MetS subjects (15 males and 16 females) completed the study. Subjects recruited received two interventions in a random order, separated by a 15-day washout period in between the interventions. During the intervention, subjects consumed palm mixed tocotrienols 200 mg or placebo twice daily for 14 days followed by a postprandial study day. Post-intervention results demonstrated that reactivity of arachidonic acid and adenosine 5’-diphosphate (ADP) signalling platelet aggregation was not significantly different (p > 0.05) between tocotrienol and placebo interventions. For the results in terms of postprandial change, tocotrienols also did not exert inhibitory effect (p > 0.05) on these platelet aggregation measurements compared to placebo. No significant differences (p > 0.05) were found on the degree of platelet activation induced by thrombin mimic peptide and haemostatic measures (plasma D-dimer, plasminogen activator inhibitor type 1 (PAI-1), fibrinogen and undercaroxylated osteocalcin (ucOC)) between tocotrienol and placebo interventions, both post-intervention and postprandial. Among the inflammatory measures including plasma soluble P-selectin (sP-selectin), plasma
soluble E-selectin (sE-selectin), plasma soluble intracellular adhesion molecules 1 (sICAM-1), plasma soluble vascular cell adhesion molecules 1 (sVCAM-1) and serum high sensitivity C-reactive protein (hsCRP), the results showed that there were no significant differences (p > 0.05) between tocotrienol and placebo interventions, both post-intervention and postprandial except for plasma sICAM-1, in which tocotrienols significantly lowered (p < 0.05) the plasma sICAM-1 during postprandial. Post-intervention results also showed that brachial systolic blood pressure (SBP) and aortic pulse pressure were significantly lower (p < 0.05) in tocotrienol intervention compared to placebo intervention. In conclusion, this study demonstrated that 14 days of 400 mg tocotrienol supplementation did not exert antithrombotic effects on platelet aggregation induced by ADP and arachidonic acid, thrombin mimic peptide induced platelet activation, and haemostatic and inflammatory measures.
KESAN PENGAMBILAN TOKOTRIENOL TERHADAP PENGAGREGATAN PLATELET DALAM SUBJEK DENGAN SINDROM METABOLIK

