UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF CAPACITY AND LEVEL-OF-SERVICE FOR UNINTERRUPTED EXCLUSIVE MOTORCYCLE LANES IN MALAYSIA

HUSSAIN HAMID

T FK 2006 105
DEVELOPMENT OF CAPACITY AND LEVEL-OF-SERVICE FOR UNINTERRUPTED EXCLUSIVE MOTORCYCLE LANES IN MALAYSIA

By

HUSSAIN HAMID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

August 2006
DEDICATION

This work is lovingly dedicated to my late mother, Hajjah Rahimah binti Mohd. Ghouse and late father, Hamid bin Ahmad. May Allah bless their soul.

This work is also passionately dedicated to my beloved wife, Dr. Raja Zarina Raja Shahardin, my three little angels; Wan Nur Hasya Hussain, Wan Nur Hilman Hussain, Wan Nur Hadeeba Hussain, and my father-in-law; Lt. Col. (B) Raja Shahardin Raja Rome for their understanding, sacrifices and supports throughout the times that I have been working to accomplish this research.
In developing ASEAN countries, the key road accident problems arise from the high proportion of motorcycles in the mixed vehicle population. Considering that motorcycles are popular mode of personal travel and that they are highly numbered on the roads, the provision of exclusive motorcycle lanes is expected to reduce accidents and improve motorcycle safety. Studies have proven that segregation is the best engineering practice to save lives of motorcyclists. Acknowledging these benefits, the Malaysian government has adopted a policy to provide exclusive motorcycle facilities along its new highways and federal roads. The need to provide this special facility has brought to light the deficiencies in studies related on motorcycle traffic sciences, operations and facility design.

This research initially attempts to establish the characteristics of key components of a motorcycle-traffic system in Malaysia, i.e. the motorcycle-rider unit, motorcyclist space requirement and riding manner along motorcycle lane of various lane widths. Then, it seeks to establish the
fundamental motorcycle speed-flow-density relationships along uninterrupted motorcycle lanes in Malaysia. This would enable the maximum motorcycle flow, critical speed and critical density at capacity conditions to be estimated. Finally the level-of-service criteria for an exclusive motorcycle lane facility would be developed, thus allowing the motorcycle design charts and tables to be produced.

To understand the key components of a motorcycle-traffic system, digital recordings of motorcyclists along the existing motorcycle lanes in Malaysia were captured. Basic dimensions of a motorcycle/ rider unit were directly measured. The separation distance between side-by-side motorcyclists was obtained by employing the digital recording technique. The motorcyclist operating space was then established. Three-stages of field and experimental studies was conducted to observe the motorcyclists riding manner along various lane widths from low to high volume conditions.

To establish the fundamental motorcycle speed-flow-density relationships and to develop the level-of-service criteria, the aggregated data from 8 sites ranging from the stable flow to unstable conditions were plotted. A simple linear regression analysis was conducted on the motorcycle speed on motorcycle density function to obtain the best linear regression equation that describes the relationship. Once the motorcycle speed-density relationship was established, the motorcycle speed-flow and motorcycle flow-density relationships were derived. The demarcation of the level-of-
service boundaries for the uninterrupted exclusive motorcycle lanes was
guided by the volume-capacity ratio (v/c) and service flow rates.

Results of the research revealed that the small- and medium-sized type
motorcycles (150 c.c. and below) are the commonly used type in Malaysia.
A single static motorcyclist spans about 0.8 m wide, but requires a mean
width of 1.3 m to operate. In a lane width of 1.7 m or below, motorcycle flow
applies the lane or headway concept. While in lanes of width between
1.7 m and 3.4 m, the motorcycle flow adopts the space concept. This
highlights that 1.7 m is the optimum lane width where motorcyclists would
travel in a single file, even during low speeds and high motorcycle flow
conditions. There is not enough space for faster motorcyclists to pass the
slower ones within the 1.7 m motorcycle lanes.

In the headway concept ($W \leq 1.7$ m), capacity is reached at a maximum
motorcycle flow of 3306 mc/hr/lane, corresponding to a critical speed of
13 km/hr and critical density of 235 mc/km/lane. As for the space concept
($1.7 \ m < W \leq 3.4$ m), capacity occurs at a maximum motorcycle flow of
2207 mc/hr/m. This corresponds to a critical motorcycle speed of 13 km/hr
and critical motorcycle density of 0.166 mc/m² (or space of 6.0 m²/mc).
Based on the speed-flow-density relationships and the volume-capacity
ratio, the level-of-service boundaries were demarcated. Subsequently,
tables and charts of maximum motorcycle flow rates related to level-of-
services for different motorcycle lane widths were developed.
The outcome provides useful input in developing design guidelines for
motorcycle facilities in countries with high number of motorcycles in the
effort to curb motorcycle safety problems. This study is seen as an initial effort to fill the missing link in basic research of motorcycle traffic sciences, operations and facility design that existed among various land transportation facilities, thus contributing new knowledge to the field of transportation engineering.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBENTUKAN KAPASITI DAN PARAS PERKHIDMATAN BAGI LALUAN KHAS MOTOSIKAL TIDAK TERHALANG DI MALAYSIA

