UNIVERSITI PUTRA MALAYSIA

Oil PALM KERNEL SHELL CONCRETE MIX DESIGN AND BOND STRENGTH

ASAD MOHAMED ELMAGARHE

FK 2012 133
OIL PALM KERNEL SHELL CONCRETE MIX DESIGN AND BOND STRENGTH

By

ASAD MOHAMED ELMAGARHE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2012
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

OIL PALM KERNEL SHELL CONCRETE MIX DESIGN AND BOND STRENGTH

By
ASAD MOHAMED ELMAGARHE
May 2012

Chair: Prof. Dato’ Ir. Mohd Saleh Jaafar, PhD
Faculty: Faculty of Engineering

Malaysia has been known for years to produce more than half of the world’s output of palm oil and produces approximately 3.13 million tonnes as wastes in the form of oil palm shells (PKS) every year. A multitude of efforts have been made in the direction of waste management, and one of these plans are the use of PKS as a lightweight aggregate that can be used for construction purposes. However, the properties of Lightweight OPS concrete depend on the mix proportions, type of sand and the physical properties of the materials used.

In order to ensure that PKS concrete can be used for structural purposes the compressive strength should be at least 25 Mpa. The physical and mechanical properties of PKS concrete showed that the densities and the 28-day compressive strengths of the concrete vary in range from 1750-2050
kg/m$^3$ and 12-24 N/mm$^2$, respectively, which are not acceptable to be utilized in structural application. Therefore, this project focuses on strength performance of PKS concrete by finding optimized mix design as well as the bond strength between concrete and steel bars. This work started by choosing a suitable mix to be used for PKS concrete design. ACI 211.2-98 and ASTM C 330-00 have been chosen in order to start conducting trial mixes and to prepare the materials used in optimized mix design. Metakaolin has been used as a mineral admixture to ascertain its contribution in improving the properties of PKS concrete. Tests on the mechanical properties were conducted and the relationship between mechanical properties was analysed. PKS concrete containing 10% metakaolin showed a stronger bond and an increase of 28-day compressive strength by almost 25%. The splitting tensile strengths and modulus of rupture of PKS concrete were found to be 7% and 20% of their compressive strengths. The modulus of elasticity was found to be around 12KN/mm$^2$ which is higher than values found in the previous studies. Higher experimental bond strengths were recorded for PKS concrete compared to predicted values and bond strengths were found to be approximately 18% and 9% of compressive strength for deformed and plain bars respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

REKAAN DAN KEKUATAN IKATAN KONKRIT CAMPURAN TEMPURUNG KELAPA SAWIT

Oleh

ASAD MOHAMED ELMAGARHE

Mai 2012

Chair: Prof. Dato’ Ir. Mohd Saleh Jaafar, PhD
Faculty: Fakulti Kejuruteraan

Malaysia telah terkenal dalam penghasilan lebih daripada separuh pengeluaran minyak kelapa sawit sedunia dan menghasilkan anggaran 3.14 juta tan bahan buangan dalam bentuk tempurung kelapa sawit (TKS) setiap tahun. Pelbagai usaha telah dilakukan terhadap pengurusan bahan buangan, dan salah satu daripadanya adalah penggunaan TKS sebagai agregat ringan bagi tujuan pembinaan. Walau bagaimanapun, sifat konkrit TKS ringan bergantung kepada kadar campuran, jenis pasir dan sifat fizikal bahan yang digunakan.