By

GAN YEE LIN

April 2014

Pengerusi : Prof. Lai Oi Ming, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Pembentukan trombus dalam saluran darah, sama ada dalam arteri atau vena, adalah suatu keadaan patologi yang lazimnya punca kepada kes-kes kejadian penyakit kardiovaskular. Menurut laporan WHO, penyakit kardiovaskular merupakan punca utama kematian bagi kategori penyakit yang tidak berjangkit. Preskripsi agen antitrombotik (contohnya aspirin, clopidogrel and warfarin) merupakan rawatan yang sering diberi kepada pesakit untuk mengurangkan risiko kematian akibat penyakit kardiovaskular. Namun demikian, kewujudan kesan-kesan sampingan agen antitrombotik serta keberkesanannya terhadap setiap individu yang berbeza mungkin menghadkan keupayaan agen tersebut dalam pencegahan kejadian penyakit kardiovaskular di seluruh dunia termasuk negara Malaysia. Selain tokoferol, tokotrienol merupakan salah satu kumpulan vitamin E. Kajian praklinik haiwan telah membuktikan bahawa rawatan tokotrienol dapat menghambat platelet agregasi dan menunjukkan kesan antitrombotik yang signifikan, akan tetapi, hasil kajian dalam kajian klinikal manusia adalah kontroversial. Oleh demikian, matlamat kajian ini adalah untuk menentukan kesan pengambilan tokotrienol terhadap kereaktifan platelet dalam subjek sindrom metabolik, dengan mengambil kira bahawa subjek sindrome metabolik adalah berhubung kiat dengan keadaan pratrombotik akibat peningkatan kereaktifan platelet dan koagulabiliti darah. Justeru, langkah permulaan terapi antitrombotik adalah penting bagi mencegah kes kejadian trombotik. Sehubungan ini, satu kajian klinikal secara rawak, rabun dua pihak, bersilang dan kawalan-plasebo telah dilaksanakan dengan sejumlah 31 subjek sindrom metabolik telah mengambil bahagian dalam kajian ini sehingga akhir. Subject dipilih secara rawak untuk pengambilan dua jenis kapsul yang berlainan secara turutan, di mana satu tempoh rehat sekurang-kurangnya 15 hari telah diberikan selepas rawatan pertama dan sebelum sukarelawan mengambil suplemen jenis kedua. Semasa rawatan, subject mengambil satu kapsul tokotrienol (200 mg) atau plasebo sebanyak dua kali sehari selama 14 hari diikuti dengan kajian pasca rawatan. Selepas 14 hari rawatan, hasil kajian menunjukkan tiada perbezaan yang signifikan (p > 0.05) dalam kereaktifan pengagregatan platelet dengan ransangan dari asid arakidonik atau ADP antara kumpulan tokotrienol dan plasebo. Penemuan pasca prandial turut menunjukkan bahawa pengambilan tokotrienol tidak memberi apa-apa kesan yang
signifikan (p > 0.05) terhadap pengagregatan platelet berbanding dengan plasebo. Didapati tiada perbezaan yang signifikan (p > 0.05) antara kumpulan tokotrienol dan plasebo dari segi tahap pengaktifan platelet (dirangsang dengan thrombin tiruan peptida) dan paras biopenanda hemostatik (plasma D-dimer, PAI-1, fibrinogen dan ucOC) selepas pengambilan tokotrienol selama 14 hari dan pasca prandial berbanding dengan plasebo. Selain itu, paras biopenanda keradangan termasuk plasma sP-selectin, sE-selectin, sICAM-1 dan sVCAM-1 dan serum hsCRP tidak berbeza signifikan (p > 0.05) selepas 14 hari suplementasi dan pasca prandial antara dua kumpulan kecuali biopenanda plasma sICAM-1 yang dilaporkan parasnya agak rendah semasa pasca prandial secara signifikan (p < 0.05) selepas pengambilan tokotrienol berbanding dengan plasebo. Tokotrienol juga didapati menurunkan tekanan darah sistolik brakial dan tekanan nadi aorta secara signifikan (p < 0.05) berbanding dengan plasebo selepas pengambilan selama 14 hari. Kesimpulannya, kajian ini menunjukkan bahawa dalam subjek sindrom metabolik, pengambilan 400 mg tokotrienol selama 14 hari tidak mempamerkan kesan antitrombotik terhadap pengagregatan platelet yang dirangsang dengan ADP dan asid arakidonik, pengaktifan platelet yang dirangsang dengan thrombin, dan biopenanda-biopenanda hemostatik dan keradangan.
ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Malaysian Palm Oil Board (MPOB) for giving me the chance to carry out this trial and the facilities and grant support. I would also like to extend my greatest gratitude to my supervisor, Prof. Dr. Lai Oi Ming, and co-supervisors Dr. Chew Boon How, Dr. Kalanithi Nesaretnam and Dr. Fu Ju Yen for your valuable guidance, assistance and encouragement in bringing this project to a successful end. A big thank you to my supervisory committee members for their valuable time spent in aiding my thesis writing. It is also my duty to record my thankfulness to Prof. Dr. Yuen Kah Hay, Dr. Teng Kim Tiu, Dr. Kanga Rani Selvaduray, Dr. Maria Madon, Ms. Puvaneswari a/p Meganathan, staffs in Nutrition Unit and Genomic Unit for their kind assistance and valuable opinions along the project. A special note of thanks to the subjects who had participated in this trial and Hovid Bhd. for the dedication of Tocovid™ SupraBio™ 200 mg and placebo capsules. I also wanted to thank my labmates: Mo Shuen Yeing, Chang Lin Faun, Doryn Tan, Nur Afiqah bt Kamaruzzaman and the intern students who had lend their helping hands during screening and trial run of this project. Last but not least, I would like to express my heartfelt appreciation to my family members for the endless support, encouragement and understanding showered along this project.
I certify that a Thesis Examination Committee has met on 14 April 2014 to conduct the final examination of Gan Yee Lin on her thesis entitled “Effects of Tocotrienol Supplementation on Platelet Aggregation in Subjects with Metabolic Syndrome” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Noorjahan Banu binti Mohammed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Loh Su Peng, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Nur Aishah binti Mohd Taib, PhD
Professor
University of Malaya
Malaysia
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Lai Oi Ming, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Chew Boon How, MMed.
Senior Medical Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Kalanithi Nesaretnam, PhD
Regional Manager
Product Development and Advisory Services Division
Malaysian Palm Oil Board
(Member)

Fu Ju Yen, PhD
Research Officer
Product Development and Advisory Services Division
Malaysian Palm Oil Board
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Gan Yee Lin, GS31357
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman of Supervisory Committee: Prof. Dr. Lai Oi Ming

Name of Member of Supervisory Committee: Dr. Chew Boon How

Signature:

