DESIGN AND DEVELOPMENT OF GUARDRAIL FOR EXCLUSIVE MOTORCYCLE LANES

IBITOYE ADEOYE BILIYAMIN

FK 2007 19
DESIGN AND DEVELOPMENT OF GUARDRAIL FOR EXCLUSIVE MOTORCYCLE LANES

IBITOYE ADEOYE BILIYAMIN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA
2007
DESIGN AND DEVELOPMENT OF GUARDRAIL FOR EXCLUSIVE MOTORCYCLE LANES

By

IBITOYE ADEOYE BILIYAMIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2007
DEDICATION

This work is entirely dedicated to my parents:

Alhaji Abdul-Ganiyu Akinade Ibitoye (a.k.a Hadji Kobomoje)

&

Mrs Bintu Diekola Ibitoye (a.k.a Eleha)
The use of roadside barrier, especially W-beam guardrail has been demonstrated in various studies to have performed satisfactorily for protecting occupants of cars and trucks. However, its usage for motorcycle impact has been given little consideration. Thus, the safety of motorcyclists in relation to this barrier has become a major concern to road safety experts. Early studies have identified that motorcycle impact with this guardrail would result in severe injuries to the motorcyclists. However, relatively few studies have addressed the safety implication of this guardrail on motorcyclists. Presently, no studies have been reported to have specifically designed alternative guardrail for protecting motorcyclists especially along exclusive motorcycle lanes.

In view of this problem, this study focuses on the design and development of safer guardrail system that can replace the existing W-beam guardrail being used along exclusive motorcycle lanes, as exists in Malaysia. This design required use
of computer modelling and simulation as main tool and the conduct of a physical crash test to validate the baseline simulation model. Furthermore, the input parameters for the validated model were used for subsequent simulation of motorcycle crash on guardrail with 18 impact conditions. Results of this simulation were used to establish the design criteria. Based on the established design criteria alternative models were developed on the basis of achieving the design target; mainly to reduce potential injury risks to rider. The alternative models were combined to form 24 alternative models that were optimized in order to select the best model for the new guardrail design.

The new guardrail design consists of metal plate (grade 13 steel) of 2.28 mm thick, wider and continuous surface that has a high degree of flexibility that enables soft redirection of the rider. It is also comparable to the existing guardrail in ease of construction and installation and can have a potential to utilize economical end-treatment techniques. The effectiveness of the new design was evaluated using the same computer simulation program – MADYMO. The outcome demonstrated that severity of head injury risk can be reduced significantly if impact of head to the ground can be prevented. The high flexibility of the new guardrail prevents the rider from having head impact with ground. Thus, the results show that HIC and head acceleration values could be reduced by 96% and 91% respectively for a typical crash scenario of 48km/h impact speed on the guardrail orientated at 45 degree and 4m post spacing.

The major conclusions of the study are that modification of the configuration and material of the existing guardrail can significantly reduce potential injury risks to
motorcyclists and that the new guardrail is safer to replace the existing guardrail along exclusive motorcycle lanes.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK DAN PEMBANGUNAN REL KAWALAN UNTUK LORONG MOTORSIKAL EKSKLUSIF

