UNIVERSITI PUTRA MALAYSIA

FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS OF 3D GIS VISUALIZATION

RUZINOOR CHE MAT

FK 2012 155
FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS
OF 3D GIS VISUALIZATION

By

RUZINOOR BIN CHE MAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2012
DEDICATION

I dedicate this thesis to my wife Norani Nordin, my kids Naufal, Naziah, Nabil and to my mum Romlah Hamzah.
FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS OF 3D GIS VISUALIZATION

By

RUZINOOR CHE MAT

October 2012

Chairman: Associate Professor Abdul Rashid Mohammed Shariff, PhD
Faculty: Institute of Advanced Technology

The aim of this study is to discuss on the issues related to the use of a new proposed four-tier architecture for online applications of 3D GIS visualization. Conventional design of the system is generated from client/server based architecture. This architecture is the main platform for designing online system architecture, which works based on the distributing concept, which is a tier. The tier is normally set by the developers to separate the works/tasks between the system architecture. Currently, three tiers architecture is the most well-known architecture used in GIS applications and also other application. However, this architecture has some drawback on scalability, maintainability, and also its need more processing power in the middle tier to process the request from multiple of users. Based on the literature study, GIS applications, especially systems, which involve 3D visualization generate a massive amount of data. Due to this situation, the current three-tier architecture used for online application of 3D GIS visualization decrease the performance of the system in terms of time for processing the request from the users.
This research explores the use of the four-tier framework to overcome current impediments in the use of the three-tier framework for online applications of 3D GIS visualization. The new framework is designed based on client/server architecture with the tasks distributed using the tier’s concept. It is formalized into four tiers framework by advancing one more tier into the existing three tiers framework for handling the visualization process. The four tiers framework is divided into the client, logic, visualization process, and database tiers respectively. The unique part of this new architecture is the middle tier which is divided into two other tier’s, which handle the visualization process and logical process separately and make the framework more flexible and increase its performance. The framework has been successfully implemented in oil palm plantations application using a prototype developed to prove that the framework functions well based on the requirements. Several experiment related to terrain visualization application conducted to give an operational guidelines for developer. The results of experiments helps developer on utilising the best data and technique for developing the required system. The prototype shows that it can aid the oil palm plantation management to visualize their plantation easily in 3D. The oil palm trees can be visualized with 3D terrain in an online environment with GIS capabilities. The characteristic of the oil palm tree data is stored in the database tier, and the data can be modified based on users need. The 3D terrain is generated from the topographic data (LiDAR Data) and overlaid with the high-resolution satellite image (QUICK BIRD). The validation of the framework was performed by comparing the results from the existing three-tier framework with the new four tier framework. The new framework shows superiority in its performance based on loading time, response time, frames per second, CPU usage and memory usage. These results show that the approach in this research helps solve the processing power problem. The framework can be applied by
users to visualize a multitude of applications with GIS capabilities in an online 3D environment.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KERANGKA EMPAT TAHAP UNTUK APLIKASI DALAM TALIAN BAGI VISUALISASI 3D GIS

Oleh

RUZINOOR CHE MAT

Oktober 2012

Pengerusi: Profesor Madya Abdul Rashid Mohammed Shariff, PhD

Fakulti: Institut Teknologi Maju

cuba mengenengahkan penggunaan kerangga empat 'tahap' untuk mengatasi kelemahan yang ada dalam sistem arkitektur tiga 'tahap' bagi penggunaan aplikasi dalam talian untuk visualisasi 3D GIS. Objektif kajian ini adalah (i) untuk memperkenalkan kerangka baru bagi aplikasi talian visualasi 3D GIS. (ii) untuk melaksanakan kerangka baru ini dalam aplikasi talian visualasi 3D GIS. (iii) untuk menganalisis dan mengesahkan kerangka baru ini dalam aplikasi talian visualasi 3D GIS. Kerangka baru ini direka bentuk berdasarkan arkitektur pelayan/pelanggan yang mengagihkan tugas kepada konsep 'tahap'. Ia telah diformalisasikan kepada kerangga empat 'tahap' dengan cara menambahkan satu lagi 'tahap' ke dalam kerangka tiga 'tahap' yang sedia ada bagi mengendalikan proses visualisasi. Kerangka kerja empat 'tahap' dibahagikan kepada 'tahap' pelanggan, 'tahap' logik, 'tahap' proses visualisasi, dan 'tahap' pangkalan data. Bahagian yang unik dalam arkitektur baru ini adalah dimana 'tahap' pertengahan dibahagikan kepada dua lagi 'tahap' yang mengendalikan proses visualisasi dan proses logic secara berasingan yang membuatkan kerangga kerja ini lebih fleksibel dan meningkatkan prestasinya. Kerangka ini telah berjaya dilaksanakan dengan jayanya dalam perladangan kelapa sawit dan satu prototaip juga telah dibina untuk menunjukkan bahawa kerangka ini boleh digunakan dengan baik. Beberapa eksperimen berkaitan aplikasi visualisasi permukaan tanah telah dijalankan untuk memberi garis panduan operasi kepada pemaju sistem. Keputusan dari eksperimen ini membantu pemaju sistem dalam menggunakan data dan teknik terbaik untuk membangunkan sistem yang dikehendaki. Prototaip ini menunjukkan bahawa ia boleh membantu pengurusan ladang kelapa sawit untuk menggambarkan ladang mereka dengan mudah dalam 3 dimensi. Pokok kelapa sawit dan permukaan tanah juga boleh di visualisasi dalam bentuk 3D dalam persekitaran dalam talian dengan kemudahan GIS. Data mengenai ciri-ciri yang dimiliki oleh pokok kelapa sawit disimpan dalam 'tahap' pangakalan data dan data ini
ACKNOWLEDGEMENTS

