UNIVERSITI PUTRA MALAYSIA

IMPROVEMENT OF CYCLODEXTRIN GLYCOSYLTRANSFERASE BIOSYNTHESIS BY RECOMBINANT Lactococcus lactis NZ:NSP:CGT

AZIN AMIRI

FBSB 2014 13
IMPROVEMENT OF CYCLODEXTRIN GLYCOSYLTRANSFERASE BIOSYNTHESIS BY RECOMBINANT Lactococcus lactis NZ:NSP:CGT

By

AZIN AMIRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

March 2014
Dedicated to
my beloved parents
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

IMPROVEMENT OF CYCLODEXTRIN GLYCOSYLTRANSFERASE BIOSYNTHESIS BY RECOMBINANT Lactococcus lactis NZ:NSP:CGT

By

AZIN AMIRI

March 2014

Chairman: Assoc. Prof. Rosfarizan Mohamad, PhD
Faculty: Biotechnology and Biomolecular Sciences

Cyclodextrin glycosyltransferase (CGTase) is a distinctive enzyme that has the capability of producing cyclodextrin (CD) from starch. The CD as the product of CGTase has numerous applications in various industries such as foods, cosmetics and toiletries, textiles and agrochemistry. Therefore, CGTase is considered as an industrially important enzyme and its production improvement is very crucial. So, essential efforts to increase its activity are desirable. CGTase production has never been investigated in Generally Regarded as Safe (GRAS) organism, Lactococcus lactis despite its advantages. The CGTase biosynthesis by recombinant Lactococcus lactis NZ:NSP:CGT using different carbon sources ((corn starch), potato (dextrin from starch), tapioca starch and several soluble potato starches) and nitrogen sources (yeast extract, meat extract, peptone from meat, peptone from soymeal and peptone from casein) was carried out in batch cultivation using 250 mL shake-flask. Statistical optimization was performed using artificial neural network technique in order to optimize the culture condition (temperature) and medium compositions (carbon and nitrogen sources concentrations) to achieve maximum CGTase production. The experimental data from the aforementioned fermentation experiments were analyzed in order to obtain the kinetic parameter values and establish the basis of a kinetic model. The optimum parameters obtained were used to run batch fermentation in a 2L stirred tank bioreactor. The best carbon source leading to maximum CGTase biosynthesis was determined as Nacalai Tesque GR soluble potato starch. The maximum CGTase activity and productivity obtained by this carbon source were 7.99 U/mL and 1 U/mL.h, respectively. Yeast extract (Merck) was selected as the best nitrogen source due to its highest CGTase activity (9.88 U/mL) and productivity (0.99 U/mL.h) obtained. In screening stage of CGTase fermentation, carbon source concentration, nitrogen source concentration and temperature were recognized as three significant fermentation parameters. The optimum values for these parameters were determined through statistical optimization as 20°C for temperature and 3.82 and 5.67% (w/v) of soluble starch and yeast extract concentrations, respectively. The maximum CGTase activity obtained using the optimum values was 22.09 U/mL, which was closed to the predicted value (24.17 U/mL). The models used in this study were based on unstructured model equations including logistic and Luedeking-Piret, which were suitable to explain the growth, substrate consumption and CGTase production by L. lactis NZ:NSP:CGT in batch cultivation. According to the results, CGTase
production is a growth-associated process. Production of CGTase in 2L stirred tank bioreactor (15.36 U/mL) was lower than shake-flask, which shows the essential optimization studies in bioreactor scale.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PENAMBAHBAIKAN BIOSINTESIS SIKLODEKSTRIN GLIKOSILTRANSFERASE OLEH Lactococcus lactis NZ:NSP:CGT REKOMBINAN

Oleh

AZIN AMIRI

Mac 2014

Pengerusi: Assoc. Prof. Rosfarizan Mohamad, PhD
Fakulti: Bioteknologi dan Sains Biomolekul

