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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Doctor of Philosaphy. 
 

MATHEMATICAL MODELING AND ANALYSIS OF DENGUE 
TRANSMISSION DYNAMICS 

 

By 

SALISU MOHAMMED GARBA 

October 2008 

 

Chairman: Mohd Rizam Bin Abu Bakar, PhD. 

Faculty: Science. 

 

The work in this thesis is based on the design and analysis of suitable 

compartmental deterministic models for the transmission dynamics of dengue 

fever in a population. A basic dengue model which allows transmission by 

exposed humans and mosquitoes is developed and rigorously analysed. The 

model, consisting of seven mutually-exclusive compartments representing the 

human and vector dynamics, has a locally-asymptotically stable (LAS) disease-

free equilibrium (DFE) whenever a certain epidemiological threshold, known as 

the basic reproduction number (Ro) is less than unity. Further, the model exhibits 

the phenomenon of backward bifurcation, where the stable DFE co-exists with a 

stable endemic equilibrium. The epidemiological consequence of this 

 ii



phenomenon is that the classical epidemiological requirement of making Ro less 

than unity is no longer sufficient, although necessary, for effectively controlling 

the spread of dengue in a community. The model is extended to incorporate an 

imperfect vaccine against the strain of dengue. In both the original and the 

extended models, it is shown, using Lyapunov function theory and LaSalle 

Invariance Principle, that the backward bifurcation phenomenon can be removed 

by substituting the associated standard incidence function with a mass action 

incidence. In other words, in addition to establishing the presence of backward 

bifurcation in models of dengue transmission, this study shows that the use of 

standard incidence in modelling dengue disease causes the backward bifurcation 

phenomenon of dengue disease. 

 

The model is extended to include the dynamics of two strains of dengue disease. 

The extended model has a locally-asymptotically stable, disease-free equilibrium 

(DFE) whenever the maximum of the associated reproduction numbers of the two 

strains (denoted by Ro) is less than unity. It is also shown, using a Lyapunov 

function and LaSalle Invariance Principle, that the DFE of the model, in the 

absence of dengue-induced mortality, is globally-asymptotically stable whenever 

Ro<1. The two strains co-exist if the reproduction number of each strain exceeds 

unity (and are different). For the case when the two reproduction numbers 

exceed unity but are equal, a continuum of co-existence equilibria exists. The 

impact of cross-immunity is explored for the case when Ro >1. It is shown that 
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the model can have infinitely many co-existence equilibria if infection with one 

strain confers complete immunity against the other strain. However, if infection 

with one strain has no effect on susceptibility to the other strain, the model can 

have a unique co-existence equilibrium. It is shown that cross-immunity could 

lead to disease elimination, competitive exclusion or co-existence of the strains. 

Further, the effect of seasonality on dengue transmission dynamics is explored 

using numerical simulations. It is shown that the oscillation pattern differs 

between the strains, both in their subharmonic periods and the relative phase of 

cycles, depending on the degree of the cross-immunity between the strains. 

 

Finally, a deterministic model for monitoring the impact of treatment and vector 

control strategy on the transmission dynamics of dengue in the human and 

vector populations is formulated. In addition to having a locally-asymptotically 

stable disease-free equilibrium (DFE) whenever Ro  is less than unity, it is shown, 

using a Lyapunov function and LaSalle Invariance Principle, and using 

comparison theorem that the DFE of both treatment-free and treatment model, in 

the absence of dengue-induced mortality, is globally-asymptotically stable 

whenever Ro <1; each of the models has a unique endemic equilibrium whenever 

its reproduction number exceed unity. Numerical simulations shows that, the 

use of vector control strategies can result in the effective control of dengue in a 

community by reducing the population of susceptible and exposed mosquitoes. 
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PEMODELAN BERMATEMATIK DAN PENGANALISISAN 
TERHADAP KEDINAMIKAN PENULARAN DENGGI 

 

Oleh 

 

SALISU MOHAMMED GARBA 

October 2008. 