Untuk menentukan bahawa konkrit TKS boleh digunakan untuk pembinaan, kekuatan mampatannya sepatutnya sekurang-kurangnya 25 Mpa. Sifat fizikal dan mekanikal konkrit TKS menunjukkan bahawa ketumpatan dan kekuatan mampatan 28-hari konkrit tersebut berubah dalam julat 1750-2050 kg/m³ dan 12-24 N/mm² masing-masing. Ia masih belum boleh diterima untuk penggunaan dalam pembinaan. Oleh itu, projek ini menumpu kepada
prestasi kekuatan konkrit TKS dengan menemukan rekaan campuran yang optima sekaligus dengan kekuatan ikatan di antara konkrit dan batang keluli. Penyelidikan ini dimulakan dengan memilih campuran yang sesuai untuk rekaan konkrit TKS. AC 211.2-98 dan ASTM C 330-00 dipilih untuk menjalankan campuran ujian dan menyediakan bahan untuk digunakan dalam rekaan campuran yang optima. Metakaolin telah digunakan sebagai galian campuran untuk menentukan sumbangannya dalam memperbaikkan sifat konkrit TKS. Ujian ke atas sifat mekanikal dan modulus elastik telah dijalankan dan perkaitan di antara sifat mekanikal telah dikaji. Konkrit TKS yang mengandungi 10% metakaolin menunjukkan ikatan yang lebih kuat serta peningkatan kekuatan mampatan 28-hari hampir 25%. Kekuatan tegangan pecah dan modulus pecah bagi TKS konkrit didapati 7% dan 20% daripada kekuatan mampatannya. Modulus elastik didapati di sekitar 12 N/mm2 iaitu lebih tinggi daripada nilai yang ditemui dalam kajian sebelumnya. Kekuatan ikatan teruji yang lebih tinggi telah direkod untuk konkrit TKS berbanding dengan nilai ramalan dan kekuatan ikatan didapati lebih kurang 18% dan 9% daripada kekuatan mampatan untuk batang terubah dan juga batang biasa.
ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor and committee chair, Prof. Mohd Saleh Jaafar, for his support during my two years of graduate study. His guidance and knowledge have always helped and enlightened me. I would like also to thank Dr. Jenaan Alfeel for her advice, encouragement and patience throughout the research. I also thank Dr. Farah Abdul Aziz for her interest in my study and serving as my committee member.

This study is supported by the Department of Civil Engineering of UPM University. I thank Dr. Voo Yen Lei for his technical support for supplying the superplasticizers that used in this research. Palm kernel shells used in this study are generously donated by Soon Seng Palm Oil Mill Sdn. Bhd, and and their generosity are gratefully acknowledged.

I also appreciate and thank Mohamed Alhabshi, Ali Hasoon and Omar Awad for their involvement and assistance in the experimental portion of this study, and without their support and hard work, it is impossible for me to accomplish all the making of concrete, testing program and formatting the thesis.

I also want to thank Mohd Fairus Ismail, Aminuddin b.Amdam and Mohd. Razali b. Abdul Rahman from Materials and Engineering Laboratory for their generous support of my research project.

I thank all my friends who have given me emotional support. Special thanks are given to my parents and my brothers and sisters for their love.
I certify that a Thesis Examination Committee has met on (to be announced by GSO) to conduct the final examination of Asad Mohamed Elmagarhe on his thesis entitled "Optimizing the Mix Design of Oil Palm Shell Concrete" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the University Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Thesis of Science.

Members of the Thesis Examination committee were as follow:

**Name of Chairperson, PhD**
Title (e.g. Professor/ Associate professor/ Ir)
Name of Faculty
University putra Malaysia
(Chairman)

**Name of Examiner 1, PhD**
Title (e.g. Professor/ Associate professor/ Ir)
Name of Faculty
University putra Malaysia
(Internal Examiner)

**Name of Examiner 2, PhD**
Title (e.g. Professor/ Associate professor/ Ir)
Name of Faculty
University putra Malaysia
(Internal Examiner)

**Name of External Examiner 2, PhD**
Title (e.g. Professor/ Associate professor/ Ir)
Name of Department and/ or Faculty
Name of Organization (University/ Institute
Country
(Internal Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Mohd Saleh b Jaafar  
Professor  
Faculty of Engineering  
Universiti Putra Malaysia  
(Chairman)

Farah Nora Aznieta binti Abdul Aziz  
Senior Lecturer  
Faculty of Engineering  
Universiti Putra Malaysia  
(Internal Member)

Jamaloddin Noorzaei  
Professor  
Faculty of Engineering  
Universiti Putra Malaysia  
(Internal Member)

Janan Rasheed Alfeel  
Associate Professor  
Mosul University  
(External Member)

BUJANG BIN KIM HUAT, PHD  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia  
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

ASAD MOHAMED ELMAGARHE
Date: 22 May 2012
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>xviii</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1.1 General                                    1