Siklodekstrin glikosiltranferase (CGTase) ialah enzim yang jelas berbeza dan berkeupayaan menghasilkan siklodekstrin (CD) daripada kanji. CD sebagai produk CGTase mempunyai banyak kegunaan dalam pelbagai industri seperti industri makanan, kecantikan dan kelengkapan kebersihan diri, pakaian dan agrokimia. Oleh itu, CGTase adalah dianggap sebagai enzim yang penting dalam industri dan penghasilannya adalah amat penting. Justeru itu, penghasilan CGTase daripada organisma yang boleh dianggap selamat (GRAS) seperti Lactococcus lactis NZ:NSP:CGT menggunakan sumber karbon berbeza; (kanji jagung, ubi kentang (destrin daripada kanji), kanji ubi kayu dan beberapa jenis kanji boleh larut daripada ubi kayu) dan sumber nitrogen (ekstrak yis, ekstrak daging, pepton daging, pepton minyak soya dan pepton kasein) telah dilakukan dalam pengkulturan sesekelompok menggunakan 250 mL kelalang kon. Pengoptimuman secara statistik telah dibuat menggunakan teknik rangkaian neural tiruan untuk mengoptimumkan keadaan kultur dan komposisi media untuk memperoleh penghasilan CGTase yang paling maksima. Data eksperimen daripada eksperimen fermentasi yang disebutkan telah dianalisis untuk memperoleh nilai parameter kinetik dan membuat satu model kinetik asas. Parameter optimum yang diperoleh telah digunakan untuk melakukan fermentasi kelompok di dalam bioreaktor tangki berpengaduk 2L. Sumber karbon terbaik yang dapat menghasilkan CGTase secara maksima adalah kanji boleh larut daripada ubi kayu Nacalai Tesque GR. Aktiviti dan penghasilan maksima CGTase yang diperoleh menerusi sumber karbon ini adalah 7.99 U/mL bagi aktiviti dan 1.00 U/mL.h untuk penghasilannya. Ekstrak yis (Merck) dipilih sebagai sumber nitrogen terbaik disebabkan aktiviti (9.88 U/mL) dan produktiviti (0.99 U/mL.h) CGTase yang tinggi diperoleh daripadanya. Dalam peringkat saringan fermentasi CGTase, kepekatan sumber karbon, kepekatan sumber nitrogen dan suhu telah dikenalpasti sebagai parameter fermentasi yang penting. Nilai optimum untuk parameter ini telah ditentukan menerusi pengoptimuman secara statistik di mana suhunya adalah 20°C, 3.82% (w/v) kanji boleh larut dan 5.67% (w/v) kepekatan ekstrak yis. Aktiviti CGTase paling maksima yang diperoleh dengan menggunakan nilai optimum adalah 22.09 U/mL, di mana berdekatan dengan nilai jangkaan (24.17 U/mL). Model yang digunakan dalam kajian ini adalah berdasarkan persamaan model tidak berstruktur termasuk Logistik dan Luedeking-Piret yang sesuai untuk menerangkan proses pertumbuhan, penggunaan sumber dan penghasilan CGTase oleh L. lactis...
NZ:NSP:CGT dalam pengkulturan sesekelompok. Berdasarkan kepada keputusan, penghasilan CGTase adalah proses berkaitan dengan pertumbuhan. Penghasilan CGTase di dalam bioreaktor tangki berpengaduk 2L (15.36 U/mL) adalah lebih rendah berbanding di dalam kelalang kon dimana menunjukkan pengoptimuman adalah penting untuk dikaji dalam skala bioreaktor.
ACKNOWLEDGEMENTS

First and foremost, I am indeed thankful to God for giving me all the blessings, support and strength to successfully complete the period of my master study.