Oleh

HUSSAIN HAMID

Ogos 2006

Pengerusi : Profesor Ir. Radin Umar Radin Sohadi, PhD
Fakulti : Kejuruteraan

Masalah keselamatan jalan raya yang utama di negara-negara ASEAN yang sedang membangun adalah berpunca daripada bilangan motosikal yang tinggi di dalam populasi kenderaannya yang pelbagai. Memandangkan motosikal merupakan mod perjalanan persendirian yang diminati dan juga menyumbang sebagai bilangan kenderaan yang sangat tinggi di jalan raya, maka penyediaan kemudahan laluan khas motosikal dijangka dapat mengurangkan kemalangan dan meningkatkan keselamatan pengguna motosikal. Kajian telah membuktikan bahawa pembinaan laluan khas motosikal merupakan salah satu amalan kejuruteraan yang terbaik bagi menyelamatkan nyawa pengguna motosikal. Berdasarkan kepada kebaikan-kebaikan ini, kerajaan Malaysia telah menetapkan suatu polisi untuk menyediakan kemudahan laluan khas motosikal di sepanjang lebuh raya baru dan jalan raya persekutuan. Keperluan di dalam menyediakan kemudahan khas untuk penunggang motosikal ini menunjukkan bahawa terdapat kekurangan penyelidikan
b berkaitan bidang sains trafik, operasi dan rekabentuk kemudahan motosikal.

Hasil kajian menunjukkan bahawa motosikal bersaiz kecil dan sederhana (150 c.c. ke bawah) merupakan jenis motosikal yang paling banyak digunakan di Malaysia. Penunggang motosikal dalam keadaan statik mempunyai ukuran 0.8 m lebar, sementara penunggang motosikal pada puratanya memerlukan kelebaran minimum 1.3 m untuk beroperasi. Bagi laluan motosikal berkelebaran 1.7 m atau kurang, aliran motosikal adalah berdasarkan konsep lorong atau ‘headway’. Bagi laluan motosikal berkelebaran di antara 1.7 m dan 3.4 m, aliran motosikal adalah berdasarkan konsep ruang. Ini menunjukkan bahawa untuk 1.7 m merupakan kelebaran optimum laluan motosikal di mana penunggang motosikal akan menunggang mengikut satu barisan, walau pun di dalam keadaan di mana kelajuan motosikal adalah sangat rendah di dalam aliran motosikal yang tinggi. Ruang adalah tidak mencukupi bagi penunggang
motosikal yang lebih laju untuk memotong penunggang motosikal yang bergerak perlahan di dalam laluan motosikal berkelebaran 1.7 m.

Hasil kajian juga menunjukkan bahawa di bawah konsep ‘headway’ \(W \leq 1.7\text{m}\), kapasiti dicapai pada aliran motosikal maksimum 3306 motosikal/jam/lorong yang bersamaan dengan kelajuan kritikal 13 km/jam dan ketumpatan kritikal 235 motosikal/km/lorong. Bagi konsep ruang pula \(1.7\text{ m} < W \leq 3.4\text{ m}\), kapasiti berlaku pada aliran motosikal maksimum 2207 motosikal/jam/m. Nilai ini adalah bersamaan dengan kelajuan kritikal 13 km/jam dan ketumpatan kritikal 0.166 motosikal/m\(^2\) (atau ruang 6.0 m\(^2\)/motosikal). Berdasarkan kepada perkaitan kelajuan-aliran-ketumpatan dan juga lengkungan kelajuan-aliran-ruang di bawah konsep ruang, sempadan-sempadan paras perkhidmatan dapat ditentukan. Seterusnya, carta-carta aliran motosikal maksimum yang berkaitan dengan paras-paras perkhidmatan bagi laluan motosikal pelbagai kelebaran telah dihasilkan.