Name of Member of Supervisory Committee: Dr. Kalanithi Nesaretnam

Name of Member of Supervisory Committee: Dr. Fu Ju Yen
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Tocotrienols

2.1.1 Homologues and structures

2.1.2 Natural sources

2.1.3 Extraction processes

2.1.4 Metabolism and adsorption

2.2 Thrombosis and its pathogenesis

2.2.1 Endothelial injury

2.2.2 Abnormal blood flow

2.2.3 Hypercoagulability

2.3 Platelet function tests

2.3.1 Traditional platelet function tests

2.3.2 New platelet function test

2.3.3 VerifyNow system – a new platelet function test

2.4 Metabolic syndrome (MetS)

2.4.1 Clinical diagnosis

2.4.2 MetS components

2.4.3 MetS and thrombosis

2.5 Antithrombotic effect of vitamin E and its issues

2.5.1 Antithrombotic effect of tocopherols

2.5.2 Issues of tocopherol supplementation

2.5.3 Antithrombotic effect of tocotrienols

2.5.3.1 Animal and in vitro studies – antithrombotic effect

2.5.3.2 Human studies – antithrombotic effect

2.5.3.3 Animal studies – contradict findings

2.5.3.4 Human studies – contradict findings

xii
2.5.4 Issue of antithrombotic effect of tocotrienols

3 MATERIALS AND METHODS

3.1 Materials
3.1.1 Test compounds
3.1.2 High fat breakfast
3.1.3 Blood sampling materials
3.1.4 Reagents and chemicals

3.2 Study Design
3.2.1 Description of interventions
3.2.2 Double blinding and decoding of interventions
3.2.3 Sample size calculation
3.2.4 Subjects’ eligibility
3.2.5 Ethical approval
3.2.6 Recruitment methodology
3.2.7 Randomisation of subjects
3.2.8 Vitamin E-controlled high fat breakfast
3.2.8.1 Preparation of vitamin E-striped palm olein
3.2.8.2 Preparation of a high fat breakfast

3.3 Standard physical measurement protocols
3.3.1 Standing height measurement
3.3.2 Waist circumference measurement
3.3.3 Body weight measurement
3.3.4 Blood pressure measurement

3.4 Blood sampling
3.4.1 Venepuncture method
3.4.2 Intravenous cannulation method

3.5 Blood handling

3.6 Compliance measurement

3.7 Energy intake estimation

3.8 Laboratory analyses
3.8.1 Vitamin E analysis
3.8.1.1 High performance liquid chromatography (HPLC) methodology
3.8.1.2 Preparation of standard solutions
3.8.1.3 Sample preparation
3.8.1.4 Method validation
3.8.2 Fatty acids composition analysis
3.8.2.1 Gas chromatographic methodology
3.8.2.2 Sample preparation
3.8.3 Triacylglycerol (TAG) composition analysis
3.8.3.1 HPLC methodology
3.8.3.2 Sample preparation
3.8.4 VerifyNow Aspirin and P2Y12 analyses
3.8.5 Platelet activation analysis
3.8.6 Plasma and serum analyses
3.8.7 Haemodynamic measurement
3.9 Safety and tolerance analysis
3.10 Statistical analysis

4 RESULTS
4.1 Validation of vitamin E HPLC quantification analysis
4.2 Dietary compounds
 4.2.1 Dietary supplements
 4.2.2 Vitamin E-stripped palm olein
4.3 Demographic characteristics
4.4 Compliance
4.5 Post-intervention results
 4.5.1 Platelet aggregation
 4.5.2 Platelet activation
 4.5.3 Haemostatic markers
 4.5.4 Inflammatory markers
 4.5.5 Serum lipids and lipoproteins
 4.5.6 Haemodynamic markers
4.6 Postprandial results
 4.6.1 Platelet aggregation
 4.6.2 Platelet activation
 4.6.3 Haemostatic markers
 4.6.4 Inflammatory markers
 4.6.5 Haemodynamic markers
4.7 Safety and tolerance

5 DISCUSSION
5.1 Post-intervention
 5.1.1 Platelet aggregation and activation
 5.1.2 Haemostatic markers
 5.1.3 Inflammatory markers
 5.1.4 Serum lipids and lipoproteins
 5.1.5 Haemodynamic markers
5.2 Postprandial
5.3 Implication of the findings
5.4 Safety and tolerance

6 SUMMARY, CONCLUSION, LIMITATION AND RECOMMENDATIONS FOR FUTURE RESEARCH
6.1 Summary
6.2 Conclusion
6.3 Recommendations for future work

