DESIGN, DEVELOPMENT AND EVALUATION OF A KENAF PNEUMATIC SEEDING MACHINE

MOHAMMAD REZA BAKHTIARI

FK 2012 151
DESIGN, DEVELOPMENT AND EVALUATION OF A KENAF PNEUMATIC SEEDING MACHINE

By

MOHAMMAD REZA BAKHTIARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2012
DEDICATION

This thesis is specially dedicated to my beloved family; my dear mother and father, my wife and son, and my sisters and brothers.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

DESIGN, DEVELOPMENT AND EVALUATION OF A KENAF PNEUMATIC SEEDING MACHINE

By

Mohammad Reza Bakhtiari

February 2012

Chairman: Desa Bin Ahmad, PhD, P. Eng
Faculty: Engineering

In this study a 4-row, tractor mounted, kenaf pneumatic seeding machine was designed and developed based on physical, mechanical and aerodynamic properties of kenaf seed (Hibiscus cannabinus L.). The machine is made up of: (a) a chassis which is supported to move across and over fields by at least one drive wheel and one driven wheel (two transportable wheels); (b) four units of planters each consisting of a vacuum seed metering system; furrow opener (furrower); seed opener; seed cover; press wheel; and seed hopper. The vacuum seed metering system (each unit planter has one vacuum seed metering system) includes a seed container, a seed plate having a plurality of circular array openings and tabs, and a cover. The seed container has an adjustable upper cutoff
brush and lower cutoff brush to dislodge any extra or double seeds picked up by the seed plate; and a first and second separators; (c) a pulley and vacuum fan to provide negative pressure for vacuum seed metering system; (d) a transmission power system holding a gearbox; chains and sprockets; and pinions and crown wheels to transfer power from drive wheel to the rotating seed plate of the vacuum seed metering system.

The pneumatic seeding machine was evaluated both in the laboratory and field using kenaf seeds. For laboratory test, a completely randomized design (CRD) with three replications and for field tests a randomized complete block design (RCBD) with three replications were chosen. The data were analyzed by SAS program version 9.1 and means separation test were done using Duncan’s multiple range test (DMRT). Regression analysis was used to determine the relationship between appropriate pairs of dependent and independent variables. Based on this study, the most suitable opening diameter and opening angle for planting kenaf seed are 3.5 mm and 120° respectively. The results obtained also showed that the most suitable vacuum pressure to pick up and keeping kenaf seed to plant in the soil was more than 3 kPa and the most suitable linear speed belonged to speed range of less than 1.5 km/hr.

The average field efficiency of the 4-row pneumatic seeding machine was found to be 74%. The theoretical field capacities for different forward speeds of 2.05, 2.66, 3.63, 3.89 and 5.50 km/hr were 2.30, 2.98, 4.07, 4.36 and 6.16 ha/day. Based on these data the economical cost of the developed pneumatic seeding machine was analyzed. The total fixed (ownership) cost was obtained as RM4950/year; while the total variable (operating) cost was found to be RM55.26/hour. Therefore total cost calculated for the
machine was RM22189.44/year. Based on this study, if there are 1500 hectares of kenaf plantation area involving 270 growers in Malaysia, for planting kenaf seed twice a year (each time 39 days) and on time, about 35, 24 and 18 of the pneumatic seeding machines are needed for 4-row, 6-row and 8-row planting systems, respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK, PEMBANGUNAN DAN PENILAIAN MESIN PENANAM KENAF SECARA PNEUMATIK

Oleh
Mohammad Reza Bakhtiar

Februari 2012

Pengerusi: Desa Bin Ahmad, PhD, P. Eng

Fakulti: Kejuruteraan

Kajian ini adalah mengenai rekabentuk dan pembinaan sebuah mesin penanam kenaf 4-baris berkuasa pneumatik berasaskan kepada ciri-ciri fizikal, mekanikal dan aerodinamik biji benih Kenaf (Hibiscus cannabis L.) Mesin tersebut mempunyai komponen seperti a) chasis untuk bergerak atas permukaan ladang dengan bantuan dua roda dan salah satu roda bertindak sebagai pemacu, b) empat unit penanam dimana setiap unit mempunyai sistem permeteran vakum bijibenih, pembuka alur, saluran bijibenih, roda pemampat dan tangki bijibenih. Sistem permeteran vakum bijibenih mengandungi takungan bijibenih dan piring beserta beberapa lubang berbentuk bulat serta penutup. Takungan bijibenih mempunyai berus bolehlaras untuk mengasingkan lebihan bijibenih yang diangkut oleh piring bijibenih dan dua pengasing., c) talisawat dan kipas vakum untuk mengujudkan
tekanan negatif bagi sistem pemeteran bijibenih dan d) sistem penghantaran kuasa yang mengandungi kotakgiar, rantai dan sprocket, pinan dan roda mahkota untuk mengagihkan kuasa dari roda pemacu ke sistem pemeteran bijibenih dan piring pengagih.

Mesin penanam kenaf secara pneumatik tersebut telah diuji di makmal dan di ladang. Bagi ujian di makmal, ujian rekabentuk secara rawak dengan tiga replikasi telah dilakukan manakala untuk ujian di ladang, ujian Blok Rawak telah dilaksanakan dengan tiga replikasi. Data telah dianalisis menggunakan program SAS Versi 9.1 dan ujian perbezaan min dilakukan menggunakan Ujian Duncan (DMRT). Analisis regresi dilakukan untuk mengukur hubungkait antara pelbagai pembolehubah. Berdasarkan kajian ini garispusat lubang dan sudut bukaan lubang yang paling sesuai bagi penanam bijibenih kenaf secara pneumatic adalah 3.5 mm dan 120 darjah. Kajian pengaruh vakum menunjukkan bahawa tekanan yang paling sesuai adalah 3.0 kPa manakala kelajuan lelurus yang paling sesuai adalah dibawah 1.5 km/jam.

