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June, 2013 
 

 

Chairman:     Assoc. Professor Mohd Puad Abdullah, PhD 
 
Faculty:          Biotechnology and Biomolecular Sciences 
 
In response to drought, plants change their metabolic activities towards limiting 
cellular water consumption and loss. One metabolic process that is affected by this 
stress is ethanolic fermentation. In plants, ethanolic fermentation occurs during 
limited oxygen condition and under certain environmental stresses. The effects of 
ethanol fermentation on plant growth and survival under drought stress are not well 
explained. In addition, previous studies on ethanolic fermentation in plants were 
limited to alcohol dehydrogense (EC.1.1.1.1) enzyme activity and gene expression. 
In this study, it was hypothesized that ethanolic fermentation is required to enhance 
plant ability to retain cellular water under drought. Enhancing the capacity of 
ethanolic fermentation in a plant would improve the plant ability to retain cellular 
water; thus, retain the plant’s photosynthetic capacity. To test the hypothesis, this 
study was carried out with the following objectives: i) to identify the specific ADH 
genes responding to drought in Arabidopsis plants,  ii) to evaluate the effects of 
defective ADH on growth and drought-related parameters, iii) to evaluate the effects 
of enhanced ethanolic fermentation on growth and drought-related parameters. The 
objectives were achieved by a combination of the gain-and the loss-of-function 
approaches. For the gain-of-function approach, an Arabidopsis plant over-expressing 
the ADH1 transgene was developed using the Gateway technology where fully 
characterized homozygous lines were used for the analysis. As for the loss-of-
function approach, the T-DNA insertion mutant lines with impaired ADH genes were 
used. The plants were exposed to polyethylene glycol-induced drought stress, and 
their responses at physiological, biochemical and molecular levels were analysed 
together with their overall growth performance.  
 
In the present study, the level of relative water content (RWC) of Arabidopsis plants 
dropped to 75% from the initial level of 85% when treated with 5% (w/v) PEG-20,000, 
demonstrated that the plants were moderately water-stressed. The stressed plants had 
high levels of proline and low levels of chlorophyll.  At enzyme and metabolite levels, 
both the root and leaf NADH-ADH activities were increased 5.9 and 4.4 folds, 
respectively. For pyruvate decarboxylase (PDC), the activity was increased in the root 
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(1.2 folds) and in the leaf (4.4 folds).  Ethanol, the end product of ethanol fermentation 
was accumulated in both the leaf (3 folds) and root (2 folds). The increase in the level 
of ethanol was parallel with the increase observed in the activities of NADH-ADH and 
PDC.  At gene level, the majority of the ADH and PDC genes were up-regulated. Two 
of the PDC genes (AT5G01320 and AT4G33070) genes and three of the ADH genes 
(AT1G64710, AT1G77120 and AT5G24760) were up-regulated in the leaf and root. 
These evidences support the conclusion that the capacity of ethanolic fermentation was 
enhanced in response to drought.  
 
When the individual ADH gene was defective, a severe reduction in the ADH 
activities and growth performance of the mutant plants were observed when exposed 
to drought. The T-DNA insertion adh knock-out mutant lines [adh1mutant 
(AT1G77120) and two adh-like mutants (AT1G64710 and AT5G24760)] demonstrated 
reduced growth judging by a shorter root system and lower biomass content. The 
plants also failed to retain cellular water which subsequently affected their 
physiological process including photosynthesis. 
 
In the transgenic Arabidopsis plant over-expressing the ADH1 gene, the capacity of 
ethanolic fermentation was enhanced judging by the increase in the ADH enzyme 
activity (6 folds). Under drought stress, the transgenic plant exhibited the following 
phenotypic improvements i) improved ability to retain cellular water; ii) increased 
chlorophyll content; iii) increased proline level; iv) increased NADH-ADH activity; 
v) increased volume of  root system and iv) increased biomass. All these features 
contributed to the overall improvement of the transgenic plants under drought. 
 