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hypercoagulable states</td>
</tr>
<tr>
<td>2.2</td>
<td>New platelet function tests</td>
</tr>
<tr>
<td>2.3</td>
<td>Metabolic syndrome definitions</td>
</tr>
<tr>
<td>2.4</td>
<td>The antithrombotic effect of tocotrienols in animal and in vitro studies.</td>
</tr>
<tr>
<td>2.5</td>
<td>The antithrombotic effect of tocotrienols in human studies.</td>
</tr>
<tr>
<td>2.6</td>
<td>The oppose findings for the antithrombotic effect of tocotrienols in animal studies.</td>
</tr>
<tr>
<td>2.7</td>
<td>The oppose findings for the antithrombotic effect of tocotrienols in human studies.</td>
</tr>
<tr>
<td>3.1</td>
<td>The materials used for the preparation of high fat breakfast.</td>
</tr>
<tr>
<td>3.2</td>
<td>The materials used in blood sampling.</td>
</tr>
<tr>
<td>3.3</td>
<td>Biochemical analyses performed during screening.</td>
</tr>
<tr>
<td>3.4</td>
<td>Orthogonal design for random participant intervention orders.</td>
</tr>
<tr>
<td>3.5</td>
<td>Estimated energy and macronutrient of muffin and milkshake.</td>
</tr>
<tr>
<td>3.6</td>
<td>Conditions of short path distillatory.</td>
</tr>
<tr>
<td>3.7</td>
<td>Amount of ingredients needed to bake one high fat muffin.</td>
</tr>
<tr>
<td>3.8</td>
<td>The temperature settings of the oven in gas chromatography system.</td>
</tr>
<tr>
<td>3.9</td>
<td>The evaporative light scattering detector’s setting.</td>
</tr>
<tr>
<td>4.1</td>
<td>Method validation for quantification of vitamin E in lipid matrices.</td>
</tr>
<tr>
<td>4.2</td>
<td>LOD and LOQ values for quantification of vitamin E in lipid matrices.</td>
</tr>
<tr>
<td>4.3</td>
<td>Intra-assay and inter-assay precision and accuracy of the assay for vitamin E quantification in lipid matrices.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.4</td>
<td>Method validation for quantification of vitamin E in human plasma.</td>
</tr>
<tr>
<td>4.5</td>
<td>LOD and LOQ values for quantification of vitamin E in human plasma.</td>
</tr>
<tr>
<td>4.6</td>
<td>Intra-assay and inter-assay precision and accuracy of the assay for vitamin E quantification in human plasma.</td>
</tr>
<tr>
<td>4.7</td>
<td>Concentration of tocopherols and tocotrienols in palm olein and vitamin E-stripped palm olein.</td>
</tr>
<tr>
<td>4.8</td>
<td>Fatty acids composition in palm olein and vitamin E-stripped palm olein.</td>
</tr>
<tr>
<td>4.9</td>
<td>TAG composition in palm olein and vitamin E-stripped palm olein.</td>
</tr>
<tr>
<td>4.10</td>
<td>Physical and biochemical characteristics of study population.</td>
</tr>
<tr>
<td>4.11</td>
<td>Post-intervention of tocotrienol and placebo supplementations on fasting plasma concentration of D-dimer, fibrinogen, PAI-1 and ucOC.</td>
</tr>
<tr>
<td>4.12</td>
<td>Post-intervention effect of tocotrienol and placebo supplementations on fasting inflammatory markers.</td>
</tr>
<tr>
<td>4.13</td>
<td>Fasting serum lipid and lipoprotein concentrations after 14 days of tocotrienol and placebo supplementations.</td>
</tr>
<tr>
<td>4.14</td>
<td>Post-intervention of brachial blood pressure measurement.</td>
</tr>
<tr>
<td>4.15</td>
<td>Post-intervention of haemodynamic markers.</td>
</tr>
<tr>
<td>4.16</td>
<td>Postprandial change of inflammatory markers.</td>
</tr>
<tr>
<td>4.17</td>
<td>Postprandial change of haemodynamic markers.</td>
</tr>
<tr>
<td>4.18</td>
<td>Fasting haematological profile after 14 days supplementation of mixed tocotrienols and placebo capsules.</td>
</tr>
<tr>
<td>4.19</td>
<td>Fasting liver function profile after 14 days supplementation of mixed tocotrienols and placebo capsules.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Molecular structures of tocotrienols and tocopherols.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The endothelial injury that contributes to the development of thrombosis.</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>The abnormal vasculature and blood flow that contribute to the development of arterial and venous thrombosis.</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>The principle measurement of VerifyNow system.</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Correlation of MetS components leads towards cardiovascular events.</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Outline of the study design.</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>HPLC chromatogram of vitamin E composition in human blank plasma.</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>HPLC chromatogram of vitamin E composition in human plasma spiked with internal standard and vitamin E mix standards.</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Consort diagram of study.</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Post-intervention concentration of plasma tocotrienols (n = 31; 15 males and 16 females). Intervention effect was examined using Wilcoxon Signed Rank test.</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Postprandial concentration of plasma tocotrienols (n = 31; 15 males and 16 females). Intervention effect was examined using Wilcoxon Signed Rank test.</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>Post-intervention results of platelet function values of PRU (n = 31; 15 males and 16 females). Intervention effect was examined using Student t-test.</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Post-intervention results of platelet function values of ARU (n = 31; 15 males and 16 females). Interventions effect was examined using Student t-test.</td>
<td>63</td>
</tr>
<tr>
<td>4.8</td>
<td>Dot plot of platelet activation analysis.</td>
<td>64</td>
</tr>
</tbody>
</table>
4.9 Post-intervention results of MFI of platelet activation (n = 28; 14 males and 14 females). Data was logarithmic transformed prior to statistical analysis of Student t-test to determine the intervention effect. There were 28 subjects’ samples available for platelet activation analysis due to the electric cutoff event happened during samples analysis.

