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Fiber reinforced polymers (FRP) are used as either internal or as external reinforcements 

in structures. However, issues related to reduced ductility performance and large 

deflections have been observed by several other researchers which needs to be addressed 

in order for these reinforcements to be more widely adopted as alternative structural 

reinforcements in practice.  

 

In this regard, an alternative method of using FRP plates as internal reinforcements in 

concrete beams is explored and presented in this thesis in terms of 

ductility/deformability performance as well as other structural responses under static 

loading with the aim of improving the ductility/deformability response as well as 

examining some aspects of structural behaviour. In addition, the bond behaviour of this 

reinforcement which is a key factor towards the improvement of structural performance 

especially with regards to the bond-slip behaviour at service and ultimate conditions was 
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studied. Thus, different surface treatments have been experimentally investigated 

through pullout tests to identify the best bond effects. Based on the experimental bond-

slip behaviour obtained, a concrete – CFRP plate bond interface model is proposed and 

incorporated into a finite element algorithm for the analysis of concrete beams 

reinforced with embedded CFRP plates taking into consideration differences in the 

surface textures of the embedded CFRP plate.  A 2-D nonlinear finite element program 

was thus adopted for the analysis of the proposed reinforcement technique. The most 

suitable surface treatment obtained from the pullout tests was then adopted in the 

embedded carbon fiber reinforced polymer plates (CFRP) in concrete beams via 

experimental testing under flexural load.  

 

The results showed that embedded CFRP plates in concrete beams is an effective 

alternative form of reinforcement with a 37% decrease in deflection response and a 54% 

improvement in deformation/ductility performance. In addition the bond behaviour is 

dependent on the type of surface treatment with an increase in bond strength ranging 

between 78% - 284%. While an increase in concrete strength led to a 58% increase in 

the bond strength of embedded CFRP plates in concrete. Similarly, the proposed bond 

model for the embedded CFRP plates successfully depicted the concrete-CFRP plate 

interface behaviour and the FE results were in agreement with the experimental results 

with a percentage difference of 12% exhibiting a realistic simulation of the experimental 

load-deflection response. 
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Oleh 

RACHAEL BUKOLA OHU 
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Pengerusi :  Professor Mohd Saleh Jaafar, PhD 

Fakulti : Kejuruteraan 

 

Polimer Bertetulang Gentian (FRP) biasanya digunakan sebagai tetulang dalaman atau 

luaran di dalam struktur. Walaubagaimanapun, isu berkaitan dengan pengurangan sifat 

kemuluran dan jumlah lenturan yang besar perlu ditangani berdasarkan pemerhatian 

beberapa pengkaji bagi membolehkan gentian bertetulang ini digunakan dengan lebih 

meluas sebagai tetulang alternatif dalam struktur yang sebenar.  

 

Sehubungan dengan ini, kaedah alternatif menggunakan plat FRP sebagai tetulangan 

dalaman bagi rasuk konkrit telah diterokai dan dipersembahkan dalam tesis ini dari segi 

keupayaan kemuluran/ubahbentuk dan juga lain-lain tindakbalas struktur apabila beban 

statik dikenakan dengan matlamat untuk meningkatkan tindakbalas 

kemuluran/ubahbentuk juga memeriksa beberapa aspek perlakuan struktur. Disamping 

itu, perlakuan ikatan bagi tetulang ini yang merupakan faktor utama kearah 

menambahbaik keupayaan struktur terutamanya berkaitan dengan perlakuan ikatan-
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gelinciran pada keadaan khidmat dan muktamat juga dikaji. Oleh  sebab itu, penggunaan 

rawatan pemukaan yang berbeza telah dikaji secara ujikaji melalui ujian tarik keluar 

untuk mengenalpasti kesan ikatan yang terbaik. Berdasarkan perlakuan ikatan-gelinciran 

yang diperolehi dari ujikaji, model ikatan permukaan konkrit- plat CFRP dicadangkan 

dan digunapakai didalam algoritma unsur terhingga bagi analisis rasuk konkrit 

bertetulang plat CFRP terbenam dengan mengambilkira perbezaan tekstur permukaan 

plat CFRP terbenam. Progam 2D unsur terhingga tak lurus telah digunapakai untuk 

menganalisis teknik tetulang yang dicadangkan. Rawatan permukaan yang paling sesuai 

berdasarkan ujikaji tarik keluar telah diadaptasi dalam rasuk konkrit bertetulang plat 

CFRP terbenam melalui ujikaji beban lenturan.  