1.2 Problem statement                          3

1.2.1 Mix design of Palm Kernel Shell concrete 3

1.2.2 Using the metakaolin as mineral admixtures in PKS concrete 4

1.2.3 Utilization of Palm Kernel shell in structural applications 7

1.3 Research objectives                        8

1.4 Scope of this research                     8

### 2 LITERATURE REVIEW

2.1 Lightweight Concrete                       10

2.1.1 Introduction                             10

2.1.2 Types of lightweight concrete           11

2.2 Lightweight aggregates (LWAs)              12

2.2.1 Manufactured aggregates                  12

2.2.2 Natural aggregates                      14

2.3 Structural lightweight aggregate concrete (SLWC) 18

2.3.1 Properties of Structural Lightweight Aggregate Concrete 19

2.3.1.1 Fresh concrete                        19

2.3.1.2 Density                               19

2.3.1.3 Compressive strength                  20

2.3.1.4 Tensile strength                      21

2.3.1.5 Modulus of elasticity                 23

2.3.1.6 Creep                                 24

2.3.1.7 Shrinkage                            25

2.4 Palm Kernel shell as lightweight aggregates 25

2.4.1 Physical and mechanical properties       25
2.4.2 Improving the quality of PKS concrete 28

2.5 Palm kernel shell concrete (PKSC) 28
2.5.1 Preceding works performed on palm kernel shell concrete 28
2.5.2 Properties of palm kernel shell concrete 31
   2.5.2.1 Density and workability 31
   2.5.2.2 Compressive strength 34
   2.5.2.3 Tensile strengths 36
   2.5.2.4 Modulus of elasticity (MOE) 37

2.6 Mix Design of Palm kernel shell concrete 38

2.7 Structural behaviour 39
   2.7.1 Bond strength 39
   2.7.2 Flexural behaviour of reinforced concrete 41

2.8 Metakaolin as a cement replacement 43
   2.8.1 Introduction 43
   2.8.2 Pozzolanic reaction 44
   2.8.3 Properties of Fresh Metakaolin Concrete 46
   2.8.4 Effect of metakaolin as cement replacement on compressive strength of concrete 47

2.9 Concluding Remarks 48

3 METHODOLOGY 50
3.1 Introduction 50
3.2 Materials used in the investigation 52
   3.2.1 Cement 52
   3.2.2 High Reactivity Metakaolin (HRM) 52
   3.2.3 Water 53
   3.2.4 Superplasticizer (SP) 53
   3.2.5 Aggregates and tests 54
   3.2.6 Fine aggregate 54
   3.2.7 Coarse aggregate 55
   3.2.8 Testing of aggregates 57
      3.2.8.1 Sieve Analysis 57
      3.2.8.2 Specific gravity and absorption test (Coarse aggregate) 57
      3.2.8.3 Specific gravity (SG) and absorption test (fine aggregate) 58
      3.2.8.4 Bulk Density ("Unit Weight") and Voids in aggregate 59
      3.2.8.5 Total Evaporable moisture content in the aggregates 60
   3.2.9 Reinforcing bars 61
3.3 Mixture proportioning 61
   3.3.1 The weight method for selecting proportions for structural lightweight concrete according to (ACI 211.2) 61
   3.3.2 Trial batch adjustments 62
3.4 Preparation and Testing of specimens 63
   3.4.1 Specimen preparation 63

