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Several enhancements to the pump delivery scheme for remotely pumped L-band 

erbium-doped fiber amplifier (R-EDFA) were investigated in this research. The 

proposed pumping scheme utilized stimulated Raman scattering (SRS) generated 

during the pump light propagation and use it as a pump in order to improve the 

performance of the L-band amplifier. The pumping scheme took advantage of the 

SRS and utilizes it as a higher-order pump source to increase the amount of pump 

power available for amplification. Initially, the proposed pumping scheme was 

focused on the pump delivered to the R-EDFA itself. Two Raman laser wavelengths 

at 1455 and 1423 nm were tested as the primary pump. A total of 44.5 mW delivered 

pump power was derived from the 1455 nm laser and the 1555 nm SRS second-order 

pump. Amplification of the SRS saturated the R-EDFA and induced gain-clamping 

effect. The SRS also contributed to the generation of 1567 nm laser in the 

transmission line that dominated the Raman amplification and reduced the 

transmission gain and optical signal-to-noise ratio (OSNR) at the shorter L-band 

wavelengths. The utilization of SRS at 1512 nm eliminated the effect of gain 
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saturation and allowed maximum gain up to 27.3 dB. However, the SRS location far 

from the L-band region reduced the Raman amplification effect and subsequently 

lowered the transmission gain. 

 

From the 1567 nm laser produced by the 1555 nm SRS, another enhancement to the 

pumping scheme was proposed. The idea was to utilize the 1567 nm laser, which was 

generated by the ultra-long Raman fiber laser (ULRFL) phenomenon, as a third-

order pump for a section of passive EDF deployed prior to the end of the 

transmission span. The transmission gain was improved over the conventional R-

EDFA for 0 dBm signal power but the gain for the lower signal levels was clamped 

due to the saturation of the passive EDF by the 1567 nm ULRFL. The integration of 

the conventional R-EDFA architecture with passive EDF section was then 

performed, with the ULRFL acting as the second-order pump for the passive EDF. A 

wavelength-selective reflector was incorporated for variation of ULRFL seed 

wavelength, from which an optimized ULRFL wavelength range was acquired from 

1553 to 1557 nm. This amplifier architecture obtained the best gain performance at 

all signal levels with minimal OSNR penalty. This is attributed to the high ULRFL 

power and the location of the ULRFL at wavelength with high erbium absorption. 

The findings demonstrated the performance improvements accorded through the use 

of the proposed pumping scheme. There is immense potential for further 

enhancement by optimizing the Raman laser wavelength and striking a balance 

between efficient pump-to-signal conversion and Raman amplification.   
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MUHAMMAD HAFIZ BIN ABU BAKAR 
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Pengerusi: Profesor Mohd Adzir Bin Mahdi, PhD 

Fakulti: Fakulti Kejuruteraan 

 

Beberapa peningkatan kepada skim penghantaran pam bagi penguat gentian terdop 

erbium L-band yang dipam secara jauh (R-EDFA) telah disiasat dalam kajian ini. 

Skim pam yang diusulkan ini menggunakan penyerakan Raman terangsang (SRS) 

yang dijana sewaktu pergerakan cahaya pam sebagai pam demi meningkatkan 

prestasi penguat L-band. Skim pam ini mengambil kesempatan daripada SRS dan 

meggunakannya sebagai sumber pam peringkat lebih tinggi untuk meningkatkan 

jumlah kuasa pam yang tersedia untuk penguatan. Pada mulanya, skim pam yang 

diusulkan ini ditumpukan kepada pam yang dihantar kepada R-EDFA itu sendiri. 

Dua jarak gelombang laser Raman pada 1455 dan 1423 nm telah diuji sebagai pam 

utama. Sejumlah 44.5 mW kuasa pam diperolehi dari laser 1455 nm dan pam 

peringkat kedua SRS 1555 nm. Penguatan SRS telah menepukan R-EDFA itu dan 

mendorong kesan gandaan yang diapit. SRS itu juga menyumbang kepada penjanaan 

laser 1567 nm di dalam talian penghantaran yang mendominasi penguatan Raman 

dan merendahkan gandaan penghantaran dan nisbah isyarat-kepada-hingar optik 

(OSNR), di jarak gelombang L-band yang lebih pendek. Penggunaan SRS pada 1512 
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nm menghapuskan kesan penepuan gandaan dan membenarkan gandaan maksimum 

setinggi 27.3 dB. Walau bagaimana pun, lokasi SRS yang terletak jauh dari rantau L-

band mengurangkan kesan penguatan Raman dan seterusnya merendahkan gandaan 

penghantaran. 