I am thankful and syukur to Allah for making things possible, Alhamdulillah. I would like to acknowledge the support and assistance that I have received from my supervisor, Associate Prof. Dr. Abdul Rashid Mohamed Shariff and to thank him for his untiring guidance, advice, help and encouragement throughout my study in UPM.

I am very much grateful to the members of my supervisory committee, Associate Prof. Dr. Ahmad Rodzi Mahmud, Dr. Habil. Biswajeet Pradhan and Dr. Mohd Shafry Mohd Rahim for their valuable guidances, helps and supports throughout my study. Thanks also to Assoc. Prof. Dr. Helmi, Dr. Lawal Billa and Dr. Fazel who always provided moral supports. Special thanks also goes to Prof. Dr. Ravshan Ashurov and my postgraduate colleague Almaz Butaez for helping me on preparing the mathematical models and formula for my algorithm.

I would like to express my true appreciation to Taman Pertanian Universiti UPM and Digital Globe Incorporation for providing the satellite image of UPM area. My sincere thanks to Professor Dr. Shattri Mansor and Pejabat Pembangunan dan Pengurusan Aset (PPPA) UPM who well provided me the LiDAR data of the study area. Thanks to Department of Survey and Mapping Malaysia (JUPEM) for providing the contour data for UPM area and for giving me placement to perform two months training in their organization.

Thanks to my friends Mohammed Mustafa Al-Habshi for assisting me on preparing the programming code for my research. To all my colleagues; Halim, Zakri, Hafiz, Fadhil, Nik, Wan, Veena, Roshidul, Ebrahim, Ramin, Khosro, Osama, Meftah, Harib, Mobarak, Ranya, Islah and Shahzard thank you for making my study life in UPM a valuable one. Finally, I would like to thank my family, especially my wife, my kids and my mum for all their support and encouragement.
I certify that a Thesis Examination Committee has met on 12 December 2012 to conduct the final examination of Ruzinoor Che Mat on his thesis entitled "Four Tier Framework for Online Applications of 3D GIS Visualization" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shattri b. Mansor, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Fazel Amiri, PhD
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Samsuzana binti Abdul Aziz, PhD
Department of Biological and Agricultural Engineering
Faculty of Engineering
Universiti Putra Malaysia
/Internal Examiner

Takaharu Kameoka, PhD
Professor
Mie University
Japan
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 January 2013
This thesis was submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Abdul Rashid Mohamed Shariff, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ahmad Rodzi Mahmud, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Biswaajeet Pradhan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Shafry Mohd Rahim, PhD
Associate Professor
Department of Computer Science
Universiti Teknologi Malaysia, Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

RUZINOOR CHE MAT
Date: 4 October 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Introduction
1.2 Problem Background
1.3 Problem Statement
1.4 Motivations
1.5 Objectives
1.6 Scope of Research
1.7 Thesis Structure

2 LITERATURE REVIEW
2.1 Introduction
2.2 3D Visualization
2.2.1 Virtual Reality
2.2.2 The importance of 3D visualization analysis
2.2.3 3D GIS Visualization Software
2.2.4 Web based 3D Visualization
2.3 3D Terrain Visualization
2.3.1 Manual Representation of Terrain
2.3.2 Automated Methods for Visualising Terrain
2.3.3 Visualizing Terrain in Photo realism
2.3.4 Online 3D Terrain Visualization
2.4 The Concept of Tier
2.4.1 What is Tier?
2.4.2 One Tier
2.4.3 Two Tier
2.4.4 Three Tier
2.4.5 N-Tier
2.4.6 Interaction between Tiers
2.5 Online Visualization Framework
2.6 Summary
3 RESEARCH METHODOLOGY
3.1 Methodology 51
3.2 Information Gathering & Conceptual Framework 52
3.3 Task and Technology Analysis 52
 3.3.1 Task Analysis 53
 3.3.2 Technology Analysis 54
3.4 Framework Development 55
 3.4.1 Client Tier 57
 3.4.2 Logic Tier 58
 3.4.3 Visualization Process Tier 58
 3.4.4 Database Tier 65
 3.4.5 The Interaction between Each Tier 66
3.5 Comparison of three-tier frameworks and four-tier frameworks 68
3.6 Mathematical Model 69
3.7 Implementation and Refinement 73
3.8 Analysis 74
3.9 Experiments for Operational Guide 75
3.10 Summary 77