By

IBITOYE ADEOYE BILIYAMIN

April 2007

Pengerusi: Professor Ir. Radin Umar Radin Sohadi, PhD
Fakulti: Kejuruteraan

Penggunaan rel keselamatan W-beam telah dibuktikan dalam pelbagai kajian dimana ia menepati tahap kepuasan bagi melindungi pengguna kereta dan juga trak. Walau bagaimanapun, penggunaan perlanggaran motorsikal kurang diberi perhatian di mana akhirnya ianya menjadi tumpuan utama kepada pakar keselamatan jalanraya. Kajian terdahulu telah mengenalpasti perlanggaran motorsikal dengan rel kawalan ini membawa kecederaan serius kepada penunggang motorsikal. Walau bagaimanapun, hanya sedikit kajian dijalankan yang telah meneliti implikasi keselamatan rel kawalan terhadap penunggang motorsikal. Sehingga kini, tiada kajian yang dilaporkan khusus merekabentuk alternatif rel kawalan bagi melindungi penunggang motorsikal terutamanya di sepanjang lorong-lorong motorsikal eksklusif. Bagi menangani masalah ini, kajian ini tertumpu kepada merekabentuk dan membangunkan sistem rel kawalan baharu yang lebih selamat bagi menggantikan penggunaan rel kawalan w-beam yang digunakan di sepanjang lorong-lorong motorsikal eksklusif yang terdapat di Malaysia. Rekabentuk ini memerlukan penggunaan model dan simulasi
berkomputer sebagai peralatan utama dan juga ujian perlanggaran fizikal bagi pengesahan garisan asas model simulasi. Sehubungan dengan itu, pelbagai parameter input digunakan untuk mengesahkan simulasi seterusnya iaitu perlanggaran motorsikal pada rel kawalan dengan 18 keadaan impak yang berbeza. Keputusan daripada simulasi ini digunakan untuk mendirikan kriteria rekabentuk. Berdasarkan kriteria rekabentuk tersebut, model alternatif dibangunkan berasaskan pencapaian sasaran rekabentuk iaitu untuk mengurangkan potensi risiko kecederaan kepada penunggang motorsikal. Model alternatif digabungkan untuk membentuk 24 model alternatif yang dioptimumkan bagi memilih model bagi rel kawalan baharu.

Rekabentuk rel kawalan baharu terdiri daripada kepingan logam (keluli gred 13) dengan ketebalan 2.28 mm, lebih lebar dengan permukaan sekata yang mempunyai darjah keanjalan yang tinggi membolehkan pertukaran haluan yang lebih lembut kepada penunggang motorsikal. Pembinaan dan pemasangan yang lebih mudah berbanding dengan rel kawalan sedia ada dan ia juga berpotensi untuk kegunaan teknik economical end-treatment. Tahap keberkesanan rekabentuk baharu ini telah dinilai dengan menggunakan program simulasi computer – MADYMO. Hasil kajian ini menunjukkan risiko kecederaan parah pada kepala dapat dikurangkan secara signifikan jika impak kepala terhadap permukaan jalan raya dapat dielakkan. Tahap keanjalan yang tinggi pada sistem rel kawalan baharu menghalang penunggang motorsikal mendapat impak kepala terhadap permukaan jalan raya. Ini menunjukkan nilai kriteria kecederaan piawai pada kepala (HIC) dan nilai pecutan kepala dapat dikurangkan kepada tahap minimum iaitu sebanyak 96% dan 91% bagi senario pelanggaran biasa iaitu pada...
kelajuan impak 48km/j terhadap rel kawalan yang berorientasikan 45 darjah dan 4m jarak diantara tiang.

Kesimpulan utama kajian ini adalah pengubahsuaian terhadap konfigurasi dan penggunaan bahan pada rel kawalan sedia ada boleh secara signifikannya mengurangkan potensi risiko kecederaan terhadap penunggang motorsikal dan rel kawalan baharu ini adalah alternatif keselamatan terhadap penggunaan rel kawalan sedia ada yang digunakan di sepanjang lorong-lorong motorsikal eksklusif.
ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

All praises are due to Almighty Allah (S.W.T) for his guard and guidance on me from the beginning, throughout and till the completion of this research study and for the compilation of this PhD thesis.

My profound gratitude goes to the chairman of my supervisory committee Professor Ir. Dr. Radin Umar Radin Sohadi for his valuable guidance and encouragement during my study. Similarly, I would like to express my sincere gratitude to Prof. Dr. Abdel Magid S. Hamouda for his consistent guidance and encouragement throughout this study. Also, I will remember Assoc. Prof. Dr. Shaw Voon Wong for his criticism and condemnation at every stage of the study that always trigger my reasoning faculty to ensure self conviction on every step taken towards the success of this research study.

I am indebted to Universiti Putra Malaysia for granting me admission and facilities and for the financial support I received from the Ministry of Science, Technology and Environment, Malaysia under the IRPA project titled: “Development of Design Criteria and Standards for Malaysia Motorcycle Lanes” (vot. 51543).