4.10 Postprandial change of platelet function values of PRU (n = 31; 15 males and 16 females). Intervention effect was examined using Student t-test.

4.11 Postprandial change of platelet function values of ARU (n = 31; 15 males and 16 females). Intervention effect was examined using Wilcoxon Signed Rank test.

4.12 Postprandial change of platelet function values of MFI (n = 28; 14 males and 14 females). Intervention effect was examined using Student t-test. There were 28 subjects’ samples available for platelet activation analysis due to the electric cutoff event happened during samples analysis.

4.13 Postprandial response of plasma PAI-1 concentrations (n = 31; 15 males and 16 females). Data was logarithmic transformed prior to statistical analysis using repeated measures generalised linear model.

4.14 Postprandial change of plasma D-dimer concentrations (n = 31; 15 males and 16 females). Intervention effect was examined using Wilcoxon Signed Rank test.

4.15 Postprandial response of plasma sP-selectin concentrations (n = 31; 15 males and 16 females). Data was examined using repeated measures generalised linear model.

7.1 HPLC chromatogram of vitamin E composition in human plasma at 4 h after 200 mg of mixed tocotrienols administration.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Individual calendar</td>
</tr>
<tr>
<td>2</td>
<td>Application record sheet</td>
</tr>
<tr>
<td>3</td>
<td>Dietary guidelines (English and Malay versions)</td>
</tr>
<tr>
<td>4</td>
<td>Deviation protocol record sheet</td>
</tr>
<tr>
<td>5</td>
<td>Diet diary</td>
</tr>
<tr>
<td>6</td>
<td>Ethics approval letter from JKEUPM, Universiti Putra Malaysia</td>
</tr>
<tr>
<td>7</td>
<td>Advertisements (English and Malay versions)</td>
</tr>
<tr>
<td>8</td>
<td>Screening Questionnaire (English and Malay versions)</td>
</tr>
<tr>
<td>9</td>
<td>Subject’s information sheet (English and Malay versions)</td>
</tr>
<tr>
<td>10</td>
<td>Consent form (English and Malay versions)</td>
</tr>
<tr>
<td>11</td>
<td>Screening record sheet</td>
</tr>
<tr>
<td>12</td>
<td>Certificate of analysis of mixed tocotrienols-tocopherols complex 50% oil suspension standard</td>
</tr>
<tr>
<td>13</td>
<td>Certificate of analysis of Tocovid™ Suprabio™ 200 mg (batch no: 11901BBA)</td>
</tr>
<tr>
<td>14</td>
<td>Certificate of analysis of placebo capsules (batch no: 11902BBA)</td>
</tr>
<tr>
<td>15</td>
<td>HPLC chromatogram of vitamin E composition in human plasma at 4 h after 200 mg of mixed tocotrienols administration</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine 5’-diphosphate</td>
</tr>
<tr>
<td>Alx@75</td>
<td>Augmentation index adjusted to heart rate at 75</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>Alx</td>
<td>Augmentation index</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>Apo A1</td>
<td>Apolipoprotein A1</td>
</tr>
<tr>
<td>Apo B100</td>
<td>Apolipoprotein B100</td>
</tr>
<tr>
<td>ARU</td>
<td>Aspirin reactivity unit</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DP</td>
<td>Diastolic pressure</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl ester</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-glutamyl transpeptidase</td>
</tr>
<tr>
<td>GP IIb/IIIa</td>
<td>Glycoprotein IIb/IIIa</td>
</tr>
<tr>
<td>HAECs</td>
<td>Human aortic endothelial cells</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>β-hydroxy-β-methylglutaryl-coenzyme A</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High sensitivity C-reactive protein</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human umbilical vein endothelial cells</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intracellular adhesion molecule 1</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Federation</td>