As a conclusion, ethanolic fermentation is important for plants grown under drought 
condition. Enhancing the capacity of ethanolic fermentation improves plant ability to 
maintain cellular water; thus, supports the normal function of photosynthesis. To 
reduce the impacts of drought in plants, the capacity of plant ethanolic fermentation 
may be enhanced, and this strategy could be implemented in crop plants of economic 
importance.  
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Oleh 

THAWDA MYINT 
 

Jun, 2013 

 

Pengerusi: Profesor Madya Mohd Puad Abdullah, PhD 

Fakulti: Bioteknologi dan Sains Biomolekul 

Sebagai tindak balas kepada kemarau, tumbuhan mengubah aktiviti metabolisme ke 
arah penjimatan penggunaan dan kehilangan air. Satu proses metabolisme yang 
dipengaruhi oleh stres ini adalah fermentasi etanol. Dalam tumbuhan, fermentasi 
etanol berlaku semasa keadaan kekurangan oksigen dan di bawah stres alam sekitar 
yang tertentu. Kesan fermentasi etanol ke atas pertumbuhan tumbuhan yang hidup 
dalam keadaan kemarau tidak diketahui dengan jelas. Di samping itu, kajian 
terdahulu mengenai fermentasi etanol dalam tumbuhan terbatas kepada aktiviti enzim 
dan gen alkohol dehidrogense (EC.1.1.1.1). Hipotesis kajian ini adalah fermentasi 
etanol diperlukan untuk meningkatkan keupayaan tumbuhan untuk mengekalkan air 
sel dalam keadaan kemarau. Meningkatkan kapasiti fermentasi etanol akan 
meningkatkan keupayaan tumbuhan untuk mengekalkan air sel; oleh itu, 
mengekalkan kapasiti fotosintesis. Untuk menguji hipotesis tersebut, kajian ini 
dijalankan dengan objektif berikut: i) untuk mengenal pasti gen ADH tertentu yang 
bertindakbalas ke atas kemarau dalam tumbuhan Arabidopsis, ii) untuk menilai kesan 
kecacatan gen ADH kepada pertumbuhan dan parameter kemarau yang berkaitan, iii) 
menilai kesan peningkatan kapasiti fermentasi etanol ke atas pertumbuhan dan 
parameter kemarau yang berkaitan. Objektif berkenaan telah dicapai melalui 
pendekatan kehilangan-fungsi dan kedapatan-fungsi gen ADH. Bagi pendekatan 
kedapatan-fungsi, tumbuhan Arabidopsis yang mengekspreskan  ADH1 secara 
berlebihan telah dibangunkan menggunakan teknologi Gateway. Pokok homozigous 
yang telah dicirikan sepenuhnya telah digunakan untuk tujuan analisis. Bagi 
pendekatan kehilangan-fungsi, tumbuhan arabidopsis mutan yang mempunyai selitan  
T-DNA dengan gen ADH yang cacat telah digunakan. Tumbuhan tersebut telah 
didedahkan kepada polietilena glikol untuk menjana kesan stres kemarau, dan tindak 
balas tumbuhan tersebut di peringkat fisiologi, biokimia dan molekul telah dianalisis 
bersama dengan prestasi pertumbuhan tersebut secara keseluruhan. 
 
Dalam kajian ini, tahap kandungan air relatif (RWC) tumbuhan Arabidopsis menurun 
kepada 75% daripada tahap awal sebanyak 85% apabila dirawat dengan 5% (w / v) 
PEG-20, 000, menunjukkan bahawa tumbuhan tersebut  berada di bawah stres 
kemarau yang sederhana. Tumbuhan tersebut mempunyai tahap prolina yang tinggi 
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dan paras klorofil yang rendah. Pada peringkat enzim dan metabolit, aktiviti enzim 
NADH-ADH pada akar dan daun telah meningkat sebanyak 5.9 dan 4.4 kali ganda, 
masing-masing. Manakala untuk enzim piruvat dekarboksilase (PDC), aktiviti enzim 
tersebut telah meningkat pada akar (1.2 kali ganda) dan daun (4.4 kali ganda). 
Etanol, produk akhir fermentasi etanol telah terkumpul di dalam daun (3 kali ganda) 
dan akar (2 kali ganda). Peningkatan paras etanol adalah selari dengan peningkatan 
yang diperhatikan dalam aktiviti enzim NADH-ADH dan PDC. Di peringkat gen, 
majoriti gen ADH dan PDC telah meningkat dengan ketara. Dua daripada gen PDC 
(AT5G01320 dan AT4G33070) dan tiga daripada gen ADH (AT1G64710, 
AT1G77120 dan AT5G24760) telah mengalami kenaikan dalam pengekspresan yang 
ketara pada daun dan akar. Kesemua bukti berkenaan menyokong peningkatan 
kapasiti fermentasi etanol sebagai tindak balas terhadap kemarau. 
 