I would like to express my sincere thanks to Professor Dr. Suleyman Aremu Muyibi – my academic mentor for his regular monitoring of my progress and for the moral and financial support given to me during this study. I am also grateful to
Professor Dinesh Mohan, Assoc. Prof Chawla and Assoc. Prof. Mukherjee; both of Indian Institute of Technology, New Delhi, India, for offering me one week training on Madymo Application at the initial stage of this study.

I will not forget to acknowledge the contribution of Modenas Sdn Bhd (Manufacturer of KRISS SG Motorcycle) for donating four new motorcycles used for physical crash test. The efforts of UPM Kesemalatan (Traffic safety unit) and the Royal Malaysia Police, Serembam for supplying used motorcycles at the initial stage of the crash test are also acknowledged. I am also grateful for the assistances received from Mrs Chin Chin and Mr. Samsuri bin Abu Bakar from IGC-Industrial Galvanizers Corporation (Guardrail Manufacturer) for supplying four length w-beam guardrail and Ms Marylin and Miss Samantha of United Akrab during the purchase of the dummy used for the crash test. The help and contributions of Mr Lai (Transplus Sdn Bhd) on the Rig fabrication, several adjustment and amendments during all trial tests and the final test are highly appreciated.

I would like to take this opportunity to express my special thanks to all my contacts in Australia, Hong Kong, China, Netherlands, Germany, United Kingdom and United State of America, for sharing their knowledge and expertise and for supporting me with keen interest throughout this study. They are Dr Liu Xiu from TNO China, Eric Fratermann, Eric Schoemaker, Miss Devilee and Trater from TNO Netherlands, Mr Mike from TNO Europe, Profesor Joe from TNO Australia for their help, kind supports and assistances in providing me all necessary
professional supports in understanding MADYMO applications. I also appreciate the supports I received from Mr Marcus from DEKRA, Germany for releasing their crash test video clips that assisted me during the validation test. I am also indebted to Dr Bob of Nebraska, Lincoln, USA for sending me the report on their Buffalo guardrail design and for his valuable suggestions at the initial stage of the study.

My special thanks goes to Dr. Alihamed Hassan of Birmingham University UK for his love, advice and regular assistance in sending me valuable materials on International Conference Proceedings that include motorcycle accidents involving crash barriers.

I wish to express my thanks for the regular warm reception and kindness shown to me by all staff and students of Road Safety Research Centre, Civil Engineering department and Faculty of Engineering. They are Puan Khatijah - secretary to the Dean Faculty of Engineering, Puan Badariah (Secretary to Head of Civil Engineering Department), Dr El-Sadiq of Aerospace department, Dr Kulan, Dr. Hussein Hamad and Mr Law Teik of Road Safety Research Centre. My special thanks go to Enc. Azry bin Tamber – technician at Highway and Transportation Laboratory for his assistance during the study.

I will always remember all my colleagues and friends Dr. Harnen Sulistio (Indonesian), Ibrahim Sheik and Abdullahi Muhammad (Somalians), Puan Jamila, Puan Sujatiah and her family, Goh Boon Hoe, Tung Sow Hung, Tan Ken Sheng, Ooi, Chin, Eden Tan, and Ng Choy Peng; (Malaysians).
I wish to express my heartfelt thanks to various people that I was opportune to have relationship with during the course of “passing through Universiti Putra Malaysia while allowing the university to pass through me”. I will live to remember Prof Dr Aini Ideris - Dean School of graduate studies UPM, Puan Adida bt. Nur Khalid - head of International relation office as well as the entire staff of her office. I am sincerely grateful to Dr. Muhammad Najim from Sri Lanka, Ms Karuna Sharma from Nepal for their love and understandings during our tenure as executive of UPMISA. My heartfelt gratitude goes to Puan Intan Basek for being a good friend and for translating my abstract to Malay language (Bahasa Melayu).