</tr>
<tr>
<td>IOM</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>iso-TRAP</td>
<td>(DL-Isoser(^1))-thrombin receptor activating peptide-6 trifluoroacetate salt</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LLOQ</td>
<td>Lower limit of quantification</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular haemoglobin concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume</td>
</tr>
<tr>
<td>MetS</td>
<td>Metabolic syndrome</td>
</tr>
<tr>
<td>MFI</td>
<td>Mean fluorescence intensity</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen activator inhibitor type 1</td>
</tr>
<tr>
<td>PAR</td>
<td>Protease-activated receptor</td>
</tr>
<tr>
<td>PAU</td>
<td>Platelet aggregation unit</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin chlorophyll protein complex</td>
</tr>
<tr>
<td>PIVKA-II</td>
<td>Protein induced by vitamin K absence-factor II</td>
</tr>
</tbody>
</table>
PKC | Protein kinase C
---|---
PMA | Phorbol-12-myristate-13-acetate
PMC | 2,2,5,7,8-pentamethyl-6-chromanol
PRP | Platelet rich plasma
PRU | P2Y12 reactivity unit
RBC | Red blood cell
SBP | Systolic blood pressure
SD | Standard deviation
sE-selectin | Soluble E-selectin
SEVR% | Sub-endocardial viability ratio index
SGOT | Serum glutamic oxaloacetic transminase
SGPT | Serum glutamic pyruvic transaminase
sICAM-1 | Soluble intracellular adhesion molecules 1
SP | Systolic pressure
sP-selectin | Soluble P-selectin
sVCAM-1 | Soluble vascular cell adhesion molecules 1
T1DM | Type 1 diabetes mellitus
T2DM | Type 2 diabetes mellitus
TAG | Triacylglycerol
TC | Total cholesterol
TNF-α | Tumour necrosis factor-α
TRF | Tocotrienol-rich fraction
TxA2 | Thromboxane A2
TxB2 | Thromboxane B2
ucOC Undercarboxylated osteocalcin
ULOQ Upper limit of quantification
US FDA United States Food and Drug Administration
VCAM-1 Vascular cell adhesion molecule 1
VLDL-C Very low density lipoprotein cholesterol
vWF von Willebrand factor
WBC White blood cell
WHO World Health Organisation
α Alpha
α-TTP α-tocopherol transfer protein
β Beta
δ Delta
γ Gamma
CHAPTER 1

INTRODUCTION

Thrombosis is one of the major causes of morbidity, mortality and disability. It is a pathological condition which involves the formation of thrombus in vasculature and thus alters or occludes the normal blood flow. It can take place either in arterial or venous circulation. With respect to arterial thrombosis, thrombus is formed in an area with high shear stress, especially where atherosclerotic plaques are disrupted (Lijfering et al., 2011; Turpie and Esmon, 2011). Several high mortality rate of cardiovascular diseases (CVDs) such as myocardial infarction, cerebrovascular disease and peripheral arterial disease are triggered by arterial thrombosis (Freedman, 2005). On the other hand, venous thrombosis occurs in an intact vein, an area with low blood flow and shear stress. Venous thrombosis is associated with an increased risk of developing deep vein thrombosis or pulmonary embolism (Franchini and Mannucci, 2012; Lijfering et al., 2011). Arterial thrombi comprise predominantly platelet-rich “white thrombi”, whilst venous thrombi consist mainly of red cell-rich “red thrombi”. Nonetheless, both thromboembolic disorders’ thrombi are composed of platelets, fibrin, leukocytes and erythrocytes. Some common pathogenesis biological mechanisms shared between thrombosis of artery and vein included the activation of endothelium, platelets, and coagulation (Franchini and Mannucci, 2012). Recognition of the types of cells, agonists, receptors, enzymes and cellular molecules involved in pathogenesis of thrombosis leads to the major improvement in the development of antithrombotic drugs for the clinical management of patients with thromboembolic disorders.