Purata kecekapan ladang bagi mesin penanam kenaf empat baris secara pneumatik adalah 74%. Keupayaan ladang teori pada kelajuan 2.05, 2.66, 3.63, 3.89 dan 5.50 km/jam adalah masing-masing 2.30, 2.98, 4.07, 4.36 dan 6.16 ha/hari. Keupayaan ladang berkesan pada kelajuan 2.05, 2.66, 3.63, 3.89 dan 5.50 km/jam adalah masing-masing 1.70, 2.20, 2.97, 3.27 dan 4.64 ha/hari. Berdasarkan kepada data ini analisis kos mesin penanam kenaf pneumatik menunjukkan bahawa kos tetap yang mengandungi susut nilai (RM2700/tahun), faedah dan cukai (RM1650/tahun), perlindungan dan insuran (RM600/tahun) adalah RM4950/tahun manakala kos berubah yang terdiri
daripada pembaikan dan penyenggaraan (RM2.67/jam), bahanapi (RM6.05/jam), pelincir (RM0.907/jam), upah buruh (RM5/jam), pemandu traktor (RM5.63/jam) dan sewa traktor (RM35/jam) adalah RM55.26/jam. Untuk tempoh setahun anggaran jumlah kos adalah RM22189.44. Berdasarkan kajian ini, jika terdapat 1500 hektar kawasan kenaf yang melibatkan 270 penanam di Malaysia yang menanam 2 kali setahun selama 39 hari setiap musim penanaman, jumlah mesin yang diperlukan adalah 35 unit bagi mesin penanam 4-baris, 24 unit bagi mesin penanam 6-baris dan 18 unit bagi mesin penanam 8-baris.
ACKNOWLEDGEMENTS

All thanks be to Allah the Lord of the World. May the blessings of Allah be upon Prophet Mohammad SWA, all Prophets, Imams, and god-fearing people. I would like to express my highest and deepest gratitude to Professor Ir. Dr. Desa B. Ahmad, the chairman of my supervisory committee for his invaluable encouragement, generous assistance, guidance and strong support throughout my study period. I am also indebted and grateful to Professor Dr. Napsiah Bt. Ismail and Dr. Jamarei B. Othman, members of my supervisory committee for their constructive contributions. I really appreciate them serving on my supervisory committee.

I want to thank all the staff of the Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM) especially Dr. Khalina Bt. Abdan, Associate Prof. Ir. Dr. Azmi Yahya, Miss Nordiyana Bt. Abd. Razak, Mr. Zainal Abidin B. Abdul Ghani, Mr. Tajul Urus B. Osman, Mr. Mohd. Sabri B. Hassan, Mr. Hairul Anuar B. Abd Mubin, and Mr. Zakiria B. Ismail and Department of Aerospace, Faculty of Engineering Dr. Abdul Aziz Jaafar and Mr. Saffairus Salih, and Dr. MD Akhir B. Hamid from MARDI whose valuable assistance have contributed in the successful completion of this study.

I want to give the utmost appreciation to all my friends especially Mohammed S. Abubakar, Fatai B. Akande, Azhar, Luay and also my Iranian friends Ali Hashemi, Daryoush Safarzadeh, Iraj Yavari, and Seyed Mahmoud Samadpour, who in one way or another rendered assistance directly or indirectly and sharing life experiences at various
stages of my study. I would like to express my gratitude also to friends whose names are too numerous to mention. Thank you all for influencing my life positively.

Appreciation is also extended to Dr. Arzhang Javadi, Dr. Ahmad Sharifi and Dr. Afshin Eyvani in Agricultural Engineering Research Institute, Iran., Dr. Mohammad Loghavi and Dr. Mahdi Kasraei from Shiraz University, Iran., Prof. Abbas Hemmat and Dr. Amin-Ollah Masoumi from Isfahan University of Technology, Iran., and Eng. Ghasem Asadian, Eng. Habib-Ollah Mazaheri-Laghab, Eng. Ali Ehsan Nosrati and Eng. Hassan Ebrahim in Agricultural and Natural Resource Research Center of Hamedan Province, Iran. Also I would like to extend sincere thanks to all the staffs and friends at the Natural Resource and Agricultural Research Centre of Hamedan Province in Iran, especially the staffs at the Engineering Research Department.

Lastly, I want to thank again; my mother, father, wife and son (Ali) who have been a source of inspiration during my study, giving me their endless love, prayers, support and sacrifices. Thanks also to my brothers (Mohammad Ebrahim, Ismaeil, Akbar and Majid) and sisters (Parvaneh, Fatemeh, Tayebeh and Tahereh) for all their love, prayers and encouragement at all times in my life.
APPROVAL

I certify that a Thesis Examination Committee has met on 23rd February 2012 to conduct the final examination of Mohammad Reza Bakhtiari on his thesis entitled “Design, Development and Evaluation of a Kenaf Pneumatic Seeding Machine” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

WAN ISHAK B. WAN ISMAIL, PhD, P. Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

MOHD KHAIROL ANUAR B. MOHD ARIFFIN, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

B. T. HANG TUAH B. BAHARUDIN, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

SHRINIVASA K. UPADHYAYA, PhD
Professor
Faculty of Engineering
University of California at Davis
United State of American
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

DESA B. AHMAD, PhD, P. Eng
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

NAPSIAH B. ISMAIL, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

JAMAREI B. OTHMAN, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MOHAMMAD REZA BAKHTIARI
Date: 4 June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxix</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**
 1.1 Background
 1.2 Statement of the Problem
 1.3 Objective of the Study
 1.4 Scope of the Research
 1.5 Thesis Organization