I wish to express my heartfelt appreciation to the chairman of the supervisory committee, Assoc. Prof. Dr. Rosfarizan Mohamad, for her supervision, invaluable advices, patience, endless support, and encouragement throughout my study and for her critical analysis, helpful suggestions and incredible helps during the thesis preparation. I like to express my sincere gratitude to Professor Dr. Raha Abdul Rahim as the member of my supervisory committee, for her kind guidance, support and encouragement.

My heartfelt appreciations are also due to Mr. Khairul Basyar Baharudin and Ms. Noriza Ibrahim, staff of Bioprocess Technology Laboratory, for their kind assistance and technical support. I wish to thank my fellow friends and lab members for helping me to overcome the challenges encountered in this period by their friendship, and support.

The most special thanks are extended to my parents, for their continuous support, encouragement and prayers, which have inspired and motivated me throughout the course of this study. I will always be grateful for their constant love and encouragement.
I certify that a Thesis Examination Committee has met on (6 of March) to conduct the final examination of Azin Amiri on her thesis entitled “Improvement of Cyclodextrin Glycosyltransferase Biosynthesis by Recombinant Lactococcus lactis NZ:NSP:CGT” in accordance with the University and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the M.Sc degree.

Members of the Thesis Examination Committee were as follows:

Foo Hooi Ling
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Nor'Aini Abdul Rahman, Ph.D
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wan Zuhainis Saad, Ph.D
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rosma Ahmad, Ph.D
Associate Professor
Bioprocess Technology, School of Industrial Technology
Universit Sains Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, Ph.D
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rosfarizan Mohamad, Ph.D
Associate Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Chairperson)

Raha Abdul Rahim, Ph.D
Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, Ph.D
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 June 2014
Declaration by Graduate Student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustration and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copy right of thesis are fully-owned by Universiti Putra Malaysia, as according to Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________
Name and Matric No.: __
Declaration by Members of Supervisory Committee:

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 2.1 Lactic Acid Bacteria

 2.1.1 *Lactobacillus*
 2.1.2 *Lactococcus*

 2.2 Industrial Enzymes

 2.2.1 Industrial Enzyme Production

 2.3 Cyclodextrin Glycosyltransferase

 2.3.1 CGTase Catalytic Activities

 2.3.2 CGTase Producing Microorganisms

 2.3.3 CGTase Product (Cyclodextrin)

 2.3.4 CGTase Applications

 2.4 Cultivation Process

 2.4.1 Modes of Fermentation

 2.4.2 Medium Compositions and Culture Conditions

 2.5 Enzymes Production Improvement

 2.5.1 Genetic Modification

 2.5.2 Fermentation Process Optimization (Conventional and
4.2.1 Influence of Carbon Sources 34
4.2.2 Influence of Nitrogen Sources 40
4.3 Statistical Optimization of Medium Formulation and culture Conditions of L. lactis NZ:NSP:CGT in Shake Flask Culture 45
4.3.1 Placket-Burman Design 45
4.3.2 Steepest Ascent/Descent 47
4.3.3 Artificial Neural Network 48
4.4 Kinetics and Modeling of L. lactis NZ:NSP:CGT in Batch Cultivation 54
4.5 Batch Cultivation of L. lactis NZ:NSP:CGT for CGTase Biosynthesis using a 2 L Stirred Tank Bioreactor 57