 

Keputusan ujikaji menunjukan plat CFRP yang dibenamkan dalam rasuk konkrit adalah 

satu kaedah alternatif tetulang yang efektif  dengan 37% pengurangan tindakbalas 

lenturan dan 54% penambahbaikan perlakuan kemuluran/keupayaan ubahbentuk. 

Disamping itu, perlakuan ikatan adalah bergantung kepada jenis rawatan permukaan 

yang menunjukan peningkatan kekuatan ikatan dari 78% - 284%. Juga, peningkatan 

kekuatan konkrit membolehkan 58% peningkatan kekutan ikatan plat CGRP terbenam 

dalam konkrit. Dalam masa yang sama, model ikatan yang dicadangkan bagi plat CFRP 

terbenam telah berjaya menggambarkan perlakuan permukaan antara konkrit- plat CFRP  

dan keputusan unsur terhingga adalah selari dengan keputusan ujikaji dengan peratsu 

perbezaan sebanyak 12% menggambarkan simulasi yang realistik bagi tindakbalas 

ujikaji beban- lenturan. 
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CHAPTER 1 

          

        INTRODUCTION 

 

1.1 General 

For a long time, steel has been the dominant type of reinforcement for concrete 

structures. Its compatibility with concrete and strength has made it an efficient 

reinforcement. However, deterioration and even collapse of steel reinforced 

structures has shown the sensitivity of steel in terms of its corrosive activity. 

Corrosion affects several aspects of structural behaviour with the most fundamental 

being bond. The transfer of stresses between concrete and reinforcement at both 

serviceability and at the ultimate state are considered to rely strongly on the quality 

of bond while mechanisms that resist flexural bending, shear and torsion are 

connected to the development of adequate bond characteristics. When corrosion 

takes place, it results in a degradation of bond and the ultimate bond strength is 

reduced (Almusallam et al. 1996) or it could ultimately lead to structural failure 

(Johnson, 2010). A picture showing corrosion in reinforced concrete and its effect on 

bond is shown in Figure 1.1 where it can be seen that high levels of corrosion result 

in significant reductions in bond strength due to loses of confinement and adhesion 

strength as well as reductions in geometrical characteristics (Bhargava et al. 2007). 

Because corrosion can not be totally eliminated researchers looked for other types of 

materials that could be used as alternative reinforcements. This led to the 

introduction of composite materials. Apart from this detrimental factor, others such 

as high maintenance costs, durability concerns and limited service life of traditional 
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structural materials can be made up for with the substitution of composites. Although 

composite materials have existed for a long time it took a while for it to be 

recognized as a type of reinforcement in civil engineering.  

 

 

 

 

Figure 1.1 (a) Beam corrosion; (b) Bond strength as a function of corrosion (Lee 

et al., 2002 and Bhargava et al. 2007). 

 

1.2 Versatility of Fiber reinforced polymers in construction 

The use of composite materials in various aspects of civil engineering has grown 

steadily over the years. Just as material technology has evolved, so have structural 

techniques. Because of this evolution, several codes of practice have been modified 

to include and to cater for recent developments in research. To this end, fibre 

reinforced polymer composites have become one of the most versatile materials in 

use today. From being used for boat hulls, marine vessels, in the automotive industry 

and in aeronautics to being used as external or internal reinforcements of concrete 

structures. The versatility of FRPs stems from its’ inherent properties some of which 

include its light weight, corrosion resistance and ease of use. Fiber reinforced 

polymers are currently manufactured in a variety of forms, shapes and textures. This 

(a) (b) 
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variety also extends to its properties however these properties differ from those of 

steel. Depending on the structural requirement, engineers can chose what is best 

suitable for a particular structure and this has helped to increase the popularity of this 

composite material worldwide. As of today, FRP bars are used as either internal or 

external reinforcements in the construction industry for reinforced concrete structures 

while FRP plates or strips are traditionally used as external reinforcements. Some of 

the current applications of FRP bars used as internal reinforcements include bridge 

decks, multi-storey buildings, parking structures and industrial buildings to name a 

few. In order to further increase the popularity of using FRPs as well as its diversity 

of utilization in reinforced concrete structures certain aspects of FRP behaviour 

needs to be further understood and improved on which will instil more confidence in 

it’s use as an innovative composite material by engineers.  