x
3.4.2 Mixing, casting and curing procedures of the Materials 63
3.4.3 Testing of fresh concrete 65
  3.4.3.1 Slump Test 65
  3.4.3.2 Compacting factor Test 65
3.4.4 Specimens for mechanical properties of concrete 68
  3.4.4.1 Compressive specimen 68
  3.4.4.2 Modulus of elasticity specimen 68
  3.4.4.3 Flexural Strength specimen 68
  3.4.4.4 Splitting Tensile Strength specimen 70
  3.4.4.5 Data analysis using ANOVA 70
3.5 Experiment on structural behaviour 71
  3.5.1 Introduction 71
  3.5.2 Pullout test 71
  3.5.3 Instrumentation 73
    3.5.3.1 Linear variable differential transformer (LVDT) 73
    3.5.3.2 Data logger 73
    3.5.3.3 Instron Universal Testing Machine (UTM) 73
4 RESULTS AND DISCUSSION 74
  4.1 Introduction 74
  4.2 Properties of aggregates used 75
    4.2.1 Sieve analysis of coarse aggregate 75
    4.2.2 Sieve analysis of fine aggregate 78
      4.2.2.1 Fineness Modulus (FM) 79
    4.2.3 Specific Gravity and absorption test for PKS 80
    4.2.4 Bulk Density and Voids ratio PKS aggregates 82
    4.2.5 Specific Gravity and absorption test for Mining Sand 83
  4.3 Properties of concrete 84
    4.3.1 Effect of variation in cement content & mineral admixture (Metakaolin) on workability 84
    4.3.2 Effect of variation in cement content & mineral admixture (Metakolin) on density 88
    4.3.3 Effect of variation in cement content & mineral admixture (Metakolin) on compressive strength 91
      4.3.3.1 Introduction 91
      4.3.3.2 Development of compressive strength with age 92
      4.3.3.3 Strength to density ratio 96
      4.3.3.4 Mode of failure in compression test 97
  4.4 Mechanical properties of selected PKS Mix 99
    4.4.1 Modulus of elasticity 99
    4.4.2 Splitting Tensile Strength 101
4.4.3 Interpretation of ANOVA analysis of splitting tensile strength 102
4.4.4 Modulus of rupture 103
4.4.5 Interpretation of ANOVA analysis of flexural strength 105
4.4.6 Mode of failure in tensile strength 106

4.5 Bond behaviour 108
  4.5.1 Comparison between NWC grade 30 and PKSC-C4 108
  4.5.2 Comparison between two PKSC mixes with deferent cement content 109
  4.5.3 The effect of plain and deformed bar size on the bond stress and slip of PKSC-C4 110
  4.5.4 Modes of failure in bond for plain and deformed bar 113
  4.5.5 A comparison between theoretical and experimental bond strength of PKSC-C4 115

4.6 Optimization performed in this research 117
  4.6.1 Enhancement of compressive strength compared to published data 117
  4.6.2 Enhancement of modulus of elasticity compared to published data 117
  4.6.3 Enhancement of tensile strength compared to the published data 118

4.7 Cost analysis 122

5 CONCLUSIONS AND RECOMMENDATIONS 123
  5.1 Introduction 123
  5.2 Physical and mechanical properties of concrete 124
    5.2.1 Workability and density 124
    5.2.2 Compressive strength 124
    5.2.3 Modulus of elasticity 125
    5.2.4 Tensile strength 126
  5.3 Structural behaviours 126
    5.3.1 Bond behaviors 126
  5.4 Recommendations 128