My special thanks go to my highly respected elders from Nigeria, lecturing at International Islamic University, Malaysia in person of Professor Dr. Momoh-Jimoh E. Salami and family, Professor Engr. Dr. Suleyman Aremu Muyibi and family, for their love, kindness and invaluable advices throughout the course of this study. I will always remember Mrs Rashida Suleyman Muyibi (Nee Olanrewaju) for her every Friday sms “Da’awah” which always inspires me to remember and put all my trust in ALLAH. I also remember to thank my ustaz – Dr Abdulssalam Ismail Onagun for his spiritual advice at difficult periods.

Lastly, I give thanks to my wife, all my children, my parents and all my brothers and sisters for their patient, endurance, understanding, prayer and moral supports throughout the period of this study.
I certify that an Examination Committee met on 19 April 2007 to conduct the final examination of Ibitoye Adeoye Biliyamin on his Doctor of Philosophy thesis entitled “Design and Development of Roadside Safety Barrier (Guardrail) for Exclusive Motorcycle Lane” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. Mohd. Razali Abdul Kadir, PhD
Associate Professor
Department of Civil Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ir. Jamaloddi Noorzaei, PhD
Associate Professor
Department of Civil Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sulistyo Arintono, PhD
Lecturer
Department of Civil Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Shaker A. Meguid, PhD
Professor
School of Mechanical and Aerospace Engineering
Nanyang Technological University
Singapore
(Independent Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Ir. Radin Umar Radin Sohadi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Hamouda Abdel Magid, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Wong Shaw Voon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

IBITOYE ADEOYE BILIYAMIN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- Background of the Study: 1
- Review of Exclusive Motorcycle Lanes in Malaysia:
 - Motorcycle Crashes on Guardrail in Malaysia: 4
 - Motorcycle Crashes in Some Developed Countries: 7
- Overview of Guardrail System: 8
- The Need for the Study: 11
- Problem Statement: 12
- Objective of the Study: 16
- Scope and Limitation of Study: 16
- Assumptions and Limitations: 18
- Thesis Layout: 19

II LITERATURE REVIEW

- Introduction: 21
- Crash Barrier Types and their Safety Risks: 22
 - Rigid Barrier: 22
 - Semi Rigid Barrier: 24
 - Flexible Barrier: 27
- Nature, Number and Severity of Motorcyclist Crashes: 29
- Injury Risks to Motorcyclists: 35
- Impact Biomechanics: 39
 - Mechanism of Injury: 39
 - Biomechanical Responses of Body Tissues: 41
 - Human Tolerance to Impact/Injury: 44
 - Injury Assessment Tools: 50
- Existing Efforts and Strategies for Protecting Motorcyclists: 51
 - Reducing the Impact Severity: 51
 - Preventing contact with barrier posts: 55
- Review of Design Approaches and Guidelines: 67
 - Physical Crash Testing: 67
 - Computer Modelling and Simulation Techniques: 69
 - Component Testing: 82
III DESIGN METHODOLOGY

Introduction 107
Simulation Modelling Process 110
 Road Surface 111
 Guardrail Model 111
 Motorcycle Model 112
 Crash Dummy Model 119
Contact Interaction 120
Physical Crash Test 122
 Test Facilities 122
 Site Layout 126
 Crash Test Set Up 127
Model Validation 130
Establishing Design Criteria 132
Development and Optimization of Alternative Guardrail Design 133
Summary 136

IV SIMULATION OF RIDER’S KINEMATICS AND MODEL VALIDATION

Introduction 137
Problem Definition 138
 Reference Space 138
 Guardrail Structure 138
 Forces Acting on Guardrail 139
 Displacement Constraint 141
Physical Crash test 141
Baseline Crash Simulation 142
Model Validation 143
Subsequent Crash Simulation Analysis 147
 Rider’s Kinematics 147
 Potential Injury Risks to Rider 163
Verification of Simulation Results 169
 Kinematics of Rider 170
 Time history curves for dummy head displacement 170
 Time history curves for guardrail node displacement 173
Established Criteria for Design of Guardrail 175
Summary 178

