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THERMAL, ELECTRICAL AND MICROSTRUCTURAL 

CHARACTERIZATION OF SnO2-BASED  
CERAMIC COMPOSITES 

 
By 

 
AIZA MASYATI BINTI MAS’UT 

 
Sept 2008 

 
 

Chairman: Associate Professor Zaidan Abdul Wahab, PhD 
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In this work, the photoflash and two-probe technique were used to measure thermal 

diffusivity and electrical conductivity, respectively, on tin (IV) oxide-based gas sensor 

materials i.e. SnO2/CuO and SnO2/ZnO samples. All measurements were made at room 

temperature. 

 

It was found that the thermal diffusivity value of pure SnO2 was 1.45 × 10-2 cm2s-1. The 

thermal diffusivity of SnO2/CuO ceramic composites with addition of up to 30 mole% 

CuO increases to 7.50 × 10-2 cm2s-1 but further additions of CuO decrease the thermal 

diffusivity value to 6.21 × 10-2 cm2s-1. For SnO2/ZnO ceramic composites, the thermal 

diffusivity is in the range of 1.01 to 2.62 × 10-2 cm2s-1. Changes of the grain size or 

changes of the porosity volume have been suggested to be responsible for the variation 

in the thermal diffusivity behavior and this was supported by SEM micrographs.  
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The electrical resistivity of pure SnO2 was found to be 2.11 × 101 Ωcm. Both SnO2/CuO 

and SnO2/ZnO ceramic composites indicated that their electrical resistivity values were 

in   the  range  of  4.067 × 105 Ωcm  to  8.667 × 106 Ωcm  and  2.739 × 105 Ωcm  to 

5.650 × 106 Ωcm, respectively. Their electrical resistivity trends were actually decrease 

with increasing additions of either CuO or ZnO. The variation in the electrical resistivity 

of these samples has been explained based on the changes of free electron concentration. 
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PENCIRIAN TERMA, ELEKTRIK DAN STRUKTUR MIKRO  

KOMPOSIT SERAMIK BERASASKAN SnO2 
 

Oleh 
 

AIZA MASYATI BINTI MAS’UT 
 

Sept 2008 
 
 

Pengerusi: Profesor Madya Zaidan Abdul Wahab, PhD 

Fakulti: Sains 

 

Di dalam kajian ini, teknik sinaran lampu kilat dan kaedah penduga dua titik, masing-

masing telah digunakan untuk mengukur keresapan terma dan kekonduksian elektrik ke 

atas bahan-bahan sensor gas berasaskan SnO2 iaitu sampel SnO2/CuO dan SnO2/ZnO. 

Semua pengukuran telah di buat pada suhu bilik. 

 

Nilai keresapan terma bagi sampel SnO2 tulen ialah 1.45 × 10-2 cm2s-1. Nilai keresapan 

terma bagi sampel seramik komposit SnO2/CuO dengan penambahan sehingga 30 mol 

CuO didapati meningkat kepada 7.50 × 10-2 cm2s-1. Namun, penambahan CuO 

seterusnya menyebabkan pengurangan dalam nilai keresapan terma kepada 6.21 × 10-2 

cm2s-1. Bagi sampel seramik komposit SnO2/ZnO pula, nilai keresapan termanya adalah 

dalam julat 1.01 × 10-2 cm2s-1 hingga 2.62 × 10-2 cm2s-1. Perubahan dalam saiz zarah atau 

isipadu liang telah dicadangkan sebagai punca kepada variasi dalam nilai keresapan 

terma dan keputusan ini di sokong oleh grafmikro-grafmikro SEM.  
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Kerintangan elektrik bagi sampel SnO2 tulen didapati adalah sebanyak 2.11 × 101 Ωcm. 

Kerintangan elektrik bagi kedua-dua seramik  komposit SnO2/CuO dan SnO2/ZnO pula 

maisng-masing berada dalam julat 4.067 × 105 Ωcm hingga 8.667 × 106 Ωcm dan       

2.739 × 105 Ωcm hingga 5.650 × 106 Ωcm. Keputusan yang diperolehi menunjukkan 

kerintangan elektrik berkurang dengan penambahan CuO atau ZnO. Variasi dalam 

kerintangan elektrik sampel-sampel telah dijelaskan berdasarkan perubahan kepekatan 

elektron bebas. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Ceramic 

 

The term “ceramic” comes from the Greek work keramikos, which means “burn 

stuff”, indicating that desirable properties of these materials are normally achieved 

through a high-temperature heat treatment process called firing. Ceramics can be 

defined as solid compounds that are formed by the application of heat and sometimes 

heat and pressure, comprising at least one metal and a nonmetallic elemental solid 

(NMES) or a nonmetal, a combination of at least two NMESs, or a combination of at 

least two NMESs and a nonmetal (Barsoum, 1997). Also note that ceramics are not 

limited to binary compounds: BaTiO3, YBa2Cu3O7 and Ti3SiC2 are all perfectly 

respectable class members. 

 

It follows that the oxides, nitrides, borides, carbides, and silicides of all metals and 

NMESs are ceramics; which needless to say, leads to a vast number of compounds 

(Barsoum, 1997). This number becomes even more daunting when it is appreciated 

that the silicates are also, by definition, ceramics. Because of the abundance of 

oxygen and silicon in nature, silicates are ubiquitous; rocks, dust, clay, mud, 

mountains, sand – in short, the vast majority of the earth’s crust are composed of 

silicate-based minerals. When it is also appreciated that even cement, bricks, and 
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concrete are essentially silicates, the inescapable conclusion is that we live in a 

ceramic world. 

 

Ceramics are hard, wear-resistant, brittle, prone to thermal shock, refractory, 

electrically and thermally insulative, intrinsically transparent, nonmagnetic, 

chemically stable and oxidation-resistant (Barsoum, 1997). As with all 

generalizations, there will be exceptions; some ceramics are electrically and 

thermally quite conductive, while others are even superconducting. An entire 

industry is based on the fact that some ceramics are magnetic.  

 

Traditional ceramics are quite common, from sanitary ware to fine chinas and 

porcelains to glass products. Currently ceramics are being considered for uses that 

only two decades ago were inconceivable; applications ranging from ceramic engines 

to optical communications, electrooptic applications to laser materials and substrates 

in electronic circuits to electrodes in photoelectrochemical devices. In this project, 

the samples used are semiconductor ceramics. 

 

1.2      SnO2 Gas Sensor 

 

Advances in technology, increased concern over domestic and industrial safety, finer 

control over manufacturing process steps and legislative actions governing harmful 

gaseous emissions from stationary and mobile sources are a few of the driving forces 

that have spurred increased development and implementation of gas sensors during 

the past three decades (Phani et al., 1999). Tin oxide, SnO2 is most used as a material 

for gas sensor applications and it is the most important material for commercially 