REFERENCES 129
APPENDICES 137
BIODATA OF STUDENT 172
LIST OF PUBLICATIONS 173
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Groups of Lightweight Concrete (Shetty, 2005) [7]</td>
<td>11</td>
</tr>
<tr>
<td>2.2: Properties of various aggregate types (Sear, 2001) [27]</td>
<td>13</td>
</tr>
<tr>
<td>2.3: Typical properties of lightweight aggregates (Clarke John, 1993) [28]</td>
<td>14</td>
</tr>
<tr>
<td>2.4: Properties of some types of sintered diatomite concrete (Short and Kinniburghm, 1978) [6].</td>
<td>16</td>
</tr>
<tr>
<td>2.5: The physical and mechanical properties of palm kernel shell</td>
<td>27</td>
</tr>
<tr>
<td>2.6: The properties of palm kernel shell concrete</td>
<td>33</td>
</tr>
<tr>
<td>2.7: Pozolanic reactivity, Chapelle Test, (Kostuch et al., 2000) [63]</td>
<td>45</td>
</tr>
<tr>
<td>3.1: Chemical compositions of cement and high reactivity metakaolin</td>
<td>52</td>
</tr>
<tr>
<td>3.2: Requirements of metakaolin according to (ASTM C 618)</td>
<td>53</td>
</tr>
<tr>
<td>3.3: Testing of fine and coarse aggregates</td>
<td>57</td>
</tr>
<tr>
<td>3.4: Material characteristics used for mix design</td>
<td>62</td>
</tr>
<tr>
<td>3.5: Mix design for PKS concrete based on modified ACI mix proportions (mix proportion by weight) and water cement ratio of (0.35)</td>
<td>63</td>
</tr>
<tr>
<td>4.1: Grading Requirement for Coarse Aggregate</td>
<td>76</td>
</tr>
<tr>
<td>4.2: Limits of fine aggregates graduation</td>
<td>78</td>
</tr>
<tr>
<td>4.3: Specific Gravity Test results for Palm Kernel shell (ASTM C127)</td>
<td>81</td>
</tr>
<tr>
<td>4.4: The bulk density and void ratio of PKS aggregate</td>
<td>82</td>
</tr>
<tr>
<td>4.5: Specific Gravity Test results for mining sand (ASTM C128)</td>
<td>83</td>
</tr>
<tr>
<td>4.6: Fresh properties of PKS concrete mixes with variation of cement content and mineral admixture (Metakaolin)</td>
<td>84</td>
</tr>
</tbody>
</table>
4.7: Relationship between demoulded density & air-dry density with variation of cement content 88
4.8: Results of the mix designed according to ACI 211.1-98 91
4.9: Comparison of compressive strength of PKS & HS concrete with variation of cement and metakaolin content for W/C ratio 0.35 94
4.10: Compressive strength to De-moulded density & Air-dry ratio 96
4.11: Splitting tensile strength for PKSC-C4 and HSC-C1 101
4.12: One-way ANOVA of force and splitting tensile strength 102
4.13: One-way ANOVA of weight and splitting tensile strength 102
4.14: Modulus of rupture of PKSC-C4 and HSC-C1 103
4.15: One-way ANOVA of force and flexural tensile strength 105
4.16: One-way ANOVA of weight and flexural tensile strength 105
4.17: Bond strength of PKSC-C4 with plain and deformed bars 115
4.18: Data from published work and present research 120
4.19: The cost of production 1 m$^3$ of PKSC-C4 122
4.20: The cost of production 1 m$^3$ of NWC concrete (Alengaram et al. [12]) mix 122
4.2: Palm Kernel Shell Sieve analysis 142
4.3: Granite Sieve analysis 142
### LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>PKS Production in Peninsula Malaysia (By State) in 2004, (Dit, 2007) [4]</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Palm Kernel Aggregates</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Cube strength for a various types of lightweight aggregate. (Struct, 1987) [39]</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>The particle size distribution of sand and PKS (Palm Kernel Shell)</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Treatment procedures for palm kernel shell aggregates</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Slump Test</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Compacting Factor Test</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Modulus of Elasticity test</td>
<td>69</td>
</tr>
<tr>
<td>3.6</td>
<td>Flexural tensile strength test</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>Splitting tensile strength</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Pullout Test</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Particle Size Distribution of Palm Kernel Shell Aggregates</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Particle Size Distribution of Granite Aggregates</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Particle Size Distribution of Fine Aggregate</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Slump behaviour for mix (A) with variation of cementitious materials and superplasticizer content</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Slump behaviour for mix (B) with variation of cementitious materials content</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>Slump behaviour for mix (C) with variation of cementitious materials content</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Relationship between de-moulded density and air-dry density in terms of cement content &amp; 0% metakaolin</td>
<td>89</td>
</tr>
<tr>
<td>4.8</td>
<td>Relationship between de-moulded density and air-dry density in terms of cement content &amp; 5% metakaolin</td>
<td>90</td>
</tr>
</tbody>
</table>
4.9: Relationship between de-moulded density and air-dry density in terms of cement content & 10% metakaolin

4.10: Development and comparison in compressive strength for Mix (A1), (A2), (A3) and (A4)

4.11: Development and comparison in compressive strength for Mix (B1), (B2), (B3) and (B4)

4.12: Development and comparison in compressive strength for Mix (C1), (C2), (C3) and (C4)