4 IMPLEMENTATION OF FOUR TIER FRAMEWORK FOR ONLINE OIL PALM PLANTATION
4.1 Introduction 79
4.2 Implementation of the Framework 80
 4.2.1 Visualization Process Tier 81
 4.2.2 Database Tier 89
4.3 Prototype of the Framework 90
 4.3.1 User Manual 91
 4.3.2 3D Oil Palm Plantation 93
 4.3.3 Database Management 99
 4.3.4 Comment 103
 4.3.5 Contact Us 103
 4.3.6 Link 104
4.4 Summary 105

5 RESULTS AND DISCUSSION
5.1 Introduction 106
5.2 Oil Palm Plantation Application 106
5.3 Analysis 107
 5.3.1 Comparison on loading time 108
 5.3.2 Comparison on response time 111
 5.3.3 Comparison on frames per second 113
 5.3.4 Comparison on CPU usage 116
 5.3.5 Comparison on memory usage 119
5.4 Analysis with 1000 trees 122
 5.4.1 Comparison of three-tier and four-tier framework with
 1000 of trees 123
5.5 Analysis with 500, 600, 700 and 1000 trees 124
 5.5.1 Comparison on loading time 124
 5.5.2 Comparison on response time 127
 5.5.3 Comparison on frames per second 130

xii
5.5.4 Comparison on CPU usage 133
5.5.5 Comparison on memory usage 135
5.6 Analysis with different location 138
5.6.1 Comparison on loading time 138
5.6.2 Comparison on response time 141
5.6.3 Comparison on frames per second 144
5.6.4 Comparison on CPU usage 147
5.6.5 Comparison on memory usage 151
5.7 Experiments 154
5.7.1 Experiments 1: Comparison of different types of topographic data 154
5.7.1.1 Results of Experiments 1 155
5.7.2 Experiments 2: Comparison of different types of rendering technique 160
5.7.2.1 Results of Experiments 2 162
5.7.3 Experiments 3: Comparison of different types of GIS software 167
5.7.3.1 Results of Experiments 3 169
5.7.4 Experiments 4: Comparison of different types of satellite images 175
5.7.4.1 Results of Experiments 4 177
5.7.5 Experiments 5: Comparison of different types of web server 188
5.7.5.1 Results of Experiments 5 189
5.8 Summary 195

6 SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH
6.1 Summary 196
6.2 Conclusion 196
6.3 Recommendation for Future Research 199
6.3.1 Application to other crops 199
6.3.2 Improved the quality of 3D visualization 200
6.3.3 Adding more oil palm trees 200
6.3.4 Enhancing the security 200

REFERENCES 201

APPENDICES 217
A Programming Code: Main Menu 218
B Programming Code: User Manual 220
C1 Programming Code: Oil Palm with 100 Trees 221
C2 Programming Code: Terrain Visualization 225
C2a Programming Code: Scene Tree for Terrain Visualization 247
D Programming Code: Database Management 249
E Programming Code: Comment 253
F Programming Code: Contact Us 255
G Programming Code: Link 256

BIODATA OF STUDENT 258

LIST OF PUBLICATIONS 260
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classes for manual representation of terrain</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Different techniques of visualizing terrain in photorealism</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison between three-tier frameworks and four-tier frameworks</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Procedures for requesting and response the data through normal situation</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Procedures for requesting and response of the data when the data is edited</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of loading times for three-tier and four-tier system frameworks</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage difference of loading times for three-tier and four-tier system frameworks</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of response times for three-tier and four-tier-system frameworks</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage difference of response time for three-tier and four-tier system frameworks</td>
<td>113</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of frames per second (fps) for three-tier and four-tier system frameworks</td>
<td>114</td>
</tr>
<tr>
<td>5.6</td>
<td>Percentage difference of fps value for three-tier and four-tier system frameworks</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of CPU usage for three-tier and four-tier system frameworks</td>
<td>117</td>
</tr>
<tr>
<td>5.8</td>
<td>Percentage difference of CPU usage for three-tier and four-tier system frameworks</td>
<td>119</td>
</tr>
<tr>
<td>5.9</td>
<td>Comparison of memory usage for three-tier and four-tier system frameworks</td>
<td>120</td>
</tr>
<tr>
<td>5.10</td>
<td>Percentage difference of memory usage for three-tier and four-tier system frameworks</td>
<td>122</td>
</tr>
</tbody>
</table>
5.11 Comparison of loading times, response time, frame per second, CPU usage and memory usage for three-tier and four-tier system frameworks with 1000 of trees 123

