UNIVERSITI PUTRA MALAYSIA

THE INFLUENCE OF M13 BACTERIOPHAGE ON PROTEIN ADSORPTION USING ANION EXCHANGE EXPANDED BED CHROMATOGRAPHY

MASNIZA BT MOHAMED @ MAHMOOD

FK 2006 108
THE INFLUENCE OF M13 BACTERIOPHAGE ON PROTEIN ADSORPTION USING ANION EXCHANGE EXPANDED BED CHROMATOGRAPHY

By

MASNIZA BT MOHAMED @ MAHMOOD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

May 2006
KESAN KEHADIRAN BAKTERIOFAJ M13 DALAM PENJERAPAN PROTEIN MENGGUNAKAN KROMATOGRAFI PENJERAPAN LAPISAN TERKEMBANG

Oleh

MASNIZA MOHAMED @ MAHMOOD

Tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

Mei 2006
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE INFLUENCE OF M13 BACTERIOPHAGE ON PROTEIN ADSORPTION USING ANION EXCHANGE EXPANDED BED CHROMATOGRAPHY

By

MASNIZA BT MOHAMED @ MAHMOOD

May 2006

Chairman : Ling Tau Chuan, PhD
Faculty : Engineering

The adsorption of a model protein Bovine Serum Albumin (BSA) from unclarified feedstock containing M13 bacteriophage and its host cells has been explored. The matrix used was Streamline Diethylaminoethyl (DEAE) as an anion exchanger (ρ=1.2 g/cm³) supplied by Amersham Pharmacia Biotechnology. The UpFront Chromatography column (20 mm i.d) was used as the Expanded Bed Adsorption (EBA) contactor. In this study, M13 bacteriophage carrying an insert (C-WSFFSNI-C) was propagated in bacteria Escherichia coli ER2738.

Batch adsorption experiment method using Streamline DEAE as adsorbate was also done to determine the influence in the presence of M13 Bacteriophage and its host cell (E. coli) concentrations at various biomass (0%-15% w/v). The maximum protein adsorption of Streamline DEAE was investigated using batch adsorption. The maximum protein adsorption capacity, q_max, and the dissociation constant, K_d were determined. Moreover, the operating parameters of EBA operation such as the

iii
degree of the bed expansion and dynamic binding capacity of different settled bed heights under various biomass concentrations were investigated. In this study, the maximum protein binding capacity of Streamline DEAE, q_{max}, was achieved at 230.03 mg/ml adsorbed. At the lowest M13 bacteriophage and its host cells concentration (5% w/v), the dissociation constant, K_d, of this operation is 36.87 mg/ml. For the batch binding experiment using 10% biomass concentration, q_{max} of 130.01 mg/ml and a K_d of 16.12 mg/ml was determined. Further increase of the biomass concentration to 15% has caused the q_{max} of the adsorbent reduced to half of that 5% (w/v) biomass concentration, and the K_d determined is only 9.45 mg/ml. It can be concluded that the higher percentage of M13 bacteriophage and its host cells present in the feedstock, the lower q_{max} can be achieved. From the analysis of breakthrough curve at 10% which $C/C_0 = 0.1$, the dynamic binding capacities of various settled bed height under various biomass concentrations were determined. The value varies between the three models (10 cm, 13 cm and 15 cm settled bed height column) and the highest dynamic binding capacity was obtained at the lowest percentage of M13 bacteriophage and its host cells in the feedstock at the highest settled bed height (15 cm).
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KEHADIRAN BAKTERIOFAJ M13 DALAM PENGERAPAN PROTEIN MENGGUNAKAN KROMATOGRAFI PENGERAPAN LAPISAN TERKEMBANG

Oleh

MASNIZA BT MOHAMED @ MAHMOOD

Mei 2006

Pengerusi : Ling Tau Chuan, PhD
Fakulti : Kejuruteraan

Penjerapan model protein, Bovine Serum Albumin (BSA) daripada bahan utama yang tercemar mengandungi Bakteriofaj M13 dan juga sel perumahnya telah dikaji. Matrik yang digunakan ialah Streamline Diethylaminoethyl (DEAE), (ρ=1.2 g/m³) yang boleh diperolehi dari Amersham Pharmacia Biotechnology. Kolum UpFront (20 mm i.d) digunakan sebagai kolum untuk Penjerapan Lapisan Terkembang. Dalam kajian ini, M13 bakteriofaj yang membawa sisipan (C-WSFFSNI-C) telah diibiakkan di dalam bakteria Escherichia coli ER2738.