5 CONCLUSIONS 60

6 FUTURE STUDY 61

REFERENCES 62
APPENDICES 73
BIODATA OF STUDENT 85
LIST OF PUBLICATIONS 86
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Species and subspecies of genus Lactococcus and their sources (Teuber and Geis, 2006)</td>
</tr>
<tr>
<td>2.2</td>
<td>Enzymes' applications in different industries (Kirk et al.., 2002; Powers, 2010; Ribeiro et al., 2010; Sanchez and Demain, 2011; Senthilvelan et al., 2012)</td>
</tr>
<tr>
<td>2.3</td>
<td>Bacterial strains employed by previous researchers for CGTase production</td>
</tr>
<tr>
<td>2.4</td>
<td>CD's applications in various industries (Del Valle, 2004; Loftsson and Duchêne, 2007; Rasheed et al., 2008; Szente et al., 1993)</td>
</tr>
<tr>
<td>2.5</td>
<td>Studies on CGTase biosynthesis using different bacterial strains under different temperature (as a culture condition) and carbon source concentration (as medium composition)</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of M17 medium</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of CM medium</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of Horikoshi medium</td>
</tr>
<tr>
<td>3.4</td>
<td>Contents and concentrations of nitrogen sources in synthetic M17 medium</td>
</tr>
<tr>
<td>3.5</td>
<td>Optimization parameters and their levels for initial screening</td>
</tr>
<tr>
<td>3.6</td>
<td>Placket-Burman experimental design matrix for CGTase biosynthesis</td>
</tr>
<tr>
<td>3.7</td>
<td>Values of coded levels used in experimental design</td>
</tr>
<tr>
<td>3.8</td>
<td>Steepest ascent/descent experimental design matrix for CGTase fermentation</td>
</tr>
<tr>
<td>3.9</td>
<td>Central Composite experimental design matrix for CGTase fermentation</td>
</tr>
<tr>
<td>4.1</td>
<td>Influence of different carbon sources on CGTase biosynthesis by L. lactis NZ:NSP:CGT</td>
</tr>
<tr>
<td>4.2</td>
<td>Influence of different nitrogen sources on CGTase</td>
</tr>
</tbody>
</table>
biosynthesis by *L. lactis* NZ:NSP:CGT

4.3 Placket-Burman design matrix and corresponding results 45

4.4 Steepest ascent/descent experiments and the corresponding results 47

4.5 Experiments designed by CCD and the corresponding CGTase activities (U/mL) and biomass concentrations (g/L) 48

4.6 CGTase production using different bacterial strains 52

4.7 Comparison of the kinetics parameter values of batch fermentation using different carbon and nitrogen sources 55
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Phylogenetic groups of lactic acid bacteria with low G+C % (and non-related gram-positive genera (Bifidobacterium and Propionibacterium)) based on consensus sequences compared by sequence analysis of 16S rRNA (Source: Schleifer and Ludwig, 1995)</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>A) Electron micrograph of a thin sections of Lactococcus lactis subsp. lactis singly and during cell division, B) Phase-contrast micrograph of Lactococcus lactis subsp. lactis in pairs of ovoid shape, C) Scanning electron micrograph of Lactococcus lactis subsp. diacetylactis growing in pairs of ovoid cells, D) Phase-contrast micrograph of Lactococcus lactis subsp. lactis in chains. (Source: Teuber and Geis, 2006)</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>α-, β- and γ-CD's structure (Source: http://unam.bilkent.edu.tr/~uyar/Research.html, 23 Aug 2013)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure of biological neuron (Baş and Boyacı, 2007)</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>2L Stirred Tank Bioreactor</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow diagram of the experimental plan</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Growth profiles of L. lactis NZ:NSP:CGT in batch submerged fermentation in M17 (Δ) and CM (☐) media using shake-flask culture. Error bars represent the standard errors</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>CGTase production profiles in batch submerged fermentation by L. lactis NZ:NSP:CGT in M17 (Δ) and CM (☐) media using shake-flask culture. Error bars represent the standard errors</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>CGTase production profile in batch submerged fermentation by L. lactis NZ:NSP:CGT using Nacalai Tesque GR soluble starch as carbon source in shake-flask culture. Error bars represent the standard errors</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Substrate consumption trend (Δ) and growth profile (O) of L. lactis NZ:NSP:CGT in batch submerged fermentation using Nacalai Tesque GR soluble as carbon source in shake-flask culture. Error bars represent the standard errors</td>
<td>38</td>
</tr>
</tbody>
</table>
4.5 pH trend of CGTase fermentation by *L. lactis* NZ:NSP:CGT using Nacalai Tesque GR soluble potato starch as carbon source