5.12 Comparison of loading times for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 125

5.13 Percentage difference of loading times for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 127

5.14 Comparison of response times for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 128

5.15 Percentage difference of response time for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 129

5.16 Comparison of frames per second (fps) for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 131

5.17 Percentage difference of fps value for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 132

5.18 Comparison of CPU usage for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 133

5.19 Percentage difference of CPU usage for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 135

5.20 Comparison of memory usage for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 136

5.21 Percentage difference of memory usage for three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees 138

5.22 Comparison of loading times for three-tier and four-tier system frameworks of new location 139
5.23 Percentage difference of loading times for three-tier and four-tier system frameworks of new location

5.24 Comparison of response times for three-tier and four-tier system frameworks of new location

5.25 Percentage difference of response time for three-tier and four-tier system frameworks of new location

5.26 Comparison of frames per second (fps) for three-tier and four-tier system frameworks of new location

5.27 Percentage difference of fps value for three-tier and four-tier system frameworks of new location

5.28 Comparison of CPU usage for three-tier and four-tier system frameworks of new location

5.29 Percentage difference of CPU usage for three-tier and four-tier system frameworks of new location

5.30 Comparison of memory usage for three-tier and four-tier system frameworks of new location

5.31 Percentage difference of memory usage for three-tier and four-tier system frameworks of new location

5.32 Comparison of different contour interval for 3D terrain visualization

5.33 Comparison of different GIS software for online 3D terrain visualization

5.34 The technology specification for QUICK BIRD

5.35 The technology specification for IKONOS

5.36 The technology specification for SPOT 5

5.37 The comparison between three satellite imageries QUICK BIRD, IKONOS, and SPOT 5 with data coverage of 34.5 hectares
5.38 The comparison between three satellite imageries QUICKBIRD, IKONOS, and SPOT5 with data coverage of 69 hectares

5.39 The comparison between three satellite imageries QUICKBIRD, IKONOS, and SPOT5 with the data coverage of 138 hectares

5.40 The distance of the web servers from the users together with address of data launched

5.41 Loading time during office hours and out of office hours

5.42 Loading time for different number of users

5.43 Frame per second for different number of users

5.44 CPU usage for different number of user
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Image of Malaysia geospatial data in 2D</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Image of bridge along the road site</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Figure indicated a) mountains in the shape of molehill b) skeletal lines</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Profile lines</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Figure indicated (a) hill shading; (b) hachures</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Image of overlapping method</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Image of chunk level of detail</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Image of terrain developed from the extension of GeoMipMap algorithm</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>Image of Grand Canyon</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Two tier client/server architecture</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Three tier client/server architecture</td>
<td>42</td>
</tr>
<tr>
<td>2.11</td>
<td>Three tier architecture based on 3D browser</td>
<td>46</td>
</tr>
<tr>
<td>2.12</td>
<td>Three tier architecture for CVIS</td>
<td>47</td>
</tr>
<tr>
<td>2.13</td>
<td>Three tier architecture for hurricane occurance simulation</td>
<td>48</td>
</tr>
<tr>
<td>2.14</td>
<td>Four tier architecture</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>The flow chart of research methodology</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Components of new framework; a) client tier; b) logic tier; c) visualization process tier; d) database tier</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>The operations at Visualization Process Tier</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Extruding image in CAD package; (a) before extrude, (b) after extrude</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>3D object in Google Earth (from Sketch Up)</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>The image of roadway generated from 3D scanner</td>
<td>62</td>
</tr>
</tbody>
</table>
3.7 The image of complex trunk 62
3.8 The image of single leaf 63
3.9 The sample of 3D surface; (a) raster, (b) TIN, (c) terrain surface 64
3.10 Sample of contour convert ;(a) 3m contour map, (b) TIN of 3m contour map 65
3.11 The interaction between each tier in the proposed framework 67
3.12 Framework of mathematical model 69
4.1 PHP header 81
4.2 PHP looping function 81
4.3 View of the frond from the (a) front, (b) back, (c) right, (d) left, (e) top, (f) bottom 85
4.4 The oil palm trunk with textured image 86
4.5 The complete visualization of oil palm tree in 3D 87
4.6 Flowchart a method of visualizing 3D terrain 88
4.7 Sample of 3D data in MySQL database 90
4.8 Online 3D terrain visualization for oil palm plantation 91
4.9 The menu of User Manual 92
4.10 System rendered for fly through function for 10 trees 93
4.11 System rendered for flythrough function for 30 trees 94
4.12 System rendered for flythrough function for 50 trees 94
4.13 System rendered for flythrough function for 100 trees 95
4.14 Walkthrough inside the oil palm plantation 96
4.15 View of the tree from the front 97
4.16 View of the tree from the back 97
4.17 View the tree from the left 98
4.18 View of the tree from the right 98
4.19 Flythrough over the oil palm plantation
4.20 The print preview of the database
4.21 Searching inside the database
4.22 Highlighting the correct data
4.23 Editing menu
4.24 The menu of Comment
4.25 The menu of Contact Us
4.26 The menu of Link
5.1 The loading time record using stopwatch software
5.2 The loading time graph for comparison of three-tier and four-tier system frameworks
5.3 The value of response time recorded using YSlow
5.4 The response time graph for comparison of three-tier and four-tier system frameworks
5.5 The value of frames per second (fps) recorded using Fraps software
5.6 The frames per second (fps) graph for comparison of three-tier and four-tier system frameworks
5.7 The value of CPU usage is recorded using Window Task Manager
5.8 The CPU usage graph for comparison of three-tier and four-tier system frameworks
5.9 The value of memory usage is recorded using Window Task Manager
5.10 The memory usage graph for comparison of three-tier and four-tier system frameworks
5.11 The loading time record using stopwatch software for 1000 trees
5.12 The loading time graph for comparison of three-tier and four-tier system frameworks
system frameworks with 500, 600, 700 and 1000 trees