Ujikaji penjerapan berkumpulan juga dilakukan menggunakan Streamline DEAE untuk mengesakan pengaruh kepekatian bakteriofaj M13 dan sel perumahnya (E. coli) di dalam kepekatian biomas yang berbeza (0%-15% w/v). Penjerapan maksima protein dilakukan menggunakan pejerapan berkelompok. Kapasiti penjerapan maksima, q_{max} dan juga nilai tetap pelekangan, K_d dikenalpasti. Selain daripada itu,
parameter berfungsi untuk operasi EBA (Penjerapan Lapisan Terkembang) seperti
darjah pengembangan lapisan dan juga kapasiti ikatan dinamik pada kepekatan
biomas dan tinggi lapisan termendak yang berbeza. Dalam kajian ini, ikatan protein
maksima untuk Streamline DEAE, diperolehi ialah 230.03 mg/ml. Pada kepekatan
bakteriofaj M13 dan sel perumah yang paling rendah, nilai tetap pelekangan, K_d
ialah 36.87 mg/ml. Untuk penjerapan berkelompok menggunakan 10% kepekatan
biomas, q_{max} ialah 130.1 mg/ml dan nilai K_d ialah 16.12 mg/ml diperolehi. Dengan
menaikkan nilai kepekatan biomas kepada 15% telah menyebabkan q_{max} penjerap
berkurang separuh daripada 5% kepekatan biomas, nilai K_d yang kecil iaitu 9.45
mg/ml. Dapat disimpulkan apabila terdapat semakin tinggi peratus bakteriofaj M13
dan sel perumahnya di dalam stok, semakin kecil nilai q_{max} yang diperolehi. Analisa
lengkung kemajuan pada 10% iaitu pada $C/Co=0.1$, kapasiti ikatan dinamik dari
kepelbagaian kepekatan biomas diperolehi. Nilainya berubah di antara ketiga-tiga
model (10 cm, 13 cm dan 15 cm tinggi lapisan termendak) dan nilai kapasiti dinamik
yang tertinggi diperolehi apabila peratusan terkecil bakteriofaj M13 dan sel
perumahnya berada di dalam kolum 15 cm tinggi lapisan termendak.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious, the Dispenser of Grace. All praise due to God alone, the sustainers of all words, as without the help, this project will never be completed.

I wish to express my gratitude and appreciation to my Supervisors: Dr. Ling Tau Chuan, Assoc. Prof. Dr. Tey Beng Ti, Assoc. Prof. Dr. Wan Muhammad Wan Abdullah and Assoc. Prof. Dr. Tan Wen Siang for their encouragements, constructive comments and guidance through out these years of my master study.

My special thanks and my heartfelt gratitude goes to Miss Siti Salwa, Miss Chow Yan Mei, Mrs. Mayamarni and Mr. Termizi for their valuable suggestion and valuable information to share. I also wish to express my appreciation to all staff members in the Bioprocess Laboratory and Biochemical Laboratory for their cooperation in so many ways.

Last but not least, to my family and friends, you all had given me a strong spiritual to go through the years. Thanks for the loves, constant encouragements, inspirations and my achievement is sincerely dedicated to all of you.
I certify that an Examination Committee has met on__________ to conduct the final examination of Masniza Mohamed @ Mahmood on her Master of Science thesis entitled “The Influence of M13 Bacteriophage in Protein Adsorption in Anion Exchange Expanded Bed Chromatography” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

RUSSLY BIN ABD RAHMAN, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

SURAYA BINTI ABDUL RASHID, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

ROSFARIZAN MOHAMAD, PhD
Lecturer
Faculty of Biotechnology and Molecular Science
Universiti Putra Malaysia
(Internal Examiner)

SHARLIZA IBRAHIM, PhD
Associate Professor
Universiti Malaya
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
University Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ling Tau Chuan, Phd
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Tey Beng Ti, Phd
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Wan Muhammad Wan Abdullah, Phd
Associate Professor
Universiti Kuala Lumpur
(Member)

Tan Wen Siang, Phd
Associate Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 MAY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MASNIZA BT MOHAMED @ MAHMOOD