                                                                         

1.2.1 FRP – reinforced concrete behaviour 

Past research has shown that externally bonded FRP reinforcements (EBR) or near 

surface mounted FRP reinforced (NSM) structures which are the most widely used 

techniques show increased capacity resistance (Capozucca et al. 2002), improved 

cracking and stiffness (Li et al. 2006), significantly enhanced load carrying capacities 

in bending (Barros and Fortes, 2005) and an increase in the equivalent longitudinal 

reinforcement (laminates) resulted in improved overall structural performances 

(Barros et al. 2007 and Yost et al. 2007). Some characteristic behaviour of FRP bars 

in concrete have shown that larger deflections and crack widths occur in FRP 

reinforced structures than in steel reinforced structures (Bakis et al. 2002). In 

addition, the FRP beam reinforcement ratio did not affect the moment capacity 
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(Nawy and Neuwerth, 1971) and the development of its full strength when used as 

reinforcement could not be achieved. Apart from these characteristics another 

common feature of FRP reinforced concrete was that of debonding and reduced 

ductility (Liu et al. 2006, Kang et al. 2005 and Li et al. 2008). Serviceability 

concerns of FRP-concrete behaviour has also been highlighted by Arockiasamy, 

2000; El-Salakway et al., 2004, Salib and Abdel-Sayed, 2004, Saika et al., 2007 

where the general agreement is that the low elastic modulus of FRPs leads to a lower 

serviceability performance in comparison to its steel reinforced counterparts. 

 

Another aspect of FRP to concrete behaviour that affects its usage in the construction 

industry is its ductility performance. Ductility is a concept which allows a dissipation 

of large amounts of energy in a system which in turn serves as a means of giving 

warning signals of impending failure and is thus a measure of safety. The non-

yielding nature of FRPs resulting from its linear elastic response to failure makes the 

ductility of FRP systems quite small in contrast to steel reinforced systems however 

because FRP systems do undergo sufficient deformation with an associated 

dissipation of energy, some researchers prefer to adopt the term ‘deformability’ 

(Jaeger et al. 1995, Vijay et al. 1996 and Newhook et al. 2002) in place of ductility 

for FRP reinforced systems. Based on this concept several researchers found out that 

FRP reinforced member’s exhibit sufficient deformability (Vijay et al. 1996; Mufti et 

al. 1996; Shin et al. 2009 and Issa et al. 2011) and that the preferred concept of over-

reinforced design adopted for FRP systems led to a more gradual failure with 

adequate warning.  

 



© C
OPYRIG

HT U
PM

5 

 

Of all these aspects of behaviour, one of the most essential properties in an RC 

section for it to achieve an adequate level of performance is bond. Through bond a 

transfer of forces or stresses between the concrete and reinforcement occurs which 

allows a concrete section to develop strength and work as a single unit to resist 

external forces or loads. Three kinds of bond mechanisms typically occur; chemical 

adhesion, friction and mechanical interlock however, according to Cosenza et al. 

1997; Wang et al. 1999; Benmokrane et al. 2002 and Firas et al. 2011, three (3) main 

factors control bond between FRP and concrete; 

1. Chemical bond 

2. Friction due to surface roughness of the bars 

3. Mechanical interlock 

Due to large differences in surface deformations, configurations or textures of FRP 

bars, differences in the bond strength achieved also differs. However the general 

consensus is that the bond strength of FRPs is lower than that of steel bars. 

Improving the bond strength can however be achieved by applying different surface 

treatments which could lead to bond strengths that are twice that of steel bars (Al-

mahmoud et al. 2007; Makitani et al. 1993; Rosetti et al. 1995). Detailed 

investigations into the effects of elastic modulus (Achillides, 1997; Tepfers et al., 

1997), effects of surface texture (Itoh et al., 1989; Makitani et al., 1993; Hattori et 

al., 1995; Jerrett and Ahmad, 1995), effects of cross sectional shape (Achillides et al., 

1997) and effects of concrete strength on the bond of FRP bars has been carried out 

in several studies. Of these, the most popular effect considered is that of surface 
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texture while others like Lee et al. (2008), Achillides (1998) and Okelo and Yuan 

(2005) studied the effect of concrete strength.  

                                               

1.3 Problem Statement 

Based on the above, the following problems have been identified; 

A Reduced ductility performance of FRP reinforced concrete beams was observed in 

comparison to that of steel reinforced concrete beams mainly due to the linear elastic 

behaviour of FRPs up to failure. Secondly, larger deflections and crack widths at 

service were shown to occur largely due to the lower elastic modulus of FRPs. In 

addition, there was an inefficient utilization of the full tensile strength of FRP 

reinforcements which is necessary to gain the full benefits arising from the high 

tensile strength property of this composite material. Therefore as a means of 

providing solutions to these problems alternative techniques utilizing FRPs need to 

be examined.  