 

Daripada laser 1567 nm yang dihasilkan oleh SRS 1555 nm, satu peningkatan 

kepada skim pam ini telah diusulkan. Ideanya adalah untuk menggunakan laser 1567 

nm itu, yang dijana oleh fenomena laser gentian Raman ultra-panjang (ULRFL), 

sebagai pam peringkat ketiga bagi satu seksyen gentian terdop erbium (EDF) pasif 

yang diletakkan sebelum penghujung jengkal penghantaran. Gandaan penghantaran 

telah ditingkatkan bagi kuasa isyarat 0 dBm berbanding R-EDFA konvensional akan 

tetapi gandaan telah diapit bagi kuasa isyarat yang lebih rendah kerana ULRFL 1567 

nm telah menepukan EDF pasif. Integrasi rekabentuk R-EDFA konvensional dan 

seksyen EDF pasif kemudian dilakukan, dengan ULRFL berperanan sebagai pam 

peringkat kedua bagi EDF pasif. Satu pemantul jarak gelombang terpilih 

digabungkan untuk memvariasikan jarak gelombang benih ULRFL dan melaluinya 

satu julat jarak gelombang optimum telah diperolehi dari 1553 ke 1557 nm. 

Rekabentuk penguat ini menghasilkan prestasi gandaan terbaik pada semua tahap 

isyarat dengan penalti OSNR yang rendah. Ini disebabkan oleh kuasa ULRFL yang 

tinggi dan lokasinya pada jarak gelombang dengan penyerapan erbium yang tinggi. 

Penemuan ini mendemonstrasikan peningkatan prestasi yang diberikan melalui 

penggunaan skim pam yang diusulkan. Terdapat potensi besar bagi peningkatan 

seterusnya dengan mengoptimumkan jarak gelombang laser Raman dan menemukan 

keseimbangan antara penukaran pam-ke-isyarat yang efisyen dan penguatan Raman. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

Optical system has been at the forefront of the communication technology due to its 

exceptionally wide bandwidth which enables large data transmission. This feature is 

in-line with the increasing demand for higher data transmission brought upon by the 

rise of the Internet. Its status as the premier communication method is further 

solidified with its ability to transmit data at longer distance, thanks to the low 

attenuation coefficient of optical fiber. While the present fiber technology allows for 

fiber attenuation of about 0.2 dB/km, the accumulated loss inside the fiber will still 

limit the distance achievable by optical transmission. This limitation can be 

overcome through the use of optical amplifiers in between fiber spans. Previously, 

optical amplifiers came in the form of repeaters, which were basically electrical 

amplifiers equipped with optical-electro converters [1]. The drawback of this method 

was the complexity of the process, where light signals have to be converted into 

electrical signals, amplified in electrical domain and then converted back into optical 

signal for retransmission. This process became more complicated in wavelength-

division multiplexing (WDM) networks since a repeater is needed for each 

wavelength. There is also less flexibility with repeaters as the components are 

transmission rate dependent. These added complexities increased the cost of 

repeaters and eventually the whole system. The situation calls for an alternative 

solution, namely amplifiers that can amplify in optical domain. 



© C
OPYRIG

HT U
PM

 2 

One of the frontrunner in the optical amplifier field is the erbium-doped fiber 

amplifier or EDFA. EDFA utilizes a length of fiber doped with a type of rare earth 

element called erbium as its gain medium. Erbium distinguishing characteristic is its 

emission spectrum in the 1.5 µm wavelength range, which coincides with the 

minimum loss region for modern communication fibers. EDFA has been the 

preferred choice of amplifier in recent times due to its ability to produce high gain 

with low pumping power. The amplification bandwidth can also go as wide as 80 nm 

[2] and the gain flatness can be easily achieved with the use of gain-flattening filters 

[3]. The drawback of EDFA is the additional cost due to the need for a specialized 

gain medium and the noise figure is also subjected to a theoretical quantum limit of 3 

dB. 

 

The wide amplification bandwidth of erbium allows the utilizations of EDFA in L-

band transmission window (1570 to 1605 nm) that was introduced to support the 

growing need for bandwidth. The supplementary transmission window is crucial 

since the C-band wavelength range from 1530 to 1565 nm is already exhausted as the 

WDM transmission has already reached its minimum channel spacing. Additionally, 

WDM transmission in C-band is subjected to a glaring problem of four-wave mixing 

(FWM). FWM is a nonlinear effect associated with long distance transmission of 

multiple signals at small channel spacing [4]. Older optical lines employing 

dispersion-shifted fiber (DSF) was optimized for transmission in the 1.3 µm region, 

which was the previous wavelength range for optical transmission. DSF of that type 

has its zero-dispersion wavelength around 1550 nm, which is located in the current 

transmission window. The lack of dispersion in that area increases the susceptibility 

of phase-matching condition between WDM signals in C-band. Phase-matched 
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signals mix to produce signals at other wavelengths thus adding noise in the 

transmission and reduce the power of the original signals. There is no non-zero 

dispersion wavelength in L-band operating range for either older or modern optical 

lines, thus reducing the effect of FWM in L-band WDM systems [5]. 

