
. 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 
 
 
 
 

ELECTRICAL CHARACTERIZATION OF Ca1-xAxCu3Ti4O12 (A = Sr OR Ba) WITH x = 0.0, 
0.1, 0.2, 0.3, 0.4, 0.5 CERAMICS. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

MAZNI BINTI MUSTAFA 
 
 

T FS 2008 49 



ELECTRICAL CHARACTERIZATION OF Ca1-xAxCu3Ti4O12 (A = Sr 
OR Ba) WITH x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 CERAMICS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

MAZNI BINTI MUSTAFA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of Master of 

Science 
 

Sept 2008 
 
 

 



 
 
 
 
 
 
 
 
 
 

 
DEDICATION 

 
 
 

This special dedication goes to my family especially my beloved mother 
Faridah Amin, in remembrance of Mustafa Lakim, my brother, sister, relatives 

and friends who have provided so much love, support, understanding and 
inspiration through the years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ii
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ELECTRICAL CHARACTERIZATION OF Ca1-xAxCu3Ti4O12 (A = Sr 
OR Ba) WITH x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 CERAMICS. 

 
 

By 
 

MAZNI BT. MUSTAFA 
 

Sept 2008 
 
 

Chairman: Associate Professor W. Mohamad Daud W. Yusoff, PhD 
 
Faculty     : Science 
 
 
CaCu3Ti4O12 (CCTO) has attracted an attention based on its extraordinary 

dielectric properties and makes it applicable to a microelectronic device 

application for capacitive element. Polycrystalline of CCTO, Ca1-xSrxCu3Ti4O12 

(CSCTO) and Ca1-xBaxCu3Ti4O12 (CBCTO) with x = 0.1, 0.2, 0.3, 0.4 and 0.5 

ceramics oxide were prepared using solid state reaction technique. The XRD 

patterns for all samples show the single phase peak and the calculated lattice 

parameter for CCTO is ’a’ = 7.3870 Å. The SEM images show that the grain 

size was significantly increases with doping and consist of grain and grain 

boundary.  

 
 
 The value of dielectric permittivity of CCTO at 1 kHz increases with 

temperatures from 2740 at 70 oC to 3560 at 250 oC. The complex impedance 

plot shows three semicircle arcs indicating that the electrical processes in the 
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material due to the contribution from the grain at high frequencies, the grain 

boundary at intermediate frequencies and the electrode effect at low 

frequencies. The behaviour was modeled using equivalent RC circuit consisting 

of three parallel resistors, R and the universal capacitors, C*. The grain 

resistance, Rg and the grain boundary resistance, Rgb decrease with 

temperatures. 

 
 
The conductivity plots for all the samples show two clear regions due to the 

grain boundaries at low frequency and grain at high frequency. The value of n 

obtained by fitting the grain region at high frequency dependent decreases with 

temperatures with the value higher than 0.6 indicating that the conduction is 

due to hopping of electrons among Ti4+ and Ti3+. A close similarity of the 

relaxation and conductivity activation energy values indicates that the processes 

may be attributed to the same type of charge carriers.  
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SIFAT ELEKTRIK BAGI SERAMIK Ca1-xAxCu3Ti4O12 (A = Sr ATAU 
Ba) DENGAN x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. 

 
 

Oleh 
 
 

MAZNI BT. MUSTAFA 
 

Sept 2008 
 
 

Pengerusi: Profesor Madya W. Mohamad Daud W. Yusoff, PhD 
 
Fakulti     : Sains 
 
 
CaCu3Ti4O12 (CCTO) telah menarik perhatian berdasarkan sifat dielektrik yang 

luarbiasa dan membuatkan ia boleh digunakan pada aplikasi alat 

mikroelektronik bagi element kapasitif. Polikristal CCTO, Ca1-xSrxCu3Ti4O12 

(CSCTO) dan Ca1-xBaxCu3Ti4O12 (CBCTO) dengan x 0.1, 0.2, 0.3, 0.4, dan 0.5 

seramik oksida disediakan menggunakan teknik tindakbalas keadaan pepejal. 

Corak XRD bagi semua sampel menunjukkan satu puncak fasa dan nilai 

parameter kekisi bagi CCTO adalah ‘a’= 7.3870 Å. Imej SEM menunjukkan 

saiz butiran meningkat dengan dop dan mengandungi butiran dan sempadan 

butiran.  