2. **LITERATURE REVIEW**
 2.1 General Introduction
 2.1.1 Kenaf origin, planting history, and production and application
 2.1.2 Kenaf cultivation, plantation and agronomy aspects
 2.2 Physical, Mechanical and Aerodynamic Properties of Seeds
 2.2.1 Physical and mechanical properties of seeds
 2.2.2 Aerodynamic properties of seeds
 2.2.3 Physical, mechanical and aerodynamic properties of kenaf seed
 2.3 Row Spacing and Density of Kenaf Seed

xiv
3 METHODOLOGY

3.1 Determination of Physical, Mechanical and Aerodynamic Properties of Kenaf Seed

3.1.1 Physical properties

3.1.1.1 Principle dimensions
3.1.1.2 The geometric mean diameter
3.1.1.3 The arithmetic mean diameter
3.1.1.4 The aspect ratio
3.1.1.5 The sphericity
3.1.1.6 The surface area
3.1.1.7 The projected area
3.1.1.8 One thousand kernel mass
3.1.1.9 The real volume of each seed, and true density
3.1.1.10 The bulk density
3.1.1.11 The porosity

3.1.2 Mechanical (frictional) properties

3.1.2.1 The static coefficient of friction
3.1.2.2 The filling (static) angle of repose
3.1.2.3 The emptying (dynamic or funnelling) angle of repose
3.1.3 Aerodynamic properties 71
 3.1.3.1 Terminal velocity 71
 3.1.3.2 Drag coefficient of seeds 77
 3.1.3.3 Reynolds number 78
 3.1.3.4 Diameter of equivalent sphere 79
 3.1.3.5 Volume shape factor 80

3.2 Effect of Moisture Content on the Physical, Mechanical and Aerodynamic Properties of Kenaf Seeds 83
 3.2.1 Physical properties 83
 3.2.1.1 Dimensions of kenaf seed 83
 3.2.1.2 Sphericity of kenaf seed 85
 3.2.1.3 Surface area and projected area of kenaf seed 85
 3.2.1.4 Mass and volume of kenaf seed 86
 3.2.1.5 True density of kenaf seed 86
 3.2.1.6 Bulk density of kenaf seed 87
 3.2.1.7 Porosity of kenaf seed 88
 3.2.2 Mechanical properties 88
 3.2.2.1 Static coefficient of friction of kenaf seed 89
 3.2.2.2 Filling and emptying angle of repose of kenaf 90
 3.2.3 Aerodynamic properties 91
 3.2.3.1 Terminal velocity of kenaf seed 92
 3.2.3.2 Drag coefficient of kenaf seed 93
 3.2.3.3 Reynolds number of kenaf seed 93
 3.2.3.4 Diameter of equivalent sphere of kenaf seed 93
 3.2.3.5 Volume shape factor of kenaf seed 94

3.3 Design 95
 3.3.1 Product specifications 95
 3.3.2 Concept selection 98
 3.3.2.1 Overview of Methodology 98
 3.3.2.2 Design criteria 100
3.3.2.3 Conceptual design 101
3.3.2.4 Design selection 106

3.4 Design of the Pneumatic Seeding Machine 116
3.4.1 Design of a vacuum seed metering system for kenaf seeds 116
3.4.1.1 Angle of openings on the seed plate 116
3.4.1.2 Diameter of openings on the seed plate 119
3.4.1.3 Number of openings on the seed plate 124
3.4.1.4 Diameter of the pitch circle of the seed plate 125
3.4.1.5 Outside diameter of the seed plate 127
3.4.1.6 Thickness of the seed plate 128
3.4.2 Vacuum of negative pressure 129
3.4.3 Design of a power transmission system 137
3.4.4 Seed spacing 145
3.4.5 Plant spacing 146
3.4.6 Seed population 150
3.4.7 Plant population 151

3.5 Description of the Kenaf Pneumatic Seeding Machine 152

3.6 Detail Description of the Kenaf Pneumatic Seeding Machine Components 155
3.6.1 Chassis (main frame) 155
3.6.2 Furrower (furrow opener) 155
3.6.3 Unit planter 156
3.6.3.1 Sub frame 156
3.6.3.2 Seed hopper 156
3.6.3.3 Seed opener 158
3.6.3.4 Vacuum seed metering system 160
3.6.3.5 Seed placement mechanism 168
3.6.3.6 Seed covering devices 168
3.6.3.7 Press wheels or packing wheels 168
3.6.3.8 Seed depth control system 169
3.6.4 Vacuum system 170
3.6.5 Power transmission system 173
3.7 Final Design 178
3.8 Summary of Machine Design 185
3.9 Testing and Evaluation 185
3.9.1 Laboratory evaluation of the vacuum seed metering system 186
 3.9.1.1 Velocity of planter and seed plate 186
 3.9.1.2 Greased belt set-up in the laboratory 187
 3.9.1.3 Performance of the vacuum seed metering system 189
3.9.2 Field performance evaluation of the pneumatic seeding machine 192
 3.9.2.1 Theoretical seeding rate (seed density) 195
 3.9.2.2 Seeding mass rate 196
 3.9.2.3 Miss index 196
 3.9.2.4 Multiple index 196
 3.9.2.5 Quality of feed index 197
3.10 Economic Performance 197
 3.10.1 Machine performance 197
 3.10.1.1 Field capacity of the pneumatic seeding machine 199
 3.10.1.2 Field efficiency 200
3.11 Economic Cost Analysis 202
 3.11.1 Fixed costs (ownership costs) 203
 3.11.1.1 Depreciation cost 203
 3.11.1.2 Interest of investment 204
 3.11.1.3 Tax, shelter (housing), and insurance 205
 3.11.1.4 Total fixed costs 206
 3.11.2 Variable costs (operating costs) 206
 3.11.2.1 Repair and maintenance 206
 3.11.2.2 Fuel 207
 3.11.2.3 Lubrication 208
3.11.2.4 Labour cost 208
3.11.2.5 Total variable costs (total operating costs) 210
3.11.3 Total cost 210
3.11.4 Estimate of the required number of the pneumatic seeding machine and hours of operation 211
3.12 Novelties and Advantages of the Developed Kenaf Pneumatic Seeding Machine 212
 3.12.1 Novelty 212
 3.12.1.1 Vacuum seed metering system 212
 3.12.1.2 Chassis 213
 3.12.1.3 Adjustable and flexible drive wheel 213
 3.12.2 Advantages 213
3.13 Summary 214