5.13 The value of response time recorded using Yslow for 1000 trees

5.14 The response time graph for comparison of three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees

5.15 The value of frames per second (fps) recorded using Fraps software for 1000 trees

5.16 The frames per second (fps) graph for comparison of three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees

5.17 The value of CPU usage is recorded using Window Task Manager for 1000 trees

5.18 The CPU usage graph for comparison of three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees

5.19 The value of memory usage is recorded using Window Task Manager for 1000 trees

5.20 The memory usage graph for comparison of three-tier and four-tier system frameworks with 500, 600, 700 and 1000 trees

5.21 The loading time record using stopwatch software of new location

5.22 The loading time graph for comparison of three-tier and four-tier system frameworks of new location

5.23 The value of response time recorded using Yslow of new location

5.24 The response time graph for comparison of three-tier and four-tier system frameworks of new location

5.25 The value of frames per second (fps) recorded using Fraps software of new location

5.26 The frames per second (fps) graph for comparison of three-tier and
four-tier system frameworks of new location

5.27 The value of CPU usage is recorded using Window Task Manager of new location

5.28 The CPU usage graph for comparison of three-tier and four-tier system frameworks of new location

5.29 The value of memory usage is recorded using Window Task Manager of new location

5.30 The memory usage graph for comparison of three-tier and four-tier system frameworks of new location

5.31 The image of VRML data for 5m intervals

5.32 The image of VRML data for 3m intervals

5.33 The image of VRML data for 1m intervals

5.34 Three different images of 3D terrain visualization for golf field area;
 (a) satellite overlaid, (b) colour shading, (c) silhouette rendering

5.35 Three different images of 3D terrain visualization for the public field area;
 (a) satellite overlaid, (b) colour shading, (c) silhouette rendering

5.36 Three different images of 3D terrain visualization for the research field area; (a) satellite overlaid, (b) colour shading, (c) silhouette rendering