Apabila gen ADH mengalami kecacatan, pengurangan yang ketara dalam aktiviti 
enzim ADH dan prestasi pertumbuhan tanaman mutan telah diperhatikan apabila 
tumbuhan tersebut didedahkan kepada kemarau. Tumbuhan mutan Arabidopsis yang 
mempunyai selitan T-DNA dengan gen ADH yang cacat [mutan adh1 (AT1G77120) 
dan dua mutan adh-setara (AT1G64710 dan AT5G24760)] telah menunjukkan 
penurunan dalam prestasi pertumbuhan berdasarkan kepada sistem akar yang pendek 
dan biomas yang rendah. Tumbuhan tersebut juga gagal untuk mengekalkan air sel 
dan seterusnya telah menjejaskan proses fisiologi termasuk fotosintesis. 
 
Dalam tumbuhan Arabidopsis transgenik yang mengekspreskan gen ADH1 secara 
berlebihan, kapasiti fermentasi etanol telah dipertingkatkan berdasarkan kepada 
peningkatan aktiviti enzim ADH (6 kali ganda). Di bawah stres kemarau, tumbuhan 
transgenik tersebut mempamerkan penembahbaikan fenotip seperti berikut: i) 
peningkatan keupayaan untuk mengekalkan air sel; ii) peningkatan kandungan 
klorofil; iii) peningkatan paras prolina; iv) peningkatan aktiviti enzim NADH-ADH; 
v) peningkatan jumlah  akar;  dan  iv) peningkatan biomas. Ke semua ciri-ciri ini 
menyumbang kepada peningkatan prestasi keseluruhan tumbuhan transgenik tersebut  
di bawah keadaan kemarau. 
 
Kesimpulannya, fermentasi etanol adalah penting untuk tumbuhan di bawah keadaan 
kemarau. Meningkatkan kapasiti fermentasi etanol telah meningkatkan keupayaan 
tumbuhan untuk mengekalkan air sel; oleh itu, menyokong fungsi normal 
fotosintesis. Untuk mengurangkan kesan kemarau pada tumbuhan, kapasiti 
fermentasi etanol dalam tumbuhan boleh dipertingkatkan dan strategi ini boleh 
dikembangkan kepada tanaman yang mempunyai kepentingan ekonomi. 
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CHAPTER 1 
 

INTRODUCTION 
 

The impacts of global warming and climate change are becoming important. Especially 
in prolonged drought and frequent flooding are common phenomenon in many parts of 
the world (Qiu, 2010; Schiermeier, 2011). Together with other biotic and abiotic stresses 
including salinity, low temperature, pest and disease, these could severely affect 
agricultural productivity as the stress could restrict the expression of the full genetic 
potential of a crop plant, and threaten the sustainability of agricultural industry (Shilpi 
and Narendra, 2005). One estimate puts a reduction of more than 50% in yield because 
of environmental stress (Bray, 2000).  
 
Drought severely reduces plant productivity as a result of reduced photosynthetic 
capacity (Hummel et al., 2010)  through stomatal closure of CO2 diffusion (Sharkey, 
1990; Chaves, 1991; Ortet al., 1994; Cornic and Massacci, 1996) or by metabolic 
impairment of carbon reduction cycle (Boyer, 1976; Lawlor, 1995; Allen and Ort, 2001).  
Evidence that impaired ATP synthesis is the main factor limiting photosynthesis even 
under mild drought (Boyer, 1976; Tezara et al., 1999) has further stimulated debate 
(Cornic, 2000; Lawlor and Cornic, 2002). While some plants can withstand the adverse 
effects of prolonged drought, most are not able to hold their metabolic function long 
enough for survival before the rain fall again. The mechanism that governs these 
differential abilities of different plants to withstand different intensities of drought is not 
fully understood. Changes in the levels of certain metabolites such as chlorophyll 
content, sugar-alcohol and proline are commonly observed in the plants exposed to 
drought condition (Sperdouli and Moustakas, 2012; Silvente et al., 2012); however, 
these biochemical changes are often overlapped with plant responses to other 
environmental stresses. 
 