4 RESULTS AND DISCUSSION 215
 4.1 Laboratory Test of the Vacuum Seed Metering System 215
 4.1.1 Effect of diameter and angle of the opening seed plate on the machine performance indices 215
 4.1.1.1 Mean seed spacing 215
 4.1.1.2 Miss index 216
 4.1.1.3 Multiple index 217
 4.1.1.4 Quality of feed index 218
 4.1.2 Effect of linear speed of the seed plate on machine performance indices 222
 4.1.2.1 Mean seed spacing 222
 4.1.2.2 Miss index 223
 4.1.2.3 Multiple index 223
 4.1.2.4 Quality of feed index 224
 4.1.3 Effect of vacuum (negative) pressure of the vacuum seed metering system on machine performance indices 226
 4.1.3.1 Mean seed spacing 226
4.1.3.2 Miss index 227
4.1.3.3 Multiple index 227
4.1.3.4 Quality of feed index 228

4.2 Field Testing of the Pneumatic Seeding Machine 232
4.2.1 Determination of real forward speed of the pneumatic seeding machine in the field 232
4.2.2 Effect of diameter and angle of seed plate openings on machine performance indices 233
 4.2.2.1 Mean plant spacing 233
 4.2.2.2 Miss index 236
 4.2.2.3 Multiple index 237
 4.2.2.4 Quality of feed index 237
 4.2.2.5 Theoretical seeding rate (seed density) 239
 4.2.2.6 Seeding mass rate 240
 4.2.2.7 Number of seeds and plants per hectare 241
4.2.3 Effect of forward speed of the pneumatic seeding machine on the machine performance indices 249
 4.2.3.1 Mean of seed and plant spacing 250
 4.2.3.2 Miss index 251
 4.2.3.3 Multiple index 251
 4.2.3.4 Quality of feed index 252
 4.2.3.5 Number of seeds and plants per hectare 252

4.3 The Economic Performance 259
4.3.1 Field capacity of the pneumatic seeding machine 259
 4.3.1.1 Theoretical field capacity 259
 4.3.1.2 Effective field capacity 261
 4.3.1.3 Field efficiency 262
4.3.2 Economic cost analysis 263
 4.3.2.1 Fixed costs (ownership costs) 263
 4.3.2.2 Variable costs (operating costs) 265
 4.3.2.3 Labour cost 266
4.3.2.4 Total variable costs 266
4.3.2.5 Total costs 266
4.3.2.6 Estimation of the required numbers of the pneumatic seeding machine 269
4.3.2.7 Estimation of the total annual operating hours for the pneumatic seeding machine 272

4.4 Summary 275

5 SUMMARY, CONCLUSION AND RECOMMENDATION 276
5.1 Summary 276
5.2 Conclusions 277
5.3 Recommendations for Future Studies 281

REFERENCES 283
APPENDICES 294
A Effect of Moisture Content on the Physical, Mechanical and Aerodynamic Properties of Kenaf Seeds 295
B Gaspardo Pneumatic Seeding Machine, Planting Sweet Corn Seed on the Field 309
C 2WD John Deere 6405 Tractor 310
D 2WD John Deere 6405 Tractor Gears Number and Related Speeds Used in the Field Tests and Speed Calibration 312
E Design and Development of a Vacuum Seed Metering System for Garlic Clove Based on its Physical, Mechanical and Aerodynamic Properties 313