 

Earlier work on EDFA was confined to discrete-pumped amplifiers which encounter 

no problems in terms of pump power delivery. This approach however, would 

require the presence of the pump laser in the vicinity of the amplifier, which could be 

troublesome due to geographical obstruction and the need for large power supply in 

unreachable areas. The incorporation of remote pumping scheme in EDFA removed 

the obstacles involved with discrete pump method [6]. In remote pumping, the pump 

laser is delivered to the amplifier from another location using a dedicated pump line 

or through the transmission line itself.  

 

1.2 Challenges of EDFA in L-band 

 

The EDFA is capable of amplifying signal in L-band since its emission spectrum 

extends beyond 1610 nm. The emission at that particular wavelength range is also 

more uniform, simplifying the process of gain flattening. It is interesting to note that 

due to the attenuation curve of modern fiber, it is preferable for remotely pumped 

EDFA (R-EDFA) to utilize pump wavelength around 1480 nm to reduce the loss 

suffered by the pump laser. This works to the advantage of L-band EDFA that is 

remotely pumped through the transmission line as the Raman scattering effect in the 

transmission fiber will contribute to Raman amplification in the L-band region. 

Nonetheless, the performance of the whole system still hinges on the EDFA itself 
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and it is very critical to consider the impact of accumulated fiber loss to the delivered 

pump power. This is because erbium emission in the L-band is substantially low in 

contrast to the earlier region of the emission cross-section. The difference translates 

to roughly 50% less gain per meter in L-band compared to in C-band. The low gain 

coefficient of EDFA in L-band forces the use of longer EDF lengths to produce gain 

comparable to C-band EDFA. Inadvertently, longer EDF lengths will require higher 

pumping power in order to produce the intended gain value. However, pump power 

is considered a luxury in R-EDFA since the pump laser is already subjected to 

attenuation and scatterings during its long distance delivery. The remaining pump 

power reaching the amplifier might not be sufficient to excite the longer gain 

medium required by L-band R-EDFA. Ultimately, this situation will lead to lower 

gain output and subsequently limit the length of transmission spans that can be 

deployed. In addition, since the noise figure is dependent on the gain value, the lower 

gain output will give out worse noise figure and increase the error in the 

transmission. 

 

1.3 Objectives of This Research 

 

A lot of studies have been done on gain enhancement techniques in discrete EDFA, 

either in C-band or L-band. On the contrary, the number of research done on 

remotely pumped EDFA has been sorely lacking, with the bulk of it focused on the 

C-band. This research intends to address this dearth by investigating pump delivery 

scheme designed to improve the performance of remotely pumped L-band EDFA. 
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The objectives of this study in detail are: 

1. To design and develop a new pumping scheme for L-band R-EDFA utilizing 

stimulated Raman scattering (SRS) that can boost the amount of pump power 

available for amplification. 

2. To implement L-band R-EDFA and span architectures that can utilize the 

proposed pumping schemes. 

3. To obtain performance enhancements over conventional L-band R-EDFA 

through the use of the proposed pumping schemes and amplifier 

architectures. 

 

1.4 Scope of Work 

 

 

Figure 1.1: Scope of work. 
 

This study is focused on enhancing the remotely pumped L-band EDFA. New 

pumping schemes were proposed to improve the performance of the remote 

amplifier. Two secondary pumping schemes that utilized SRS were investigated. The 
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first pumping scheme introduced a second-order pump source derived from SRS 

generated during pump delivery in order to augment the pump power received by the 

R-EDFA. The performance was analyzed and subsequent revisions to the pumping 

scheme were detailed. The second proposed pumping scheme initiated the secondary 

pumping effect by employing a section of passive EDF that was pumped by a laser 

generated in the optical fiber. Optimization was performed accordingly in order to 

obtain the best performance improvements over conventional pumping scheme.    

 

1.5 Outline of The Thesis 

 

The contents are divided into 5 chapters including this chapter. Chapter 1 acts as the 

introduction chapter, where an overview of the remotely pumped L-band EDFA is 

presented, along with its challenges that became the basis of this research work. The 

objectives and the scope of work are also explained in the first chapter. In Chapter 2, 

the theory behind this research work will be elaborated along with a review of 

supporting literatures. Chapter 3 talks about the outcome of the study on the first 

enhanced pumping scheme for R-EDFA, where second-order pumping method 

utilizing stimulated Raman scattering is detailed along with the optimizations and 

variations performed during the study. Discussions in Chapter 4 are centered on the 

generation of secondary amplification effect through utilization of passive EDF. The 

principle behind the generation of pump power for the passive EDF and the steps 

taken to optimize the architecture are described as well. The methodologies involved 

with the architectures in Chapter 3 and 4 are included in each respective chapter.  

The thesis is wrapped up with Chapter 5, which consists of conclusions, research 

contributions and future recommendations. 
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