To overcome this potential threat to agriculture, scientists turn to biotechnology for 
long-term solution of intensifying research on various aspects of plant adaptative 
response and survival to various environmental stresses. One approach is to utilize 
genome-wide expression analysis where drought-related genes could be obtained from 
thousands of genes analysed (Seki et al., 2002, Patrica et al., 2011). The efforts were 
proven to be fruitful as scientists can identify important genes related to drought and 
carry out gene functional studies for more in-depth analysis of drought gene network. 
 
One particular gene that responds to drought is alcohol dehydrogenase (ADH). In 
Arabidopsis plant, alcohol dehydrogenase enzyme (EC.1.1.1.1) has been encoded by 
ADH gene which is involved in mediating stress responses, mainly in anaerobic 
condition (Dolferus et al., 1994; Peters and Frenkel, 2004). In addition, numerous stress-
induced genes have been identified using microarray experiment in which ADH gene 
was up-regulated under drought condition (Seki et al., 2002). This observation supports 
an earlier study on ethanol production under drought condition. Kimmerer and 
Kozolowski (1982) reported that high level of ethanol content was produced in 
dehydrated woody plants. These evidences of upregulation of ADH gene expression and 
production of ethanol under drought condition connect to induction of ethanolic 
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fermentation as ADH is the main enzyme of ethanolic fermentation. So far, little effort 
has been done in experiments to follow up these findings with functional studies of the 
ADH gene in plants exposed to drought stress condition.  
 
Ethanolic fermentative pathway normally occurs in plants grown under anaerobic 
condition. This topic has been well researched in animals and yeasts but not so much in 
plants. Under hypoxic conditions where molecular oxygen becomes limited, 
fermentative enzymes in the ethanolic pathway are upregulated, causing increased 
production of ethanol and NAD+. The cofactor NAD+ was generated as a by-product of 
this process is what makes ethanolic fermentation important for the survival of living 
systems under anaerobic condition. In the context of the fermentative enzyme in plants, 
the activities of the ADH enzymes are up-regulated not only in anaerobic conditions but 
also in other environmental stresses condition where oxygen was not completely 
depleted (Robert et al., 1984; 1989; Tadege et al., 1998; Mustroph and Albrecht, 2003; 
Geigenberger, 2003; Fukao and Bailey-Serres, 2004). Hence, some suggest that plant 
ADH (EC.1.1.1.1) is involved in stress adaptation mechanism for energy production 
(Tesniere et al., 2006; Ismond et al., 2003; Kato-Noguchi et al., 2006).   
 
Previous functional analyses of the ADH gene were mainly done on the effects of the 
over-expression on plant tolerance to low oxygen levels when the plant or cells are 
submerged in water (Shiao et al., 2002, Ismond et al., 2003). In the model plant, 
Arabidopsis thaliana, the ADH enzyme (EC 1.1.1.1) is encoded by the ADH1 gene and 
other seven ADH-like genes (The Arabidopsis Genome Initiative, 2000). So far, only 
ADH1 has been studied in the plant including its expression. The gene was reported to 
be associated with various environmental stresses. However, the mechanism of alcohol 
dehydrogenase genes (ADH) function under drought stress is still not clear.   
 
In this study, it was hypothesized that ethanolic fermentation is required to enhance 
plant ability to retain cellular water under drought stress condition. Enhancing ethanolic 
fermentation in a plant would improve water retention in the plant; thus, improving the 
plant photosynthetic capacity. The hypothesis was tested in a combination of the gain- or 
loss-of-function approaches. For the gain-of-function approach, an Arabidopsis plant 
overexpressing the ADH1 transgene was developed using the Gateway technology; fully 
characterized homozygous lines were used for the analysis. As for the loss-of-function 
approach, the T-DNA insertion mutant lines with impaired ADH genes were used. The 
plants were exposed to PEG-induced drought stress conditions, and their responses at the 
physiological, biochemical and molecular levels were analysed together with their 
overall growth performance.  
 
To test the hypothesis, this study was carried out with the following objectives:  
 

i) to identify the specific ADH genes in Arabidopsis thaliana responding to drought 
stress condition  

ii)  to evaluate the impacts of defective ADH on growth and drought-related 
parameters of plant 

iii)  to evaluate the impacts of enhanced ethanolic fermentation on growth and 
drought-related parameters    
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