5.37 Image of online 3D terrain visualization generated from R2V software

5.38 Image of online 3D terrain visualization generated from ERDAS software

5.39 Image of online 3D terrain visualization generated from ArcGIS 9.2 software

5.40 Image of online 3D terrain visualization generated from ENVI software

5.41 Image of online terrain draped with IKONOS satellite imageries with data coverage of 34.5 hectares
5.42 Image of online terrain draped with QUICKBIRD satellite imageries with data coverage of 34.5 hectares 178
5.43 Image of online terrain draped with SPOT 5 satellite imageries with data coverage of 34.5 hectares 178
5.44 Image of online terrain draped with IKONOS satellite imageries with data coverage of 69 hectares 181
5.45 Image of online terrain draped with QUICKBIRD satellite imageries with data coverage of 69 hectares 181
5.46 Image of online terrain draped with SPOT5 satellite imageries with data coverage of 69 hectares 181
5.47 Image of online terrain draped with IKONOS satellite imageries with data coverage of 138 hectares 184
5.48 Image of online terrain draped with QUICKBIRD satellite imageries with data coverage of 138 hectares 184
5.49 Image of online terrain draped with SPOT5 satellite imageries with data coverage of 138 hectares 185
5.50 Loading time in different web servers 189
5.51 Loading time for different number of users 191
5.52 Frame per second for different number of users 192
5.53 CPU usage for different number of users 194
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJAX</td>
<td>Asynchronous JavaScript Technology and XML</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CVIS</td>
<td>Computerized Visitor Information System</td>
</tr>
<tr>
<td>DTM</td>
<td>Digital Terrain Model</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>ESRI</td>
<td>Environmental Systems Research Institute</td>
</tr>
<tr>
<td>fps</td>
<td>frames per second</td>
</tr>
<tr>
<td>Gb</td>
<td>Gigabytes</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphics Interchange Format</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IIS</td>
<td>Internet Information Server</td>
</tr>
<tr>
<td>JDBC</td>
<td>Java Database Connectivity</td>
</tr>
<tr>
<td>JNI</td>
<td>Java Native Interface</td>
</tr>
<tr>
<td>JNLP</td>
<td>Java Network Launching Protocol</td>
</tr>
<tr>
<td>JSP</td>
<td>JavaServer Page</td>
</tr>
<tr>
<td>JUPEM</td>
<td>Jabatan Ukur dan Pemetaan Malaysia</td>
</tr>
<tr>
<td>LKIM</td>
<td>Lembaga Kemajuan Ikan Malaysia</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LOD</td>
<td>Level of detail</td>
</tr>
<tr>
<td>MBNMS</td>
<td>Monterey Bay National Marine Sanctuary</td>
</tr>
<tr>
<td>MyGDI</td>
<td>Malaysian Geospatial Data Infrastructure</td>
</tr>
<tr>
<td>MySQL</td>
<td>My Structured Query Language</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ms</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>NPR</td>
<td>Non-photorealistic Rendering</td>
</tr>
<tr>
<td>NSDI</td>
<td>National Geospatial Data Infrastructure</td>
</tr>
<tr>
<td>ODBC</td>
<td>Open Database Connectivity</td>
</tr>
<tr>
<td>OGC</td>
<td>Open Geospatial Consortium</td>
</tr>
<tr>
<td>OpenGL</td>
<td>Open Graphic Library</td>
</tr>
<tr>
<td>PHP</td>
<td>PHP: Hypertext Preprocessor</td>
</tr>
<tr>
<td>RDBMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>ROAM</td>
<td>Real-time Optimally Adapting Meshes</td>
</tr>
<tr>
<td>RS</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SHP</td>
<td>Shapefile</td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>SRG</td>
<td>Spatial Research Group</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UUM</td>
<td>Universiti Utara Malaysia</td>
</tr>
<tr>
<td>WebGL</td>
<td>Web-based Graphics Library</td>
</tr>
<tr>
<td>WFS</td>
<td>Web Feature Service</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>X3D</td>
<td>Extensible 3D</td>
</tr>
<tr>
<td>2D</td>
<td>Two dimension</td>
</tr>
<tr>
<td>3D</td>
<td>Three dimension</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Introduction

Visualization is the process of exploring, transforming, and viewing data as images (or other sensory forms) to gain understanding and insight into the data (Schroeder, et al., 1998). Generally, visualization can be divided into 2D visualization, 3D visualization, and currently 4D visualizations are also being explored (Ding, et al., 2012). The 2D visualization has the capability on rendering the objects in two dimensions (2D) while 3D visualization rendered the objects in three dimensions (3D). Nowadays, most of the systems still maintain 2D visualizations while lacking on 3D visualizations, especially in GIS communities (Zlanatova and Stoter, 2003). The trend currently is moving towards using the internet to visualize the information. This platform enables people to interact and share information more efficiently (Huang, et al., 2001). It received most intention in the early 1990s because of the development of standard visual tools for information exchange, Web browsers (Mosaic, Netscape Navigator and Microsoft Explorer). Due to this aspect, the number of internet users and its technology also increased dramatically. In 2009, the numbers of internet users grew in the rural areas, accumulating to about 4 million users in Malaysia (Sulaiman, 2009). Concurrent with these, the new generation of geo-browsers such as Google Earth, Microsoft Virtual Earth and NASA's World Wind (Sipes, 2007) emerged since in 2005. Many people currently depend on these geo-browsers for their daily work and also for decision making purpose. This technology creates an opportunity to perform mix client/server visualization. Most
the system architecture for WWW is developed based upon client/server architecture (Nations, 2010). This architecture is the main platform for designing online system architecture, which works based on the distributing concept which is the tier.

The term tier refers to the physical distribution of components of a system on separate servers, computers, or networks (processing nodes). It can be defined as "one of two or more rows, levels, or ranks arranged one above another" (Encyclopedia Britannica Company, 2011). However, Chartier (2001) has defined tier as any number of levels arranged above another, each serving distinct and separate task. It means that each tier has its own function, which is connecting each other in separate level of the physical layer for processing the request from the client. Besides that, Microsoft Library (2011) defined the tier whereby the tier is composed of one or more computers that share one or more of this system characteristic such as resource consumption profile, operational requirement, and design constraints. Moreover, the concept of tier is actually generated from distributed architecture, which means that systems are collected from multiple hosts running the programs. This host can be a web server and a database server which can be virtually distributed on a single host whereby the tier may be a logical or physical layer of the system (Sun, 2005). The tier is normally set by the developers to separate the works/tasks between the system architecture.

Three-tiers is the most well-known architecture used in GIS applications, but it has disadvantages on scalability, maintainability, and needs more processing power on the web server. This research explores the use of the four-tier framework to overcome current impediments in the use of the three-tier framework for online
applications of 3D visualization for GIS data, focusing specifically on the needs of processing power.