4.13: Mode of surface failure (A) & Bond failure between PKS and cement matrix

4.14: Mode of surface failure (A) & Bond failure between PKS and cement matrix

4.15: Mode of failure for high strength concrete

4.16: Stress and strain relationship for PKSC and HSC

4.17: Mode of surface failure in splitting tensile strength for PKSC-C4

4.18: Mode of surface failure in flexural tensile strength for PKSC-C4

4.19: Bond stress and slip for PKSC-C4 and NWC-grade 30

4.20: Bond stress and slip for PKSC-C4 and PKSC (Alengaram et.al) [8]

4.21: Effect of the size of the plain bar on the bond stress and slip for PKSC-C4

4.22: Effect of the size of the deformed bar on the bond stress and slip for PKSC-C4

4.23: Mode of failure in bond between PKSC-C4 and plain bar

4.24: Mode of failure in bond between PKSC-C4 and deformed bar size 10mm

4.25: Mode of failure in bond between PKSC-C4 and deformed bar size 16mm
### LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>Fly Ash</td>
</tr>
<tr>
<td>HRM</td>
<td>High Reactivity Metakaolin</td>
</tr>
<tr>
<td>HSC</td>
<td>High Strength Concrete</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer</td>
</tr>
<tr>
<td>LWAC</td>
<td>Lightweight Aggregate</td>
</tr>
<tr>
<td>LWAC</td>
<td>Lightweight aggregate Concrete</td>
</tr>
<tr>
<td>MK</td>
<td>Metakaolin</td>
</tr>
<tr>
<td>MOR</td>
<td>Modulus of Rupture</td>
</tr>
<tr>
<td>NA</td>
<td>Not available</td>
</tr>
<tr>
<td>NWC</td>
<td>Normal Weight Concrete</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
<tr>
<td>OPS</td>
<td>Oil Palm Shell</td>
</tr>
<tr>
<td>PFA</td>
<td>Pulverized fuel ash</td>
</tr>
<tr>
<td>PKS</td>
<td>Palm Kernel Shell</td>
</tr>
<tr>
<td>PKSC</td>
<td>Palm Kernel Shell Concrete</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SF</td>
<td>Silica Fume</td>
</tr>
<tr>
<td>SLWAC</td>
<td>Structural Lightweight Aggregate Concrete</td>
</tr>
<tr>
<td>SP</td>
<td>Superplasticizer</td>
</tr>
<tr>
<td>SSD</td>
<td>Saturated Surface Dry</td>
</tr>
</tbody>
</table>
DEDICATION

This thesis is dedicated to my family who have always given me emotional support.

xviii
CHAPTER 1

INTRODUCTION

1.1 General

The use of agro-waste materials in construction is becoming more popular due to current economic and environmental concerns. Large amount of agro-waste materials or green materials such as sawdust ash, vegetables fibers, palm oil kernel shells, rice husk ash, etc. are being utilized as raw materials for blended components in concrete. However, broad utilization of green materials is still limited due to excessive treatments that may be required before they can be effectively used with cement [1].

Malaysia, Nigeria, Thailand and Indonesia are the countries that produce the largest quantities of palm oil. Consequently, they are also processing a large amount of industrial waste, which is dumped in factory yards. Over the last 30 years, awareness has grown particularly in Malaysia and Nigeria regarding disposal management strategies. One of the successful strategies is the potential of utilizing agricultural and industrial waste as construction materials. Thus, the use of waste materials, particularly in the manufacture of Lightweight Aggregates (LWA) is considered productive and vital. The PKS production in Malaysia is shown in Figure 1.1.

For this research, palm kernel shell (PKS), sometimes referred to as oil palm shells (OPS) is the industrial waste used as a LWA. Okpala [2] stated that the African people had used PKS in the past to build their mud houses and even nowadays the reaming is still in good condition. Teo et al [3] reported
that in Malaysia, PKS was implemented in the construction of low-cost houses by using PKS hollow blocks for the walls and PKS concrete for the footings. He also expressed that lintels and beams showed acceptable performance with no serious structural problems during sustained load.