At present, antithrombotic drugs such as antiplatelets, anticoagulants and fibrinolytic are the standard therapies being applied in the clinical setting for the thrombosis management. They function by targeting the key pathways of coagulation, platelet activation and aggregation including the adenosine 5’-diphosphate (ADP) signalling pathway, thromboxane A$_2$ (TxA$_2$) synthesis, activation of glycoprotein IIb/IIIa (GP IIb/IIIa), activity of thrombin and activated factor X, γ-carboxylation of vitamin K and lysis of formed thrombus (Joint Formulary Committee, 2013; Ryan et al., 2013). Some of the antithrombotic drugs have been medicinally available for several decades for the prevention and treatment of arterial and venous thrombosis. However, these antithrombotic drugs possess several drawbacks such as side effects and inter-individual variability in response towards drug’s therapeutic effects, may limit their usage or effectiveness (Gross and Weitz, 2009; Sikka and Bindra, 2010; Turpie and Esmon, 2011).

The observation of high residual platelet reactivity after antithrombotic therapies reported in published evidences has indicated that these drugs are insufficient to combat the thromboembolic disorders (Michelson, 2010; Musallam et al., 2011; Sweeny et al., 2009). This may be due to the inter-individual response towards the therapeutic effects of antithrombotic drugs. Growing body of evidences have shown
that some patients have low response towards antiplatelet or anticoagulant therapies of aspirin, clopidogrel, warfarin or heparin (Ancrenaz et al., 2010; Cambria-Kiely and Gandhi, 2002; Hirsh and Raschke, 2004; Musallam et al., 2011; Sinxadi and Blockman, 2008; Sweeny et al., 2009). Similar situation also observed in Malaysia. A study conducted by Ibrahim et al. (2013) reported that there were 4.69% low responders for aspirin therapy and 21.9% low responders for clopidogrel therapy in acute coronary syndrome patients. Yet, the mechanisms causing this low response towards antithrombotic drugs have not been fully elucidated. Several potential explanations have been recognised. These included the genetic polymorphisms, pharmacodynamic and pharmacokinetic of drugs interaction and high platelet reactivity (Acikel and Akdemir, 2010; Ancrenaz et al., 2010; Sikka and Bindra, 2010). By taking into consideration the risk-benefit ratio assessment, the presence of side effects of each antithrombotic drug has also limits its usage for the prevention and treatment of thrombosis (Gross and Weitz, 2009; Joint Formulary Committee, 2013; Michelson, 2010; Ryan et al., 2013). Thus, development of new safe and effective antithrombotic agents to strengthen the health care system is an ongoing effort.

Vitamin E, a plant-derived tocots vitamin with antioxidant characteristic, is found to be able to improve cardiovascular outcome (Stephens et al., 1996). More interestingly, tocotrienols, a group of vitamin E beyond the commonly known tocopherols, are previously found to possess antithrombotic properties. Previous animal studies have shown that tocotrienols were able to inhibit collagen and ADP induced platelet aggregation and its effects were significantly better than α-tocopherol (Qureshi et al., 2011). Further, in human study, supplementation of tocotrienols has been reported to decrease the collagen and ADP induced platelet aggregation significantly (Qureshi et al., 1991a). In addition, several animal studies also have demonstrated that tocotrienols were able to reduce the platelet activation biomarkers such as plasma thromboxane B₂ (TxB₂) and platelet factor 4 (Qureshi et al., 1991b; 2001a; Qureshi and Peterson, 2001). Similar results were shown by Qureshi et al. (1995; 1997) in several other human studies where four weeks of tocotrienol supplementation have significantly decreased the levels of TxB₂ and platelet factor 4 in hypercholesterolemic subjects.