V DESIGN AND DEVELOPMENT OF NEW GUARDRAIL SYSTEM 179
Introduction 179
Developed Alternative Designs 180
Optimization of Alternative Models 181
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Reported First Collision Type In Motorcycle Crashes along Exclusive Motorcycle Lanes</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Fatality Caused by Roadside Objects on Exclusive Motorcycle Lanes along Federal Highway F0002 and Sha Alam Expressway from 1998 to 2001</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Effect of Guardrail Features on Motorcycle Accident</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Type of roadside objects involved in motorcycle crashes along Exclusive motorcycle lanes in Malaysia</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Number and Proportion of Motorcyclists in Types of Casualty Crashes in Bavaria with AIS2+ injuries to Specified Body Regions</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Previously used Physical Crash Testing Configurations</td>
<td>67</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical Energy Absorption</td>
<td>91</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical Stiffness of Composites</td>
<td>91</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanical Properties of a Single Lamina</td>
<td>92</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary and Justification of Chosen Investigated Problems</td>
<td>103</td>
</tr>
<tr>
<td>3.1</td>
<td>Selection of Simulation Software Package</td>
<td>110</td>
</tr>
<tr>
<td>3.2</td>
<td>Motorcycle Description</td>
<td>115</td>
</tr>
<tr>
<td>3.3</td>
<td>Scaled Hybrid III Dummy</td>
<td>119</td>
</tr>
<tr>
<td>3.4</td>
<td>Impact Conditions for Crash Simulation</td>
<td>132</td>
</tr>
<tr>
<td>3.5</td>
<td>Matrix of Proposed Alternatives</td>
<td>134</td>
</tr>
<tr>
<td>3.6</td>
<td>Experimental Design for Optimization of Design Target</td>
<td>135</td>
</tr>
<tr>
<td>4.1</td>
<td>Description of Existing Guardrail Model</td>
<td>139</td>
</tr>
<tr>
<td>4.2</td>
<td>Guardrail Material Properties</td>
<td>140</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation between Crash Test and Simulation of Head Displacement</td>
<td>146</td>
</tr>
<tr>
<td>4.4</td>
<td>Potential Injury Risks at impact angle 15° for different speeds</td>
<td>164</td>
</tr>
</tbody>
</table>
4.5 Potential Injury Risks at impact angle 30° for different speeds 165
4.6 Potential Injury Risks at impact angle 45° for different speeds 165
4.7 Head Injury Severity related to Impact angle and Impact speed 176
5.1 Description of Design Concept and Targets 180
5.2 First Stage Design Optimization Output 182
5.3 Second Stage Design Optimization Output 183
5.4 Final Output of Design Optimization 184
5.5 Matrix Evaluation of Alternative Guardrail Designs 186
5.6 Geometric Specification of New and Existing Guardrail 189
5.7 Comparing Potential Injury Risks between Existing Guardrail and New Guardrail Design 191
5.8 Advantages of New Design over the Existing Design 195
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td></td>
</tr>
</tbody>
</table>

1.1 Typical View of On-Grade - Segregated Exclusive Motorcycle Lane in Malaysia
1.2 Typical View of Grade Separated - Segregated Exclusive Motorcycle Lane in Malaysia
1.3 Number of Motorcycle Crashes Reported in Malaysia
2.1 Photograph and Profile of New Jersey barrier
2.2 Typical W-Beam Guardrail Systems
2.3 Cross section of Typical Wire Rope Safety Fence
2.4 Photograph of Typical Wire Rope Safety Fence
2.5 Illustration of Motorcycle impact into crash barrier
2.6 Proportion of Motorcyclist with Head or Neck injuries from impacts with a Class of Objects in each injury Severity Category
2.7 Blunt Impact of Head Accelerates the Skull
2.8 Neck Responses due to Downward Impact of Head
2.9 Human Tolerance Curve
2.10 The Wayne State Tolerance Curve
2.11 Schematic drawing of IPE-100 and Sigma post cross section
2.12 Fitting of additional W-Beam
2.13 Profile and Photograph of Impact attenuator
2.14 Photograph of Guardrail with Secondary Rail
2.15 Photograph and Schematic drawing of “Ecraan Motard” fitted to an existing guardrail
2.16 Photograph and Schematic drawing of “Plasti-rail” fitted to an existing guardrail
2.17 Photograph and Schematic drawing of the “Motorail”
2.18 Photograph and Schematic drawing of the “Mototub”