Figure 1.1: PKS Production in Peninsula Malaysia (By State) in 2004, (Dit, 2007) [4]
1.2 Problem statement

1.2.1 Mix design of Palm Kernel Shell concrete

There were several preliminary investigations done by Mannan and Ganapathy [5] to identify an appropriate mix design for palm kernel shell concrete. Three different methods were followed, ACI mix design method for normal weight concrete and the mix design method mentioned in references [5, 6]. None of these procedures as presented in their findings achieved the targeted compressive strength of 25 N/mm$^2$. The maximum compressive strength that was gained was around 14 N/mm$^2$, which is also below the minimum strength of structural lightweight concrete: 17 N/mm$^2$ [8]. Finally, Mannan and Ganapathy [5] concluded that PKS mix design should be subjected to a trial-and-error method in order to obtain a proper mix proportion.

Another mix design approach was presented by Alengaram et al [9] and Shafigh et al [10] as their mixes displayed high compressive strengths of 37 and 45 N/mm$^2$, respectively. Nevertheless, both mixes contain high cement content, (535 kg/m$^3$) for Alengaram and (550 kg/m$^3$) for Shafigh. Thus, using high cement content with aggregates classified as waste materials will achieve a low-cost concrete. Hence, for this study the optimized mix design focuses on lowering the cement content, which will have tremendous effect on the cost besides achieving an acceptable compressive strength for LWAC.
1.2.2 Using the metakaolin as mineral admixtures in PKS concrete

Generally, according to previous researches, the failure of PKSC is controlled by two things, i.e., the failure of the shell itself or by the bond between PKS and cement matrix. This problem has been addressed by a couple of researchers by adding the mineral admixtures such as fly ash and silica fume to the PKSC. Basri et al [11] proved that using fly ash (FA) with class F as a mineral admixture in PKSC did not achieve the desired outcome to optimize compressive strength. Moreover, they indicated a reduction in compressive strength of almost 25% by using 15% fly ash as a cement replacement.

Alengaram et al [12] used silica fume (SF) as a cement additive. They found that the 28-day compressive strength was around 37 N/mm². This finding gave evidence that the weaker zone, i.e. the zone between the aggregate and cement's interface was strengthened by utilizing SF. Hence, eventually, the bond strength increased to produce a higher compressive strength.

PKS has a flaky and irregular shape so it has an explicit effect on workability. According to Alengaram et al [9], SF should be used between 8% and 10% in order to cover the entire shell’s surface. Consequently, using 10% SF as a cement additive combined with the irregularity shape effect of the shells will cause a high demand for water to maintain workability. Eventually, a special or high-water reducer (superplasticizer) will also be needed to make the concrete more workable.

In this research, 5 and 10% of metakaolin (MK) has been used as a cement replacement in order to optimize the mix design of PKSC. MK was chosen in
this study rather than other types of supplementary materials for four important reasons:

- The reactivity of metakaolin was very high when compared with other types of pozzolanic materials. Metakaolin comprises the highest percentage of alumino-silicates between the pozzolanic materials, enabling it to maximise the durability of concrete binder [13]. Metakaolin extremely reacts with lime more than flyash that its reaction with lime in concrete may take up to two month [14], while metakaolin, the reaction may occur within two weeks [15].

- Metakaolin has a low specific gravity in the range of 2.10 to 2.60 compared to other types of supplementary materials such as fly ash, 2.6 to 3.0, and blast furnace slag, 2.80 to 2.95. Therefore, using metakaolin to replace the cement that has a specific gravity in the range of 3.0 to 3.10 will has tangible effect upon density. This fact was approved from Al-Sibahy and Edward [16] who used the metakaloin to replace cement for lightweight concrete contained a recycled glass. According to their findings they noticed that by increasing the percentage of metakaloin from 0, 5 and 10% as cement replacement, the density had a reduction around 1680, 1670 and 1620kg/m³, respectively. Thus, using metakaolin instead of other types of supplementary materials not only will enhance the mechanical property of PKS concrete but also will provide more acceptable density for structural lightweight concrete.

- Another advantage is that metakaolin is not classified as a by-product, unlike other pozzolanic materials which their engineering properties cannot
be control [17]. Therefore, implementing metakaolin will promise some benefits comparable to other supplementary materials. In this study, evaluation the performance of metakaolin-PKS concrete will be compared to other lightweight PKS concrete contains incorporation different supplementary materials from previous published work.