1.2 Problem Background

Google Earth was released to the public on June 2005 and followed by Google Maps, which was released on February 2007 (Hollinger, 2011). This geo-browsers has the capability of displaying the world in 3D, although due to the data availability, the accuracy of the height value is low, where there only hilly areas are shown while low areas are not. There is a limitation in this software where the interaction of 3D visualization is only possible in fly through and not walk through mode.

Zlatanova et al. (2002) mentioned that “the increasing number of applications needs more advanced tools for representing and analyzing the 3D world”. That is why the research on online 3D visualization has been interest to many researchers, until now.

Yu et al. (2010) has stated that "at present, there are still some difficulties in researching and implementing 3D visualization and spatial analysis based on the internet because of the network bandwidth constraints’ and the immature 3D graphics display technology". Other than that, most of the three-tier framework developed by researchers is for 2D visualization (Chen, et al., 2003; Man, et al., 2006; Varun, et al., 2004; Zhou, et al., 2009) which is not appropriate to be used for 3D visualization.
Xu & Lee (2002) mentioned that "although there have been some serious studies into specific issues, we still lack a framework to consider the problem as a whole and to coordinate the various studies. In our opinion, fully networking GIS, although desirable, is extremely difficult". They stated that "layering GIS has not been studied extensively" and that "while truly distributed GIS system involving highly autonomous component is still a long way to go". Based on the above statement, there is a need to introduce a new framework for solving the problem in distributed GIS, especially for online applications of 3D visualization for 3D GIS data.

A web 2.0 concept has the capability on handling the data accessibility, data interoperability, and data information sharing over the internet and the World Wide Web. Nevertheless, in terms of information visualization, the representation of the data is still limited to 2 or 2.5 dimensions such as text, pictures, or videos (Settapat, et al., 2010). That is why there is a need for implementing 3D visualization over the internet.

1.3 Problem Statement

Based on the literature survey, the use of four tiers architecture for design of GIS application is only for visualization in 2D and not for 3D (Luqun, et al., 2002; Luqun and Minglu, 2004). The current use of this framework, mainly for 2D visualization and not related to GIS application. For example, in health geographic, four-tier frameworks are designed for mapping and sharing the disease information. The product of this framework is only for 2D maps, which can monitor the information of the disease without any GIS capabilities. The advantage of this system is that it can
collaborate interactively between the partners such as public health officials, researchers, policy makers and the public (Gao, et al., 2008). Mahmoudi et al. (2010) introduced the interactive web based 2D and 3D medical image processing and visualization based on the four layer architecture. Their architecture consists of an algorithm, manage code, server communication and user-interface layer respectively. They also mentioned that they have a wrapper layer inside the manage code layer. Their architecture, with consideration of wrapper layer therefore contains five layers. As mentioned by Simmons (Simmons, 2009) the term layer and tier has different meaning, whereby each layer could sit on a single tier or multiple tiers. It means that, the layer is just the organizational concept in an application but tier implies physical separation, if needed. Mahmoudi system applied the layer concept and is different with our approach which proposed four-tier frameworks. Mahmoudi does not mention which layers sit on a particular tier. VRML is used for visualizing their images. However, Mahmoudi system is specifically for medical image with raster image processing and does not address GIS vector data. Our approach is specifically of visualization of GIS data and in particular this thesis research address vector based coordinate information. "The development of efficient and reliable systems with more than three-tiers is still an imprecise science, but research in distributed computing continues to increase the availability and usefulness of such systems" (Lewandowski, 1998).

The design of online applications which involve 3D visualization of GIS data normally involves a great amount of spatial data, especially for terrain information (Xu and Lee, 2002). By combining terrain data with other objects on its surface, a massive amount of data will be generated. The existing three-tier framework has
some drawbacks on scalability, maintainability, and it needs more processing power in the middle tier to process the request from multiple of users. Due to this situation, the use of the current three-tier framework for online application of 3D visualization for GIS data is not capable of processing the huge amount of data from the users. Hence, this research explores how to develop a new four tier framework which can solve the existing problem of processing power. The following specific research questions are addressed:

1. How to develop a new four-tier framework of online applications of 3D visualization for GIS data by enhancing the existing three-tier framework?
2. How to implement a new four-tier framework of online applications of 3D visualization for GIS data?
3. How to analyse the performance and validate the accuracy of a new four-tier framework of online applications of 3D visualization for GIS data?

1.4 Motivations

By creating 3D visualizations that look as photorealistic as current technology allows, it becomes possible to see, explore, and spatially understand parts of the Earth as if we were actually there (Patterson, 2003).