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABRREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Downstream Processing in Biotechnology</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Problem Associated with Conventional Downstream Processing</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Project Aims and Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Objectives</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Bacteriophage</td>
<td>7</td>
</tr>
<tr>
<td>2.2 M13 Bacteriophage</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Application of M13 Bacteriophage</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Bovine Serum Albumin (BSA)</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Downstream Process of Viruses</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Conventional Methods</td>
<td>12</td>
</tr>
<tr>
<td>2.7 Problem Associated With Conventional Methods</td>
<td>14</td>
</tr>
<tr>
<td>2.8 Batch Adsorption in Protein Purification</td>
<td>15</td>
</tr>
<tr>
<td>2.9 Expanded Bed Adsorption</td>
<td>15</td>
</tr>
<tr>
<td>2.10 Processes of Expanded Bed Adsorption</td>
<td>16</td>
</tr>
<tr>
<td>2.11 Ion Exchange</td>
<td>19</td>
</tr>
<tr>
<td>2.12 DEAE</td>
<td>23</td>
</tr>
<tr>
<td>2.13 Adsorption Isotherm</td>
<td>24</td>
</tr>
<tr>
<td>2.14 Langmuir Isotherm</td>
<td>24</td>
</tr>
<tr>
<td>2.15 Characterisation of Fluid Hydrodynamics Performance Of DEAE adsorbent in Expanded Bed Adsorption</td>
<td>25</td>
</tr>
<tr>
<td>2.15.1 Bed Expansion</td>
<td>25</td>
</tr>
<tr>
<td>3 MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1 Feedstock Preparation</td>
<td>28</td>
</tr>
<tr>
<td>3.1.1 Tetracycline</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2 Tris Base Solution (TBS) pH 7.5</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3 Top Agar</td>
<td>29</td>
</tr>
<tr>
<td>3.1.4 IPTG (20%w/v, 0.8M)</td>
<td>29</td>
</tr>
</tbody>
</table>
3.1.4 IPTG and X-Gal 29
3.1.5 LB Broth 29
3.1.6 LB Agar Supplemented with IPTG and X-Gal 30
3.1.7 LB Agar Supplemented with Tetracycline 30

3.2 Cell Culture
3.2.1 Plating E. coli 30
3.2.2 Preparation of Log Phase ER 2738 31
3.2.3 Phage Titration 31
3.2.4 Amplification of M13-Subculture in 500 ml 31
3.2.5 Biomass Concentration 32

3.3 Preparation of Buffer (Tris/ HCl, 1 mM, pH 7.5) solution 33
3.4 Total Protein Determination 33
3.5 Batch Adsorption 34
3.6 Calculation of Dissociation Constant, K_{d} 35
3.7 Setup Expanded Bed Chromatography 36
3.8 Expanded Bed Adsorption Process 39
3.9 Bed Expansion 40
3.10 Biomass Concentration 40
3.11 Breakthrough Experiments 41
3.12 Statistical Analysis 42

4 BATCH BINDING
4.1 Cell Culture Characteristics 43
4.2 Batch Adsorption 43
4.3 Discussion 49
 4.3.1 Effect of Cells upon Binding Capacity 49
 4.3.2 Conclusion 50

5 EXPANDED BED ADSORPTION
5.1 Characterisation of Fluid Hydrodynamics Performance of DEAE Adsorbent in Expanded Bed Adsorption 53
 5.1.1 Bed Expansion 54
 5.1.2 Voidage in Beds 58
5.2 Breakthrough Experiments 62
 5.2.1 Dynamic Binding Capacity at 10% of Breakthrough Curve at 10 cm Sedimented Bed Height 63
 5.2.2 Dynamic Binding Capacity at 10% of Breakthrough Curve at 13 cm Sedimented Bed Height 66
 5.2.3 Dynamic Binding Capacity at 10% of Breakthrough Curve at 15 cm Sedimented Bed Height 70
5.3 Discussion 68
 5.4.1 Conclusion 71
6 CONCLUSION
 6.1 Equilibrium Adsorption Isotherm 72
 6.2 Expanded Bed Adsorption 72
 6.3 Future Suggestions 73

REFERENCES 74
APPENDICES 79
BIODATA OF THE AUTHOR 90
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Composition of STREAMLINE DEAE</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Richardson-Zaki Correlation for Uniform Spherical Particles</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The Data Showed the Maximum Capacity of the Adsorbent (q_{max}) and the Dissociation Constant (K_d) by Exploiting the Langmuir Isotherms Equation</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Biomass Content in Feedstock</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Summary of the Dynamic Binding Capacity at Each Models of Expanded Bed anion Adsorption at Varying Concentrations (5-15% w/v original cells)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Illustration of a Bacteriophage</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The image of M13 bacteriophage was taken with a Philips XL30 ESEM in STEM model. The bright field image (BF) was subtracted from the dark field image (DF) for contrast enhancement</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Conventional Method for Downstream Processing</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Expanded Bed Processes</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Illustration of Types of Ion Exchange Chromatography</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>A Schematic Illustration of the Column Concept</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The adsorption of BSA onto Streamline DEAE in The presence of M13 bacteriophage in various concentrations 0 % (♦), 5% (■), 10% (▲) and 15 % (×)</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The graph plotted exploiting Langmuir Isothermal equation in order to obtain the dissociation value, K_d. The slope represent the value of the K_d/q_{max}</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Diagram showing effect of biomass concentration levels of protein binding</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Column Operation</td>
<td>52</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Relative Bed Expansion for Upfront Column with 10 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Relative Bed Expansion for Upfront Column with 13 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 5.3 Relative Bed Expansion for Upfront Column with 15 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer.