 

1.4 Objectives 

The main objective of this study is; 

1.  To determine the effectiveness of embedded fibre reinforced polymer plates as   

      longitudinal reinforcements in concrete beams under bending.  

In addition the following are sub-objectives of this study; 

i. To evaluate the ductility performance and serviceability behaviour of 

concrete beams reinforced with longitudinal embedded fibre reinforced 

polymer plates.  
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ii. To ascertain the bond behaviour and characteristics of embedded fibre 

reinforced polymer strips in different concrete compressive strengths. 

iii. To propose a bond model that represents the FRP-concrete interface 

behaviour using a 2D nonlinear finite element program. 

 

1.5 Scope of the study 

The scope of this study includes the experimental investigation on the effects of 

embedded CFRP plates of (tensile strength = 2800N/mm
2
 and modulus of elasticity = 

169,000N/mm
2
). The bond behaviour involved the use of various types of surface 

treatments and concrete strengths (fcu = 43.52MPa and 93.40MPa) in addition to the 

study of the structural response of this type of beams. The experimental bond tests 

were carried out via the use of standard sizes of 150Øx300mm cylinders while the 

experimental testing of 21 model scale beams of size 150x150x750 mm and 18 large 

scale beams of size 160x250x2500mm reinforced with steel bars or embedded CFRP 

plates and external/near surface mounted CFRP reinforcements was carried out. 

Although two (2) different concrete strengths were adopted for the bond tests, only 

one(1) concrete grade was employed for the beam tests. 

 

Determination of the characteristics of bond behavior was made with respect to the 

effects of various surface treatments and different concrete strengths. In terms of the 

structural behavior of these beams, only some critical aspects of flexural behavior 

were examined which include; load-deflection response, deformation/ductility 

performance, cracking characteristics, ultimate loads and associated failure 

mechanisms. The numerical study was carried out using a 2D finite element program 
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that was modified based on the experimental study. A bond model was proposed 

based on the experimental bond-slip relationship obtained which was then 

incorporated in the program for the simulation.  

 

1.6 Research Significance 

The possible application of fibre reinforced polymer plates as a replacement for 

longitudinal steel reinforcements or as an alternative to FRP bars would result in; (1) 

reducing the quantity of reinforcement used through an efficient maximization of the 

higher surface to cross sectional-area ratio; (2) an improved capacity performance 

due to larger ultimate strain capacity over that of FRP bars; (3) reduced long term 

maintenance or life cycle costs and (4) it could also be a useful alternative for section 

enlargement of structural elements without the need to significantly increase concrete 

member size.  

The benefits mentioned in (1) and (2) in addition to increased flexural stiffness and 

high tensile strength rigidity of the CFRP plate would thus lead to a reduction in 

deflection and an increase in the ductility/deformability performance.  

 

1.7 Limitations 

Limitations of this study in terms of the issue of batching the concrete requires 

careful implementation. The process of batching these beams in practice needs to be 

carefully carried out and monitored to ensure that minimal or no voids are created or 

left at the soffit of the beam after casting due to the width of the plate. The use of 

properly sized concrete biscuits (casted in advance prior to casting) is essential to 
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maintain the concrete cover throughout the beam length in addition, proper concrete 

vibration using a small vibrating nozzle to ensure it can be easily maneuvered at all 

the edges of the mould to allow the proper flow of fresh concrete under the 

embedded CFRP plate. In practice, careful monitoring of the casting process is 

essential and needs to be carried out in batches, however because of the relative 

thinness of the embedded CFRP plate and as long as the workability of the fresh 

concrete is ensured, a good outcome of the structural element can be achieved. In 

addition, aggregate sizes not exceeding (that is <) 10mm need to be adopted when 

casting concrete where embedded FRP plates are to be used. As long as these 

measures are adhered to, an acceptable concrete structure that meets required 

standard practices can be obtained. 

Some variations in the F.E cracking results can also be minimized further by 

improvements in the solution algorithm procedure and finite element mesh which 

affect F.E nonlinear analyses. 

 

1.8 Summary 

This chapter gives a brief description about the advent and usage of fiber reinforced 

polymers (FRPs) in concrete. The general characteristic behaviours of FRPs when 

used as either external or internal reinforcements has been highlighted in addition to 

the associated problems observed when FRPs are used. As a means of solving these 

problems, objectives of this study have been chosen with the aim of finding possible 

answers to these problems and hence provide an alternative technique of reinforcing 

concrete that is structurally beneficial, while also investigating the characteristics of 

this alternative reinforcing technique.  
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