In Malaysia, the need for 3D visualization is crucial whereby Malaysian Geospatial Data Infrastructure (MaCGDI) is responsible to providing the services of National Geospatial Data Infrastructure (NSDI). The service provided by this agency is the system which can view the spatial data and also map (MaCGDI, 2011). This system
restricts the user to view the data in 2D (Figure 1.1) and require further commands to see further information. Furthermore, the user cannot view the data in 3D where more realistic information can be viewed. That is why 3D visualization is important for organizations, which provide services to its users. The required service of 3D visualization is not in place yet in Malaysia.

Figure 1.1 Image of Malaysia geospatial data in 2D Image source MaCGDI (2011))

Many researchers utilized Virtual Reality Markup Language (VRML) as their file format for implementing online 3D visualization (Basic and Nuantawee, 2004; Beard, 2006; Honjo and Lim, 2001; Huirong, et al., 2009). VRML is fundamentally a 3D interchange format designed for visualizing 3D objects in web-based environments (Carey and Bell, 1997). Basic and Nuantawee (2004) quoted that "VRML has proven to be a useful tool for modeling reality, producing 3D animations, and interactive mapping".
By utilizing the VRML, the techniques such as level of details, tile’s technique, progressive technique, and selective visualization was introduced by researchers to achieved real time visualization (Araya, et al., 2002; Beard, 2006; Huirong, et al., 2009; Zhu, et al., 2003). VRML format can be used as an effective stimulus for landscape assessment (included terrain data) (Lim, et al., 2006). In terms of terrain visualization, Martinez (2010) stated that "the use of VRML for the creation of terrain visualization is viable". VRML is a high-performance language, and the VRML technology is still a valid environment for implementing 3D visualization, especially terrain visualization. For this reasons much research still use VRML as their tools for 3D visualization. This is the reason why VRML is still being used in this research for the output format. The 3D information can be easily transferred through the internet by using this technology (Honjo and Lim, 2001).

As quoted by Huang & Lin (2000) "3D visualization and analysis become more powerful when combined with internet based technologies. Through the network, data, analysis, and interaction can be distributed to the desktops of decision makers who are able to act upon the most recent information".

1.5 Objectives

The goal of this research is to develop a new method of online 3D visualization for GIS data. In order to achieve this goal, three objectives have been formulated:

- develop a new four-tier framework for online application of 3D visualization for GIS data.
• implement a new four-tier framework for online application of 3D visualization for GIS data.

• analyze the performance and validate the accuracy of a new four-tier framework for online application of 3D visualization for GIS data.

1.6 Scope of Research

The scope of this research is meant for a client/server architecture. The new four tier frameworks is develop based on tier concept for online applications of 3D visualization for GIS data focusing specifically on the processing power problem. For application development, this research focused only on the oil palm plantation application. The visualization of 3D for oil palm plantation generates 3D objects like the oil palm tree together with pseudo of 3D terrain visualization.

1.7 Thesis Structure

The thesis is organized into six chapters. This is the introductory chapter. It provides the problem background, problem statement, goal, objectives, motivation, and the scope of the research.

In Chapter 2, detailed descriptions of the study background are discussed. It explains the background of 3D visualization, 3D terrain visualization, the concept of tier, and on-line visualization framework. All the topics are discussed in details which distributed into other sub topics. The discussion guide the author to find the research gaps on why the new framework needs to be introduced. This chapter ends with the
conclusion on the research gap being attempted that trying to be solved in this research.

Methodology of the research is discussed in chapter 3. It includes the framework of the study and other contributing factors in this research study. This chapter discusses the formalization of the framework, its design and the interaction between each tier.

Chapter 4 discusses an example implementation of the research in oil palm plantation. The details of the implementation of each tier are explained in this chapter. The explanation on how to develop 3D terrain is described in detail in this chapter. It describes the prototype developed to suit an oil palm plantation.

Chapter 5 continues the discussion on the operational guideline’s experiments for on-line 3D terrain visualization, which is divided into five experiments. The results give the visualization developer an idea on the best way of implementing on-line 3D terrain visualization in terms of topographic data, rendering technique, GIS software, satellite data, and web server. In order to analyse and validate the new framework, the comparison between the new four-tier framework and three-tier frameworks is made. The measurement of the comparison is based on response time, loading time, frames per second (fps), Central Processing unit (CPU) usage, and memory usage. The result of the comparison is presented and analysed.

Chapter 6 concludes the thesis. This chapter describes the research contributions of the study. Suggestions on future research are also discussed.
REFERENCES

201

207

Canadian Conference on Computer Science and Software Engineering,
Montreal, Quebec, Canada

Yu, R., Kun, Z., & Xiuguo, L. (2010). Research and implementation of three-dimensional visualization based on Internet. Proceedings of the 18th International Conference on Geoinformatics, Beijing, China, 1-4

On Computer and Communication Technologies in Agriculture Engineering (CCTAE 2010), Chengdu, China, 587-590

Zlanatova, S., & Stoter, J. (2003). *3D GIS, where are we standing?* Proceedings of the ISPRS workshop on spatial, temporal and multi-dimensional data modelling and analysis, Quebec, Canada