Figure 5.4 Relative Bed Voidage at different velocities for Upfront Column with 10 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer.

Figure 5.5 Relative Bed Voidage at different velocities for Upfront Column with 13 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer.

Figure 5.6 Relative Bed Voidage at different velocities for Upfront Column with 15 cm of sedimented bed height. The graph obtained by applying the model protein BSA in the presence of various M13 bacteriophage and E. coli biomass concentrations, 0 % (♦), 5% (■), 10% (▲) and 15 % (×) w/v in Tris – HCl buffer.

Figure 5.7 The effect to 3 mg/ml of BSA on Streamline DEAE applied to expanded bed adsorption containing various concentrations of M 13 bacteriophage; 5% (♦), 10% (■) and 15 % (▲), w/v in Tris – HCl buffer. The sedimented bed height was 10 cm.

Figure 5.8 The effect to 3 mg/ml of BSA on Streamline DEAE applied to expanded bed adsorption containing various concentrations of M 13 bacteriophage; 5% (♦), 10% (■) and 15 % (▲), w/v in Tris – HCl buffer. The sedimented bed height was 13 cm.

Figure 5.9 The effect to 3 mg/ml of BSA on Streamline DEAE applied to expanded bed adsorption containing various concentrations of M 13 bacteriophage; 5% (♦), 10% (■) and 15 % (▲), w/v in Tris – HCl buffer. The sedimented bed height was 15 cm.
LIST OF ABBREVIATIONS

BSA Bovine serum albumin
CIP Clean In Place
C_s Adsorbed mg/mL of BSA per g of adsorbent at equilibrium
C_m BSA concentration at equilibrium, mg/mL
DEAE Diethylaminoethyl
DMF Dimethylformamide
DNA Deoxyribonucleic acid
HA Hyaluronic acid
EBA Expanded bed adsorption
HCl Hydroxide chloride
IPTG Isopropyl-β-D-thiogalactopyranoside
LB Luria Bertani
MgCl_2.6H_2O Magnesium chloride hexahydrate
NaCl Sodium chloride
NaOH Sodium hydroxide
PEG Poly ethyl glycerol
TBS Tris base solution
v/v Volume per volume
w/v Weight per volume
X-Gal 5-Bromo-4-Chloro-3-Indoyl-β-D-Galactopyranoside
CHAPTER 1

INTRODUCTION

1.1 Downstream Processing in Biotechnology

The completion of the human genome will lead to an unprecedented demand for the production of human proteins for diagnosing and treating disease and deficiencies. Recombinant DNA technology can provide for the large-scale production of human proteins using various host organisms (bioreactors) ranging from *E. coli* bacterial cells to transgenic farm animals (Harvey *et al.*, 2002). The exciting revolution within the field of genetic engineering and recombinant DNA technology has continued to extend the variety of the protein products which has generated new challenges in the design and development of novel purification (Chi, 2000).

Hence, the downstream processing of these recombinant proteins from various sources is gaining importance. Downstream processing is the general term used to describe the separation process for recovery of biological products (Liddell, 1994).
1.1.1 Problems Associated With Conventional Downstream Processing

Proteins vary from each other in size, shape, charge, hydrophobicity, solubility and biological activity. These differences of the protein itself were used to separate it in complex solution. Conventional methods of downstream processing involve a number of unit operations performed in a defined sequence. Generally, the sequences of conventional downstream processing are clarification, concentration, purification and final product polishing. In the clarification step, the common methods used to separate the solids in soluble components from the cultivation broth or the cell homogenate are microfiltration (MF) and centrifugation (CF). However, both of the techniques show limitations in practice (Anspach et al., 1999).

The cell and cell debris form a particle layer on top of the membrane surface that not only leads to decrease of transmembrane flux but also to a partial rejection of proteins in microfiltration techniques. The extent of the rejection depends on the molecular mass of the proteins which is related to the dynamic membranes and also due to the ultrafiltration type characteristic (Datar and Rosen, 1996; Anspach et al., 1999). The high shear forces which may influence the shear sensitive cells generates by recirculation of the feedstock needed a high input of energy pumping (Chi, 2000).