 

Pengerusi: Mohd Rizam Bin Abu Bakar, PhD 

Faculty:      Sains 

 

Hasil kerja tesis ini berdasarkan kepada reka bentuk dan analisis terhadap 

kesesuaian model berbahagian ketentuan untuk dinamik penularan demam 

denggi pada populasi. Model asas denggi yang melibatkan penularan oleh 

manusia dan nyamuk yang terdedah dibina dan dianalisis secara rapi. Model ini, 

yang mengandungi tujuh bahagian saling-eksklusif mewakili manusia dan 

dinamik vektor, stabil secara asimptot-setempat (LAS)  keseimbangan bebas-

jangkitan (DFE) bila mana ambang wabak tertentu, yang dikenali sebagai 

nombor asas pembiakan (Ro), kurang dari unitari. Selanjutnya, model 

mempamerkan fenomenon percabangan ke belakang, yang mana kestabilan DFE 

 v



wujud bersama dengan keseimbangan endemik stabil. Akibat fenomena 

epidemiologi ini yang mana epidemiologi klasik memerlukan Ro < 1 adalah tidak 

lagi cukup, walaupun perlu, untuk mengawal penularan denggi dalam komuniti 

secara berkesan. Model diperluas dengan menggabungkan vaksin yang tidak 

sempurna menentang strain denggi. Menggunakan teori manifold berpusat, 

model yang diperluas juga cenderung untuk mengalami fenomena 

pendwicabangan ke belakang. Dalam kedua-dua model asal dan model yang 

diperluas, ia tertunjuk, menggunakan teori fungsi Lyapunov dan prinsip tak 

varian LaSalle, yang fenomena pendwicabangan ke belakang boleh dihapuskan 

dengan pengantian fungsi kejadian piawai bersekutu dengan insidens tindakan 

jisim. Dengan kata lain, selain dari pengujudan kehadiran percabangan ke 

belakang di dalam model penularan denggi, kajian ini menunjukkan 

penggunaan insidens piawai di dalam pemodelan jangkitan denggi 

menyebabkan fenomena pendwicabangan ke belakang jangkitan denggi. 

 

Model diperluas dengan memasukkan dinamik dua strain jangkitan denggi. 

Model yang diperluas mempunyai kestabilan asimptot-tempatan keseimbangan 

bebas-jangkitan (DFE) bila mana nombor maksimum pembiakan bersekutu oleh 

dua strain (ditandakan oleh Ro) adalah kurang dari unitari. la juga menunjukkan, 

menggunakan fungsi Lyapunov dan prinsip tak varian LaSalle, DFE terhadap 

model, dalam ketiadaan kematian denggi-teraruh, adalah stabil secara asimptot-

sejagat bila mana Ro < 1 . Dua strain wujud bersama jika nombor pembiakan 
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setiap strain melebihi unitari (dan berbeza). Untuk kes, apabila kedua-dua 

nombor pembiakan melebihi unitari dan sama, wujud kontinum kewujudan 

bersama. Kesan keimunan-silang diterokai untuk kes apabila Ro > 1. Ia 

menunjukkan model boleh mempunyai keseimbangan wujud bersama tak 

terhingga banyak jika jangkitan dengan satu strain saling keimunan sepenuhnya 

terhadap strain yang lain. Walau bagaimana pun, jika jangkitan dengan satu 

strain tidak mempunyai kesan terhadap rentanan terhadap strain yang lain, 

model boleh mempunyai keseimbangan kewujudan-bersama yang unik. Ia 

tertunjuk bahawa keimunan-silang boleh menyebabkan penghapusan wabak 

penyakit, penghapusan secara kompetitif atau kewujudan-bersama wabak. 