Meanwhile, contradictory findings have been published as well. Different groups of researchers have demonstrated that tocotrienols were not able to inhibit the collagen, adrenaline or ADP induced platelet aggregation in animal and human studies (Koba et al., 1992; Mensink et al., 1999; Tomeo et al., 1995; Wahlqvist et al., 1992; Watkins et al., 1993). Additionally, measurement of platelet activation biomarkers such as plasma and urinary TxB₂ and platelet adenosine triphosphate (ATP) release has shown no difference after tocotrienol supplementation (Mensink et al., 1999; Tomeo et al., 1995; Wahlqvist et al., 1992; Watkins et al., 1993). Hence, the antithrombotic effect of tocotrienols remains uncertain with these inconclusive findings.
Based on the published tocotrienols human studies, it was found that dosages of tocotrienols between the previous human studies were different. Significant suppressive effect on platelet aggregation was observed after four weeks of palm tocotrienol-rich fraction (TRF) supplementation at a daily dose of 200 mg (Qureshi et al., 1991a). Conversely, administration of palm TRF at a daily dose ranged from 160 mg up to 336 mg had showed no significant inhibitory effect on platelet aggregation (Mensink et al., 1999; Tomeo et al., 1995; Wahlqvist et al., 1992). Based on the study conducted by Qureshi et al. (2011) in dogs, dosage used in this study was 10 mg TRF/kg of body weight. When the dosage was translated to human equivalent dose with an assumption of 75 kg for human’s body weight, it was found that the tocotrienol human equivalent dose was 405 mg. Thus, summarizing from the above studies, in order to ascertain the antithrombotic effect of tocotrienols in current study, a higher dose of 400 mg tocotrienols could be supplemented in humans.

Apart from the dosage of tocotrienols, platelet aggregation methods were also varied between studies. The studies which used whole blood impedance platelet aggregometry for platelet aggregation analyses had demonstrated that tocotrienols had no significant inhibition effect on platelet aggregation. In contrast, previous studies which used light transmission turbidimetric platelet aggregometry showed that tocotrienols significantly reduced ADP and collagen induced platelet aggregation. Light transmission turbidimetric platelet aggregometry is a method that requires a complex sample preparation which may alter platelet behaviour, and a trained operator to perform the test (Harrison, 2005; Harrison et al., 2007). Besides that, results obtained were not reproducible even in the same laboratory (Musallam et al., 2011). On the other hand, whole blood impedance platelet aggregometry also was reported to be poor in standardised method and thus it was difficult to compare findings between the studies (Harrison, 2005). In order to address the drawbacks of these methods, it is crucial to adopt a universal standardised method that requires no sample processing and skillful operator in addition to its ability to produce reproducible results. VerifyNow instrument is a fully automated cartridge-based instrument that fulfills these desirable attributes (Harrison et al., 2007; Harrision and Keeling, 2007).

In addition, previous studies had been focused only on the investigation of the long term tocotrienol supplementation effect on the fasting measurement of platelet aggregation. There is lack of study looking into the postprandial effect of tocotrienols on platelet aggregation and thrombotic markers. In fact, humans spend most of their waking hours in postprandial state which triggers a series of biochemical events including platelet activation, hypercoagulable state and endothelial dysfunction (O’Keefe and Bell, 2007).

In view of these gaps in current research, further exploration which includes a daily dose of 400 mg tocotrienols and use of VerifyNow instrument for platelet aggregation measurement is thus needed to fully understand the potential of tocotrienols being the antithrombotic agent and sort out the pathway that tocotrienols are targeting in reducing the thrombotic events. This needs to consider not only the
fasting measurement after a period of supplementation but also postprandially. Seeing that tocotrienol is a natural product extracted from plant, it may be beneficial as a potential supplement to enhance the cardiovascular health and simultaneously circumventing the side effects associated with the current antithrombotic drugs.

As such, this randomised double-blind, crossover and placebo-controlled human clinical trial was designed to determine the antithrombotic effect of tocotrienols in subjects with metabolic syndrome (MetS) at a daily dose of 400 mg. MetS subjects are associated with abdominal obesity, hypertension, atherogenic dyslipidemia, insulin resistance, prothrombotic state and proinflammatory state. This series of conditions alter the haemostasis balance by increasing the platelet reactivity and inducing hypercoagulability and hypofibrinolytic states. Hence, an increased risk of cardiovascular diseases in MetS subjects may be attributed by its high tendency of thrombus formation. Prevention of thrombotic event is thus important for this group of people.

The specific objectives of this study are:

i. To ascertain the effect of tocotrienol supplementation (400 mg) on platelet aggregation in subjects with MetS.
ii. To find out the antithrombotic mechanism of tocotrienols via the platelet activation pathway, coagulation pathway, inflammatory pathway, haemodynamic improvement or changes in lipid profile in subjects with MetS.
iii. To determine the postprandial effect of tocotrienol supplementation on the platelet aggregation and activation, coagulation, inflammatory and haemodynamic markers in subjects with MetS.
iv. To determine the safety and tolerance of tocotrienol supplementation in subjects with MetS.
REFERENCES

98