4.6 CGTase production profile in batch submerged fermentation by *L. lactis* NZ:NSP:CGT using yeast extract as nitrogen source in shake-flask culture. Error bars represent the standard errors

4.7 Substrate consumption trend (Δ) and growth profile of *L. lactis* NZ:NSP:CGT (O) in batch submerged fermentation using yeast extract as nitrogen source in shake-flask culture. Error bars represent the standard errors

4.8 pH trend of CGTase fermentation by *L. lactis* NZ:NSP:CGT using yeast extract as nitrogen source

4.9 The topology of the neural network for the estimation of CGTase production. (●) represent the inputs (neurons added to for ANN processing); temperature, soluble starch concentration and yeast extract concentration. (○) represent the hidden and output layer (neurons generated during ANN and processing)

4.10 Importance of optimization parameters on CGTase production by *L. lactis* NZ:NSP:CGT

4.11 3-D plots of ANN model for combined effects of (A) temperature and soluble starch concentration; and (B) temperature and yeast extract concentration on CGTase production

4.12 Comparison of calculated and experimental values for CGTase biosynthesis through batch cultivation of *L. lactis* NZ:NSP:CGT using Nacalai Tesque GR soluble starch as carbon source. (□) Biomass concentration, (Δ) substrate consumption and (×) CD concentration; solid lines represent fitted model

4.13 Comparison of calculated and experimental values for CGTase biosynthesis through batch cultivation of *L. lactis* NZ:NSP:CGT using yeast extract as nitrogen source. (□) Biomass concentration, (Δ) substrate consumption and (×) CD concentration; solid lines represent fitted model

4.14 CGTase production profile in batch submerged fermentation by *L. lactis* NZ:NSP:CGT using optimum values in 2L stirred tank bioreactor
Substrate consumption trend (Δ) and growth profile (□) of *L. lactis* NZ:NSP:CGT in batch submerged fermentation optimum values in 2L stirred tank bioreactor.
LIST OF ABBREVIATIONS

AAD Absolute Average Deviation
CCD Central Composite Design
CD Cyclodextrin
CGTase Cyclodextrin Glycosyltransferase
DCW Dry Cell Weight
DOT Dissolved Oxygen Tension
E. coli Escherichia coli
EC Enzyme Classification
Eq Equation
F. S. Friendemann Schmidt
GRAS Generally Recognized as Safe
IBP Incremental Back Propagation
IUBMB International Union of Biochemistry and Molecular Biology
L. lactis Lactococcus lactis
LAB Lactic Acid Bacteria
max Maximum
OD Optical Density
PBD Placket-Burman Design
Pr Productivity
RMSE Minimum Root Square Error
RSM Response Surface Methodology
μ Specific Growth Rate
CHAPTER 1

INTRODUCTION

Cyclodextrin glycosyltransferase (EC 2.4.1.19; CGTase), is a "carbohydrate-converting", "bacterial glycosyltransferase" (Subramaniam et al., 2012). CGTase is an enzyme that catalyzes the conversion of starch and related substances to cyclodextrins through cyclization reaction (Ibrahim et al., 2005). It catalyzes other transferase reactions including disproportion and coupling beside cyclization. CGTase displays minor hydrolysis activity as well (Rahman et al. 2004).

Cyclodextrin (CD) is a cyclic malto-oligosaccharide molecule, which is formed of 6 to 60 glucose monomers (Vassileva et al., 2003). CDs most commonly synthesized are α-, β- and γ-CDs, which consist of 6, 7 and 8 glucose units (Mahat et al., 2004). CD holds a hydrophobic central cavity and a hydrophilic outer surface (Vassileva et al., 2003).