 

Nilai ketelusan dielektrik bagi CCTO pada 1 kHz meningkat dengan suhu dari 

2740 pada 70 oC ke 3560 pada 250 oC. Plot impedans kompleks menunjukkan 

tiga lengkungan separa bulatan yang menandakan proses elektrik di dalam 
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bahan terjadi akibat dari sumbangan butiran pada frekuensi tinggi, sempadan 

butiran pada frekensi pertengahan dan kesan elektrod pada frekuensi rendah. 

Sifat ini dimodel menggunakan litar setara RC mengandungi tiga litar selari 

mangandungi perintang, R dan kapasitor universal, C*. Kerintangan butiran Rg 

dan kerintangan sempadan butiran Rgb meningkat dengan suhu. 

 
 
Plot kekonduksian bagi semua sampel menunjukkan dengan jelas dua bahagian 

disebabkan dari sempadan butiran di frekuensi rendah dan butiran di frekuensi 

tinggi. Kawasan butiran pada frekuensi tinggi dimodel dan nilai n yang 

diperolehi menurun dengan suhu dan nilainya adalah lebih dari 0.6 

menunjukkan konduksi adalah disebabkan oleh loncatan oleh elektron di antara 

Ti4+ dan Ti3+. Persamaan pada nilai tenaga pengaktifan santaian dan 

kekonduksian menandakan bahawa proses adalah disebabkan oleh pembawa 

cas yang sama. 
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CHAPTER 1 

 

RESEARCH OVERVIEW 

 

1.1 Introduction 

 

In recent years, colossal dielectric constant (CDC) materials exhibit high dielectric 

constant ε’ value which greater than 1000 have attracted enormous of interests which 

lead to significant advances in the miniaturization of electronic applications.  In the last 

few decades, microwave telecommunication and satellite broadcasting industries have 

progressed greatly through portable telephones and have benefited greatly from the 

miniaturization of various discrete components, especially the dielectric related 

components such capacitors, resonators, filters and thus reduces the size of the devices.  

 

The CDC materials usually found in oxide ceramics and widely used since the ceramics 

processing are low in cost and reliable for electronic applications such capacitor. The 

volume efficiency of a capacitor is directly related to its dielectric constant and there 

have been an intensive researches on high dielectric constant materials since the higher 

the dielectric constant, the more charge can be stored and smaller devices will be 

produced. 

 
 
In the former years the large dielectric response is a consequence of charge polarization 

due to ferroelectric displacement of the central ion in the unit cell. The barium titanate 

BaTiO3, are well known ferroelectric material for more than 50 years because of its high 



dielectric constant value which is in the range of 2000 to 10000 at room temperature 

(Herbert et al., 1993). BaTiO3 have strong temperature dependence on ε' around the 

transition temperature and has a ferroelectric transition to a tetragonal structure 

accompanied by a rotation of the TiO6 octahedra at 393 K. This structural transition is 

undesirable for many electronic device applications because it is often required that the 

dielectric permittivity of the material to be constant over as wide a temperature range as 

possible. 

 
 
Recent scientific research and technical interest has attracted significant attention from 

the discovery of colossal dielectric constant in CaCu3Ti4O12 (CCTO) ceramics. The 

discovery of a room temperature cubic perovskite compound CCTO sparked the interest 

in new materials that might not be limited by frequency and temperature. These 

uniqueness properties allow broadly application in microelectronic component and plays 

important role in creating high technology electronic devices.  

 

CCTO was discovered in 1979 (Bochu et al., 1979) and reported to have high dielectric 

constant exceeding 10,000 at 1 kHz (Subramanian et al., 2002) and show good 

temperature stability from room temperature to 600 K. However, its dielectric constant 

drop rapidly to less than 100 below 100 K. CCTO also has no structural transition as a 

function of temperature and pressure in a cubic structure down to the lowest 

temperature. Numerous researches have been carried out to explore its properties and to 

probe the origin of the CDC. It is widely accepted that the CDC mechanism is extrinsic 

in origin due to the electrically heterogeneous microstructure in CCTO ceramics 

(Sinclair et al., 2002). 

 2