Furthermore, the continuous centrifuges employed in the large scale clarification processes are not as effective as batch centrifuges that used in the laboratory scale. The broth usually needs to be centrifuged twice or an additional microfiltration step is incorporated (Anspach et al., 1999). The shear sensitive cells like mammalian cells may
be damage by the shear stress induced by the turbulence during the feedstock application into the centrifuge and the strong centrifugal force generated during the operation (Chi, 2000). The damage of these cells may release protease or other contaminant proteins that may cause the product degradation or process complication in the subsequent separation steps.

Most of the products of biotechnology are proteins and these proteins must be prepared in a very pure form. The degree of purity required by the injectable protein is set by the Food and Drug Administration (FDA). In general, any contaminants can be detected must be removed from the recovered protein.

The process time for the conventional recovery process is typically very long which may adversely affect the stability of the labile proteins. The stability of the proteins is normally gained when it was adsorbed onto a solid support and it is become an advantage to position the primary adsorption process as early as possible in a recovery process (Morton and Lydiatt, 1994; Chi, 2000).

The direct adsorption of the target protein from a particulate-containing feedstream is an approach to achieve this objective. Over the years the method of expanded bed chromatography has emerged to address this issue. By expanding an adsorbent bed with upward flow of the feedstream, bioparticulates (cells, cell debris, organelles etc.) can pass relatively unimpeded through the enhanced bed voidage without seriously
constraining the adsorption of target products to the stationary phase (Hjorth, 1997; Ling et al., 2005).

Typically the purification of compounds from particle-containing crude liquids involves different pre-treatment steps such as centrifugation and/or microfiltration prior to chromatography. The direct adsorption from untreated crude liquids offers a significant decrease in time and costs due to reduction in the overall number of purification steps. In this case, expanded bed adsorption (EBA) is the method of choice compared to traditional processes.

EBA is an integrated technology which can be used to minimize the separation step by combining clarification, concentration and initial purification into one unit operation. The combination of these steps into one unit operation of capturing target molecules from crude feed-stock may reduce product degradation and avoid bio-product handling problems. EBA is postulated to be a versatile tool that can be applied on fermentation broth which is commonly used as source materials.
1.2 Project Aims and Objectives

The present study was undertaken to investigate the effect of M13 bacteriophage and *E. coli* in adsorption of bovine serum albumin (BSA) in expanded bed chromatography. Moreover, this study was also carried out to investigate the operating parameters such as the expansion bed height, the increase of biomass concentration and the flow rate of buffer distribution by using the EBA column. The study was carried out to investigate the performance of UpFront Column (20 mm i.d) from Amersham Pharmacia Biotechnology in protein purification. Batch adsorption experiment method using Streamline Diethylaminoethyl (DEAE) as adsorbent was also done to investigate the influence of *E. coli* biomass concentrations (0-15% w/v biomass) on BSA adsorption capacity. Besides, the maximum protein adsorption capacity and dissociation constant of DEAE adsorbent were determined in this present study.

The analysis of batch adsorption was done using Langmuir’s adsorption isotherm. The stability of fluidized beds was determined by measuring the degree of expansion in EBA chromatography system and the dynamic binding capacity was obtained from the breakthrough curve study.
1.2.1 Objectives

The main objectives of this project were:

1. To investigate the performance of Streamline Diethylaminoethyl (DEAE) as anion exchanger in adsorption of a model BSA protein from unclarified *E. coli* feedstock containing M13 bacteriophage.

2. To investigate the effect of settled bed height on the performance of UpFront Column (20 mm i.d) in protein purification process.

3. To investigate the effect of increasing biomass concentrations on the protein adsorption performance in EBA direct recovery process.
2.1 Bacteriophage

In 1921, Frederick Twort and Felix d'Herelle discovered the viruses that infect bacteria, and they named it as bacteriophages (eaters of bacteria) (Adams, 1959). In the 1930s and subsequent decades, pioneering virologists such as Luria, Delbruck and many others utilized these viruses as model systems to investigate many aspects of virology, including virus structure, genetics, replication, etc. Bacteriophages, viruses that prey upon bacteria, typically attack only a single bacterial strain. Bacteriophage virus infects bacteria and sometimes destroys them by causing cell lysis, or dissolution of the cell. Bacteriophages, or phages, have a head composed of protein, an inner core