- Dubey and Banthia [18] reported that the slump values for concrete mixes comprised of 10% SF were found to be equal to half the values of mixes that contain the same proportion of MK. That means MK concrete requires less quantity of high water reducer compared to SF.

- There were no previous research studies investigating the effect of MK on the mechanical properties of PKSC.
1.2.3 Utilization of Palm Kernel shell in structural applications

In 1984, Abdullah [19] carried out a first study concerning usage of PKS as a lightweight aggregate to produce LWC. Abdullah proved from his findings that the resulting concrete has an air-dry density in the range of 1840-2050 kg/m$^3$ and 28-day compressive strength between 5 and 20 N/mm$^2$. However, most codes and standards require a specified minimum strength for structural lightweight aggregate concrete, for example, ASTM C330 [20] specified that the minimum strength for structural lightweight concrete is 17 N/mm$^2$. BS 5400 [21] required minimum allowable cube strength of 25 N/mm$^2$ for LWAC to be used in structural application such as reinforced concrete bridges. In this research the target strength of 30 N/mm$^2$ was allocated to ensure PKSC to be use in structural application. Shafigh et al [22] and Ng et al [23] did an investigation of in the structural integrity of palm kernel shell reinforced concrete, they reported that although PKSC has good mechanical properties such as perfect insulation, it still needs additional investigation for their structural behavior as the PKS concrete slap for instance failed to fulfilled the minimum strength requirement at the time of lifting, transporting and the time of service. Eventually, they concluded that a further tests regarding of structural behavior are required.

Another study was done by Alengaram et al. [12], who studied the effect of silica fume in the bond strength of PKSC beam, they observed that PKSC beam exhibited under ductile load several cracks with a very small crack width which gave an indication of strong bond between PKSC and reinforced bars. Eventually, they concluded that using silica fume as cement
replacement enhanced the bond strength of PKS concrete. There are various factors that affect the bond strength of palm kernel shell concrete (PKSC) such as mix proportions, density and curing conditions. Thus, in this study metakaolin has been used as cement replacement not only to enhance the bond strength of PKSC but also by limiting the air-density to be in the margin of structural lightweight concrete. Herewith, the bond strength was chosen as the margin to indicate the development in the structural behavior for proposed mix designation.

1.3 **Research objectives**

The objectives of this study can be summarized as given below:

i) To determine the optimum mix design of PKSC by limiting the cement content between 400 to 480 kg/m\(^3\) and To study the effect of metakaolin as a mineral admixture in PKS concrete.

ii) To identify the enhancement in the bond strength between PKSC and steel bar.

1.4 **Scope of this research**

The development of the mix design of PKSC was done by limiting the cement content to be in the range of 400 to 480 kg/m\(^3\). Also, this research work addressed the potentiality of using high reactive metakaolin (HRM) as a supplementary cementitious material in PKS concrete mixes. Four different mixes were used and every mix proportion was incorporated with 0, 5 and 10% of high-reactivity metakaolin (HRM) in order to optimize the compressive strength and mechanical properties of PKSC. The PKS
aggregate for the four mixes was fully replaced with granite aggregate and nominated as the control mix.

The fresh and hardened concrete properties of PKSC were chosen to be the base of this study, by analyzing and comparing the behaviors for each concrete mix. Slump and compacting factor test was chosen to evaluate the workability of concrete mixes. All concrete samples were cured under water tank regimes for almost one month. The mixes that incorporated 10% metakaolin showed the highest compressive strength of more than 30 N/mm². One mix that is considered as an optimized mix was selected according to its low cement content and high compressive strength. The mechanical properties of the selected mix was investigated and compared with the same concrete mix but fully replaced with granite aggregate. The bond stress of the selected mix of PKSC was compared to a similar grade of NWC. Twenty-one cylindrical concrete reinforced with plain and deformed bars of different sizes was tested and compared concerning its bond strength behaviour.

However, some limitations were set which would not cover for this study:

- Studies related to durability and thermal conductivities are not included.
- No studies on long term properties such as shrinkage and creep.
REFERENCES


[41] ACI.318, *Building Code Requirements for Reinforced Concrete (ACI 318-05) and Commentary*, 2nd ed. American Concrete Institute, 2005.