Seterusnya, kesan bermusim bagi dinamik penularan denggi dijelajahi 

menggunakan simulasi berangka. Ia menunjukkan pola gerakan berkala tidak 

sama antara dua strain, kedua-dua di dalam tempoh subharmonik dan kitaran 

fasa relatif, bergantung kepada darjah keimunan-silang di antara dua strain. 

 

Akhir sekali, model ketentuan untuk pengawasan kesan rawatan dan strategi 

kawalan vektor terhadap penularan dinamik denggi terhadap manusia dan 

populasi vektor dirumus. Selain mempunyai kestabilan asimptot-tempatan 

keseimbangan bebas-jangkitan (DFE) bila mana Ro kurang dari unitari, ia 

tertunjuk, menggunakan fungsi Lyapunov dan prinsip tak varian LaSalle dan 

mengunakan teori perbandingan yang mana DFE bagi kedua-dua model bebas 

rawatan dan model rawatan, di dalam ketidak hadiran kematian denggi-teraruh, 
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stabil secara asimptotik-sejagat apabila Ro < 1; setiap model mempunyai 

keseimbangan endemik unik apabila nombor pertumbuhan melebihi unitari. 

Simulasi berangka menunjukkan, penggunaan strategi kawalan vektor boleh 

membawa kepada kawalan denggi yang efektif di dalam komuniti dengan 

mengurangkan populasi nyamuk yang rentan dan yang terdedah kepada denggi.               
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Dengue, a mosquito-transmitted disease caused by any of four closely-related

virus serotypes (DEN-1, DEN-2, DEN-3 and DEN-4) of the genus Flavivirus, is

endemic in at least 100 countries in Africa, the Americas, the Eastern Mediter-

ranean and subtropical regions of the world [35, 107], inhibited by over 2.5 billion

people. Dengue ranks second to malaria amongst deadly mosquito-borne dis-

eases, each year claiming about 100 million infections and 20,000 deaths globally

[107]. Classical dengue fever causes relatively mild morbidity and mortality, and

sufferers recover within one to two weeks after the onset of fever [63]. However,

some individuals develop dengue hemorrhagic fever (DHF) or dengue shock syn-

drome (DSS) [71], where the severity of the disease is drastically increased (with

mortality ranging from 5-15%) [63, 79]. Figures from the World Health Organi-

zation show that hundreds of thousands of cases of DHF are recorded annually

[16, 17, 117].

Dengue is transmitted to humans through mosquito bites. Female mosquitoes

(of the genus Aedes (Stegomyia), mainly the Aedes aegypti [9]) acquire infection

by taking a blood meal from an infected human (in the viremic phase of illness).

These mosquitoes, after becoming infectious, then pass the disease to suscep-

1



tible humans. Individuals who recover from one serotype become permanently

immune to it, but may become partially-immuned or temporarily-immuned (or

both) to the other serotypes [117].

Unfortunately, there is still no specific effective treatment for dengue. Per-

sons with dengue fever should rest and drink plenty of fluids. They should be

kept away from mosquitoes for the protection of others [30, 44]. Dengue hemor-

rhagic fever is treated by replacing lost fluids. Some patients need transfusions

to control bleeding.

Although there is no effective and safe vaccine for dengue at the moment, a

number of candidate vaccines (including live attenuated mono- and tetra-valent

formulation, inactivated whole virus vaccines, and recombinant subunit vac-

cines) are undergoing various phases of clinical trials ([16, 17, 30, 31, 45, 73,

84, 104, 117, 118]) However, it is believed that any future dengue vaccine would

not be able to offer perfect protection against all serotypes. Thus, any future

dengue vaccine is expected to be imperfect [31]. Efficacy trials in human vol-

unteers have yet to be initiated. Research is also being conducted to develop

second-generation recombinant vaccine viruses. Therefore, an effective dengue

vaccine for public use will not be available for 5 to 10 years. Prospects for

reversing the recent trend of increased epidemic activity and geographic expan-

sion of dengue are not promising. New dengue virus strains and serotypes will

likely continue to be introduced into many areas where the population densities

2