According to Dodziuk (2006a, b) and Uekama et al. (2006), various molecules can enter the CDs' cavity and almost all the applications of CDs include their inclusion complex formation capability leading to their wide uses in different industries. For instance, CDs are applied in foods, cosmetics and toiletries, textiles and agrochemistry. In food industry, CDs are employed for stabilization by powdering (flavor or spices, fish oil, coffee, green tea), taste modification, anti-oxidation and improvement of bioavailability. CDs applications are also expanded to pharmaceuticals. They are employed to study different properties of drugs such as release control, site-specific drug delivery, absorption enhancement and so on. They can also be utilized in gene therapies. CDs also assist in improving the solubility and stability, reducing volatility and masking odors and tastes which result in increased popularity with their extensive use in various industries (Sian et al., 2005). The vast applications of CD, increases the attentions focused on CGTase.

Microorganisms synthesize CGTase in order to catalyze the conversion of starch present in their environment to cyclodextrin for the purpose of growth and survival (Wang et al., 2005). Although, enhancement of CGTase biosynthesis is of great interest (due to improvement of CD production), there is no report on CGTase production by L. lactis species. Therefore, no studies on optimization of culture conditions and medium compositions for the purpose of maximum CGTase production by L. lactis have been conducted. Recently, Subramaniam et al. (2012) has constructed a recombinant L. lactis strain capable of producing CGTase. The CGTase gene originally from Bacillus sp. G1 (Illias et al., 2003) was cloned in Escherichia coli (Ong et al., 2008). According to Subramaniam et al. (2012), the CGTase quality might be reduced in Bacillus and E. coli due to presence of some impurities such as proteases. Therefore, CGTase production studies in L. lactis are desirable.

The CGTase activity obtained by recombinant L. lactis NZ:NSP:CGT strain was very low and needed improvement through fermentation techniques. There are various methods available for fermentation optimization. One of the useful techniques is mathematical optimization with different tools available. Artificial
neural network (ANN) is one of the softwares employed for optimization of various product formation processes through fermentation process. There is no literature available in regard to CGTase biosynthesis using ANN. In this study, ANN was employed for the purpose of optimization of CGTase biosynthesis by recombinant \textit{L. lactis} NZ:NP:CGT.

In most fermentation processes, mathematical models are required to control, optimize, simulate and scale up of the process in lots of unit operations (Rosfarizan, 2000). Information on the kinetics and modeling of CGTase production is very scarce. Therefore, a set of experiments is necessary in order to develop better understanding of CGTase fermentation process. The results could be used for estimation of kinetic parameters, which are prerequisite for mathematical model development. The model helps in better understanding of the whole process as well as control of CGTase biosynthesis by \textit{L. lactis} NZ:NSP:CGT. This study is one of the first attempts in terms of studying the CGTase fermentation kinetics and modeling.

Generally, the focus of this study was on development of a process aimed at establishing high performance CGTase fermentation using a newly constructed recombinant \textit{L. lactis} NZ:NSP:CGT strain. The objectives of this research were:

1. To evaluate the influences of different types of carbon and nitrogen sources on CGTase biosynthesis by \textit{L. lactis} NZ:NSP:CGT in shake-flask culture.

2. To improve the CGTase biosynthesis by \textit{L. lactis} NZ:NSP:CGT through medium compositions and environmental conditions optimization by statistical experimental design techniques.

3. To perform the kinetics and modeling of CGTase fermentation by \textit{L. lactis} NZ:NSP:CGT in shake-flask scale followed by evaluation of CGTase biosynthesis in a 2L stirred tank bioreactor system.
REFERENCES

Li, S., Yang, X., Yang, S., Zhu, M. and Wang, X. (2012). Technology Prospecting on Enzymes : Application , Marketing and Engineering Abstract : Enzymes are protein molecules functioning as specialized catalysts for chemical reactions . They have contributed greatly to the traditional and modern chemical industr. *Computational and Structural Biotechnology Journal*. 2(3).

Youssefi, S. H., Emam-Djomeh, Z. and Mousavi, S. M. (2009.) Comparison of artificial neural network (ANN) and response surface methodology (RSM)