BIODATA OF STUDENT 338
LIST OF PUBLICATIONS 339
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Dimensions of the Holes on the Seed Plates Used in the Study</td>
</tr>
<tr>
<td>3.1</td>
<td>Farmer Needs for a Seeding Machine</td>
</tr>
<tr>
<td>3.2</td>
<td>List of Metrics for the Seeding Machine</td>
</tr>
<tr>
<td>3.3</td>
<td>The Needs-Metrics Matrix</td>
</tr>
<tr>
<td>3.4</td>
<td>The Target Specifications for the Seeding Machine</td>
</tr>
<tr>
<td>3.5</td>
<td>A Finer Scale to Rating All of the Concepts with Respect to One Criterion at a Time</td>
</tr>
<tr>
<td>3.6</td>
<td>The Concept-Screening Matrix (Pugh Concept Selection), for the Seeding Machine</td>
</tr>
<tr>
<td>3.7</td>
<td>The Concept-Scoring Matrix for Seeding Machine</td>
</tr>
<tr>
<td>3.8</td>
<td>The Concept-Screening Matrix (Pugh Concept Selection), for Seed Metering System</td>
</tr>
<tr>
<td>3.9</td>
<td>The Concept-Scoring Matrix for Seed Metering System</td>
</tr>
<tr>
<td>3.10</td>
<td>The Concept-Screening Matrix (Pugh Concept Selection), for Seed-Furrow Opener</td>
</tr>
<tr>
<td>3.11</td>
<td>The Concept-Scoring Matrix for Rating Seed-Furrow Openers</td>
</tr>
<tr>
<td>3.12</td>
<td>The Concept-Screening Matrix (Pugh Concept Selection), for Seed-Cover</td>
</tr>
<tr>
<td>3.13</td>
<td>The Concept-Scoring Matrix for Seed Cover</td>
</tr>
<tr>
<td>3.14</td>
<td>The Concept-Screening Matrix (Pugh Concept Selection), for Press Wheel</td>
</tr>
<tr>
<td>3.15</td>
<td>The Concept-Scoring Matrix for Press Wheel</td>
</tr>
<tr>
<td>3.16</td>
<td>The Calculation of the Drive Wheel and Seed Plate Gear Ratio (For Row Spacing, $x_r = 30$ cm)</td>
</tr>
<tr>
<td>3.17</td>
<td>The Calculation of the Drive Wheel and Seed Plate Gear Ratio (For Row Spacing, $x_r = 35$ cm)</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3.18</td>
<td>Ratio between Teeth of Drive Wheel Sprockets and Seed Plate Gear (Nr)</td>
</tr>
<tr>
<td>3.19</td>
<td>Seed Spacing within the Row ((x_s)) in cm (For Sprockets Teeth Number of Drive Wheel = 20)</td>
</tr>
<tr>
<td>3.20</td>
<td>Seed Spacing within the Row ((x_s)) in cm (For Sprockets Teeth Number of Drive Wheel = 30)</td>
</tr>
<tr>
<td>3.21</td>
<td>Seed Spacing within the Row ((x_s)) in cm (For Seed Sprockets Teeth Number of Drive Wheel = 40)</td>
</tr>
<tr>
<td>3.22</td>
<td>Technical Specifications of the Developed Pneumatic Seeding Machine in this Study</td>
</tr>
<tr>
<td>4.1</td>
<td>Analysis of Variance of the Opening Diameter and Angle of the Seed Plate on the Machine Performance Indices in Laboratory Tests, CRD</td>
</tr>
<tr>
<td>4.2</td>
<td>Means of the Opening Diameter of Seed Plate on the Machine Performance Indices in Laboratory Tests</td>
</tr>
<tr>
<td>4.3</td>
<td>Means of the Opening Angle of Seed Plate on the Machine Performance Indices in Laboratory Tests</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of Variance of the Linear Speed of the Seed Plate on the Machine Performance Indices in Laboratory Tests, CRD</td>
</tr>
<tr>
<td>4.5</td>
<td>Means of the Linear Speed of the Seed Plate on the Machine Performance Indices in Laboratory Tests</td>
</tr>
<tr>
<td>4.6</td>
<td>Analysis of Variance of Vacuum Pressure of the Vacuum Seed Metering System on the Machine Performance Indices in Laboratory Tests, CRD</td>
</tr>
<tr>
<td>4.7</td>
<td>Means of the Vacuum Pressure of the Vacuum Seed Metering System on the Machine Performance Indices in Laboratory Tests</td>
</tr>
<tr>
<td>4.8</td>
<td>Equations Representing Relationship between Machine Factors and Machine Performance Indices (Laboratory Tests)</td>
</tr>
<tr>
<td>4.9</td>
<td>Real Speed of the Pneumatic Seeding Machine at Related Tractor Gears Numbers Based on Speed Calibration</td>
</tr>
<tr>
<td>4.10</td>
<td>Analysis of Variance of the Opening Diameter and Angle of the Seed Plate on the Machine Performance Indices in the Field Tests, RCBD</td>
</tr>
<tr>
<td>4.11</td>
<td>Means of the Opening Diameter of the Seed Plate on the Machine Performance Indices in the Field Tests</td>
</tr>
<tr>
<td>4.12</td>
<td>Means of the Opening Angle of the Seed Plate on the Machine Performance Indices in the Field Tests</td>
</tr>
<tr>
<td>4.13</td>
<td>Analysis of Variance of the Machine Forward Speed on the Machine</td>
</tr>
</tbody>
</table>
Performance Indices in the Field Tests, RCBD

4.14 Means of Machine Forward Speed on the Machine Performance Indices in the Field Tests

4.15 Equations Representing Relationship between Machine Factors and Machine Performance Indices in the Field Tests

4.16 Field Capacity and Field Efficiency of the Pneumatic Seeding Machine at Different Forward Speed in the Field

4.17 The Parameters Used in Cost Analysis of the Kenaf Pneumatic Seeding Machine

4.18 The Costs of Economic Parameters of the Pneumatic Seeding Machine for Planting Kenaf Seed in 2010

4.19 The Required Total Number of Pneumatic Seeding Machines for Malaysia for 270 and 400 Growers per Year

4.20 The Required Total Number of the Pneumatic Seeding Machines for Malaysia at Different Total Working Days in a Year (D_w) and Total Plantation Area ($A = 1500$ ha)

4.21 The Required Total Number of the Pneumatic Seeding Machines for Malaysia at Different Total Working Days in a Year (D_w) and Total Plantation Area ($A = 3000$ ha)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Kenaf Plant on the Farm</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Kenaf Stem (Bast and Core Fibre)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Kenaf Farm</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The Shape, Size and Colour of Kenaf Seed</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology Flowchart</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Three Principle Perpendicular Dimensions of Kenaf Seed: L, Length, W, Width and T, Thickness</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>The Container to Measuring Bulk Density of Seeds</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic Diagram of the Device to Measuring Static Coefficient of Friction</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic Diagram of the Measuring Static Coefficient of Friction</td>
<td>69</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic Flow of a Particle in an Immersed Fluid</td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>Types of the Seed Furrow Opener</td>
<td>102</td>
</tr>
<tr>
<td>3.8</td>
<td>Types of the Seed Covering</td>
<td>104</td>
</tr>
<tr>
<td>3.9</td>
<td>Types of the Press Wheel</td>
<td>106</td>
</tr>
<tr>
<td>3.10</td>
<td>Flow Chart of Vacuum Seed Metering System</td>
<td>117</td>
</tr>
<tr>
<td>3.11</td>
<td>Dimensions of Openings (Holes) on the Seed Plate</td>
<td>118</td>
</tr>
<tr>
<td>3.12</td>
<td>Details of the Seed Plate (Metering Plate)</td>
<td>121</td>
</tr>
<tr>
<td>3.13</td>
<td>Seed Plates that Were Used in Laboratory and Field Tests for Kenaf Seed</td>
<td>122</td>
</tr>
<tr>
<td>3.14</td>
<td>One Unit of the Pneumatic Seeding Machine</td>
<td>123</td>
</tr>
<tr>
<td>3.15</td>
<td>The Vacuum Seed Metering System, Testing in Laboratory</td>
<td>124</td>
</tr>
<tr>
<td>3.16</td>
<td>Schematic of Seed Plate and its Components</td>
<td>126</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.41</td>
<td>Transmission System (Opened Cover)</td>
<td>175</td>
</tr>
<tr>
<td>3.42</td>
<td>Transmission System (Drive Shaft to Counter Shaft)</td>
<td>175</td>
</tr>
<tr>
<td>3.43</td>
<td>Transmission System (Counter Shaft to Input Shaft of Gearbox)</td>
<td>176</td>
</tr>
<tr>
<td>3.44</td>
<td>Transmission System (in Gearbox)</td>
<td>176</td>
</tr>
<tr>
<td>3.45</td>
<td>Transmission System (Output Shaft of the Gearbox to Pinion and Crown Wheel)</td>
<td>177</td>
</tr>
<tr>
<td>3.46</td>
<td>Transmission System (by Cardan to Pinion and Crown Wheel of the Vacuum Seed Metering System)</td>
<td>177</td>
</tr>
<tr>
<td>3.47</td>
<td>Transmission System (to Vacuum Seed Metering System)</td>
<td>178</td>
</tr>
<tr>
<td>3.48</td>
<td>The Seed Container of the Vacuum Seed Metering System</td>
<td>179</td>
</tr>
<tr>
<td>3.49</td>
<td>The Cover of the Vacuum Seed Metering System</td>
<td>179</td>
</tr>
<tr>
<td>3.50</td>
<td>The Seed Hopper of the Pneumatic Seeding Machine</td>
<td>180</td>
</tr>
<tr>
<td>3.51</td>
<td>The Perspective View of One Unit planter of the Pneumatic Seeding Machine</td>
<td>181</td>
</tr>
<tr>
<td>3.52</td>
<td>An Exploded Perspective View and the Details of One Unit planter of the Pneumatic Seeding Machine</td>
<td>181</td>
</tr>
<tr>
<td>3.53</td>
<td>The Perspective View of the Pneumatic Seeding Machine</td>
<td>182</td>
</tr>
<tr>
<td>3.54</td>
<td>The Side View of the Pneumatic Seeding Machine</td>
<td>182</td>
</tr>
<tr>
<td>3.55</td>
<td>The Front View of the Pneumatic Seeding Machine</td>
<td>183</td>
</tr>
<tr>
<td>3.56</td>
<td>The Top View of the Pneumatic Seeding Machine</td>
<td>183</td>
</tr>
<tr>
<td>3.57</td>
<td>Vacuum Seed Metering System, Laboratory Test for Kenaf Seed (Rear View)</td>
<td>187</td>
</tr>
<tr>
<td>3.58</td>
<td>Vacuum Seed Metering System, Laboratory Test for Kenaf Seed (Side View)</td>
<td>188</td>
</tr>
<tr>
<td>3.59</td>
<td>A 4-Row Tractor Operated Pneumatic Seeding Machine under Field Evaluation</td>
<td>193</td>
</tr>
<tr>
<td>3.60</td>
<td>Pneumatic Seeding Machine on the Field</td>
<td>194</td>
</tr>
<tr>
<td>3.61</td>
<td>Pneumatic Seeding Machine on the Field (Side View)</td>
<td>194</td>
</tr>
</tbody>
</table>

xxvii
3.62 Pneumatic Seeding Machine in the Field (Rear View) 195

4.1 Effects of the Opening Diameter of Seed Plate on the Machine Performance Indices in the Laboratory Tests 220
4.2 Effect of the Opening Angle of Seed Plate on the Machine Performance Indices in the Laboratory Tests 221
4.3 Effects of the Linear Speed of the Seed Plate on the Machine Performance Indices in the Laboratory Tests 225
4.4 Effects of the Vacuum Pressure of the Vacuum Seed Metering System on the Machine Performance Indices in the Laboratory Tests 230
4.5 Kenaf Field in this Study 235
4.6 Determination of Plant Spacing in the Field Tests 235
4.7 Determination of Miss Index in the Field Tests (Seeding by the Seed Plate with Opening Diameter of 3.5 mm) 236
4.8 Determination Multiple Index in the Field Tests (Seeding by the Seed Plate with Opening Diameter of 3.5 mm) 238
4.9 Determination Multiple Index in the Field Tests (Seeding by the Seed Plate with Opening Diameter of 4.5 mm) 238
4.10 Kenaf Farm in this Study (four Months after Planting) 239
4.11 Kenaf Plant on the Farm in this Study 240
4.12 The Shape, Size and Colour of Kenaf Seed (Rip and Unrip) 241
4.13 Effects of Opening Diameter of the Seed Plate on the Machine Performance Indices in the Field Tests 245
4.14 Effects of Opening Diameter of the Seed Plate on the Seed and Plant Spacing in the Field Tests 245
4.15 Effects of Opening Diameter of the Seed Plate on the Seed and Plant Population in the Field Tests 246
4.16 Effects of Opening Angle of the Seed Plate on the Machine Performance Indices in the Field Tests 248
4.17 Effects of Opening Angle of the Seed Plate on the Seed and Plant
4.18 Effects of Opening Angle of the Seed Plate on the Seed and Plant Population in the Field Tests 249

4.19 Effects of Forward Speed of the Pneumatic Seeding Machine on the Machine Performance Indices in the Field Tests 256

4.20 Effects of Forward Speed on the Seed and Plant Spacing in the Field Tests 256

4.21 Effects of Forward Speed on the Seed and Plant Population in the Field Tests 257

4.22 Effects of Forward Speed of the Pneumatic Seeding Machine on the Theoretical Field Capacity (TFC) 261

4.23 Effects of Forward Speed of the Pneumatic Seeding Machine on the Effective Field Capacity (EFC) 262
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>ANalysis Of VAriance</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference test</td>
</tr>
<tr>
<td>ns</td>
<td>Not Significant</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>df</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>d.b.</td>
<td>Dry Basis (seeds moisture content)</td>
</tr>
<tr>
<td>w.b.</td>
<td>Wet Basis (seeds moisture content)</td>
</tr>
<tr>
<td>LKTN</td>
<td>Lemago Kenaf dan Tembakau Negara (LKTN: National Kenaf and Tobacco Board)</td>
</tr>
<tr>
<td>TPU</td>
<td>Taman Pertanian Universiti (TPU: University Agricultural Park)</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Agriculture is the most important resource for producing food in the world. The increasing world population has posed a great challenge to the food production sector. There are many factors that affect the increase of crop yield, such as improved seed variety, environment and tool conditions, but if all these factors are at an optimum, then increasing production will only be possible with an increase in planting area. However, the available planting areas are limited in the world. Therefore, it is important to find alternative methods of increasing crop yields per unit area. Nevertheless, there are many available methods for increasing crop yields per hectare. These include choosing high yielding crop varieties, good crop establishment, suitable and timely irrigation, appropriate weed control, and favourable growth conditions on suitable soils.

For good crop husbandry seeds must be planted at a suitable depth, with appropriate row spacing, spacing between seeds within rows, and seed density. It is only when these conditions are combined together that better yields can be achieved. Thus, suitable seed planting methods are important for increasing crop yields per hectare.

Seed broadcasting (by hand or machine) is not a suitable method; it has many disadvantages such as, delay planting, labour intensive, irregular planting, problems in
protective and harvesting stages. Therefore, in order to mechanize agricultural operations, it is recommended that seeds be planted by machine (grain drill or row crop planter). After the global revolution in the agricultural field occurred, the initial functioning of farming that became mechanized was that of the agricultural crops being planted or seeded (John-Deere, 1981).

Seed planting equipments are generally divided into four types; row-crop planters, grain drills, seed broadcasters, and specialized planters. Row-crop planters are designed to put the seeds in a row form in which the seeds are at a distance from each other which lets the handling of weeds easier by cultivation as well as harvesting becomes more systematic. On the other words, row-crop planting is the name given to the crops that are planted away from one another that allows machines like harvesters and cultivators to function properly. To plant crops such as the corn, cotton, soybeans and sugar beet the use of row-crop planters are adopted, as these crops are required to be placed in rows which will help in the managing of the weeds and proper harvesting. Solid planting is when there is very less space in between the rows just to let the cultivation and other functioning which is cultural to take place. The use of grain drills or seed broadcasters may be adopted to do solid planting. The equipment that gives much exact distribution of seeds along with the depth of seeding to be in an even manner is the grain drills. The seeds are covered in seed broadcasters as it does not contain any furrow opener that is open. For plantation of grain crops like wheat, barley, rice, oats, grain sorghum and rye along with bromegrass such as grassed and legumes, timothy, clover, beans, fescue, alfalfa, peas and soybeans usually solid planting is used. Planters such as the potato planters, transplanters and vegetable planters are used for those crops that need more
specialized and unique operations (John-Deere, 1981; Jacobs & Harrell, 1983). Plantation of seeds in uniformity in rows or on the beds that is on a plain land, or crinkled land (planting on flat land, on beds or in furrows) is the aim of many planters and grain drills, these however does not include broadcast planters. Various critical tasks must be executed by these planters to achieve their aim, these tasks include; open a furrow in the soil, meter the seed, place the seed in the soil, cover the seed, and firm the seedbed (Karpenko & Zelenev, 1968; John-Deere, 1981; Jacobs & Harrell, 1983).

Five tasks are performed by these equipments, such as (1) for seeds to properly sprout, the placement of the seeds must be beneath the soil’s surface this function is known as the furrow opener which is also called the furrower function, hence, to successfully accomplish this task, a mechanism to open the soil must be given by the planting equipment. The runners or shoes, shovel, double disk, lister openers are the most known kinds of furrow openers, openers of disk and the running of combination. A proper place is made in the soil by the furrower where the seed is kept in the right place. Difference in the conditions of soil, the furrow must manage and sustain the depth of where the seed is placed. Due to the conditions in the environment, the seeds may not get developed properly if they are placed to deep or to high. (2) The rating of the seed is managed by the seed metering system, to get the maximum output from the crops that have been planted, the rate of seeds per hectare (seeds per acre), or kilograms per hectare (pounds per acre) are used. For any machine used for plantation of seeding, the main task that it performs is that of seed metering. A single seed is metered and is then kept in the soil at one time by few systems of seed metering, however, placing more than a single seed at a particular time may be the habit of some planters. Random devices, finger pickup and air
devices including both pressure and vacuum are the categories of system of metering seeds for planters of row-crop. Fluted kind of feed cup, picker wheel, opening adjustable, cut-off place being adjustable and system of air are few of other devices for metering. (3) How the crop is developed greatly depends on the placement of the seeds and the distance between them, this can be measured by the seed placement device. There is a connection between the numbers of crops that have developed hence; the placement of the seeds becomes vital for its yield. Even when the conditions are stable, there are high chances of more crops to yield if only the seedbed is properly made and the placement of seed is done in the right manner. When the condition of soil is not even, the placement of seeds must be done in uniformity by the planters. The unit of grain drill seeding has furrower which is fully able to deal with the uncertainties and to put the seeds wherever it is needed. Drop of gravity and the device of drop of power are the two kinds of machines that place the seeds in to the right opening of the furrow. The individual seeds can be placed through drilling or through hill dropping in a team by gravity drop as well as the system of power drop. To ensure there is required space among the seeds or hills, is the main task of the machine of seed placement which will take the seed from the device of metering and will then send it to the furrower. (4) To ensure the seeds that are planted are covered properly is another important task of the seed covering device. By adopting the shovel, paddle, chain covers or disk the seeds can be successfully covered. The covering of seeds can also be done by the planters few of the press wheels. If seeds are spread (broadcasted) in various directions and covering it is important than using other seed covering means must be adopted. The following are the seed covering ways that can be adopted to cover the seeds; cultipacker, drag bars, spike-tooth harrow and covering shovels. (5) Making the seedbed even; press wheel is
present for today’s seed planters to even out the seedbed and cover soil in which the seed is planted. The quality of the crop increases if the seedbed is firm as it gives the seed planted good moisture in soil. The use of a steel press wheel band or steel press wheel may be adopted if much tighter seedbed is required. The role of a metering machines driving unit may be played by the seed packer wheel, wheel that firms seeds or the press wheel (John-Deere, 1981; Jacobs & Harrell, 1983).

1.2 Statement of the Problem

Kenaf is an important and economical crop in Malaysia. Ahmad (2010), Director General of LKTN, reported in his study that kenaf has been decided to be planted as “New Sources of Growth” by the government of Malaysia, and after palm oil and rubber this will become the third main economic item in the country. By the year 2010, the area for the plantation of kenaf increased to 1500 ha from 42.2 ha in the year 2005, this is about 36 times more area for plantation in 270 estates. Based on the future forecast done by the LKTN, by the year 2011 this area will increase to 3000 ha in 400 estates. However, for plantation of kenaf seed an appropriate seeding machine does not exists.

So far, many planters (seeding machines) have been designed and fabricated, but the existing seeding machines are only suitable for seeds that have almost regular shape or crops with row plantings of more than 50 cm such as corn and sugar beet. Kenaf seeds are irregular in shape, and looks somewhat like a shark’s teeth, fairly triangular in shape and sometimes looks like a kidney, with roughly pointed corners (Anonymous, 2012).
Besides the irregular shape and size of kenaf seeds, it has a high angle of internal friction and is most suitable for row plantings of 30-40 cm. The physical, mechanical and aerodynamic properties of kenaf seed are completely different from that of corn and sugarbeet. Therefore, existing seeding machines with high numbers of missing and multiple planting characteristics are not suitable for planting kenaf seeds. Thus, there is a need to design a new planter (seeding machine) based on physical, mechanical and aerodynamic properties of kenaf seed.

Generally, there are two common types of row-crop planters (precision seeders or seeding machines): mechanical planters (mechanical seeding machines) and pneumatic planters (pneumatic seeding machines). In pneumatic seeding machines, the air system (pressure or vacuum) are used to meter seeds. Pneumatic seeding machines consist of seed (metering) plate with metering openings on a predetermined radius. The seeds are collected from the hopper by the meter openings through the application of the pneumatic when the rotation is done in the seed plate. The backing plate consists of a race machine through which the pneumatic vacuum pressure is put on the opening of the meter. The quality of work improves, the rates of seeds are more accurate with less default, the handling and variations of upkeep and seed drift are better, and its implementation has a wide spectrum. These are the few benefits which the precision pneumatic seeders have over mechanical seeders (Özmerzi, et al., 2002; Karayel, et al., 2004).
1.3 Objectives of the Study

The main purpose of this study was to design, develop and evaluate a pneumatic seeding machine for kenaf seeds. The following specific objectives would help to achieve the above main objective:

1. To determine physical, mechanical and aerodynamic properties of kenaf seeds at different moisture contents.
2. To design and develop a vacuum seed metering system and a pneumatic seeding machine based on physical, mechanical and aerodynamic properties of kenaf seed.
3. To evaluate the vacuum seed metering system in the laboratory and the pneumatic seeding machine in the field for planting kenaf seeds.
4. To develop relationship between machine factors and the machine performance indices of the developed pneumatic seeding machine.
5. To determine the field efficiency, and theoretical and effective field capacity of the developed pneumatic seeding machine.
6. To determine the economic analysis of the kenaf pneumatic seeding machine.
1.4 Scope of the Research

The scope of the research was to develop a machine which can be used on a flat field with good soil pulverization and enable appropriate weed control. The operational speed for this machine should be less than 3 km/hr.

1.5 Thesis Organization

The thesis presented in five chapters. Chapter One discusses the introductory aspect of the study and contains the problem statement, main objective, specific objectives and the limitation of the study. Literature review is presented in Chapter Two, which overviews relevant information about the study. The methods and materials used are discussed in Chapter Three. Chapter Four discusses the results and findings of the study. Chapter Five presents the conclusion and recommendation for future work. The thesis ends with the reference section.
REFERENCES