Hasil-hasil kajian adalah berguna di dalam menghasilkan panduan merekabentuk kemudahan laluan motosikal terutamanya bagi negara-negara yang mempunyai bilangan kenderaan motosikal yang tinggi. Kajian ini dianggap sebagai usaha awal di dalam mengisi ketiadaan maklumat di dalam penyelidikan sains trafik, operasi dan rekabentuk kemudahan motosikal yang telah lama wujud di antara pelbagai jenis kemudahan pengangkutan darat yang lain. Justeru itu, kajian ini menyumbangkan pengetahuan yang baru di dalam bidang kejuruteraan pengangkutan.
ACKNOWLEDGEMENTS

First and foremost, I wish to thank God for giving me good physical health, mental strength, perseverance and dedication towards completing this research work.

I am highly indebted to my supervisor, Prof. Ir. Dr. Radin Umar Radin Sohadi, Faculty of Engineering, University Putra Malaysia who has been very helpful and supportive throughout the entire process of this research works. His critical comments, clear guidance and motivations were invaluable in ensuring that I am continuously along the right track throughout this entire research.

I wish to express my appreciation to the supervisory committee, Assoc. Prof. Dr. Ahmad Farhan Mohd. Sadullah, School of Civil Engineering, University Sains Malaysia (USM) for his critical comments and ideas pertaining to this work. I also appreciate his trips from USM, Penang to UPM, Selangor to attend my presentations on the progress of the research works to the supervisory committee. My utmost gratitude is also due to the supervisory committee, Ir. Dr. Dadang Mohamad Ma’soem, Faculty of Engineering, University Putra Malaysia for his invaluable guidance, comments and support to ensure the success of this research.

I am much indebted to Law Teik Hua, Faculty of Engineering, University Putra Malaysia for his advises and few short lectures pertaining to
Statistical Modelling and SPSS. His clear and simple explanations has somewhat gave me a new perception about Engineering Statistics.

My sincere thanks to Ir. Dr. Safry Kamal Hj. Ahmad (Public Works Department, Malaysia), Nafisah Abdul Aziz (Roadcare’s Technical Manager), Hj. Aznam Abdul Rahim (Roadcare’s Regional Manager, Selangor) and team, and Mohamed Marzuki Mohamed Hassan for their kind assistance in ensuring that the experimented study along the motorcycle lane of Federal Highway Route 2 (F02), Selangor near Kg. Kerinci could be successfully conducted. Kind appreciations are also due to Syed Amir Syed Abdul Rahman, Nik Muhamad Azhar Nik Mustapha for assisting me with the data collections along the F02 highway and experimented study in the campus of University Putra Malaysia.

Thank you very much indeed to Mohamed Marzuki Mohamed Hassan and Raja Norashikin Raja Shahardin for their assistance and advice pertaining to graphic works for the figures and illustrations.

Lastly, but not least, my sincere appreciation to the National Science Council, Intensification of Research in Priority Areas (IRPA), Malaysia for the grants, and to all who had directly or indirectly contributed to the completion of this research.
I certify that an Examination Committee has met on 9 August 2006 to conduct the final examination of Hussain Hamid on his Doctor of Philosophy thesis entitled “Development of Capacity and Level-of-Service for Uninterrupted Exclusive Motorcycle Lanes in Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Wong Shaw Voon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ratnasamy Muniandy, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Kulanthayan K C Mani, PhD
Faculty of Medicine and Medical Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ian Johnston, PhD
Professor
University of Monash
Australia
(External Examiner)

HASANAH MOHD GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Radin Umar Radin Sohadi, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ahmad Farhan Mohd. Sadullah, PhD
Associate Professor
School of Civil Engineering
Universiti Sains Malaysia
(Member)

Dadang Mohamad Ma'soem, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 JANUARY 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HUSSAIN HAMID

Date: 18 DECEMBER 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Motorcycle Safety Problems in ASEAN Countries 1
1.2 Segregation of Motorcycles: An Effective Road Safety Engineering Program 3
1.3 Benefit-Cost Ratio of Exclusive Motorcycle Lanes 4
1.4 Problem Statement 5
1.5 Objectives of the Study 9
1.6 Relevance of the Study 10
1.7 Scope of Study 11
1.8 Organisation of the Thesis 12

2 LITERATURE REVIEW

2.1 Key Components of a Traffic System 13
2.2 Traffic-stream Parameters 14
 2.2.1 Volume and Flow 14
 2.2.2 Speed 15
 2.2.3 Density 18
2.3 Highway Capacity Manual 19
 2.3.1 Capacity 20
 2.3.2 Level-of-Service 21
2.4 Facilities for Vulnerable Road Users 25
 2.4.1 Motorcycle Track 25
 2.4.2 Bicycle Facilities 27
 2.4.3 Pedestrian Facilities 33
2.5 Calibration of Basic Speed-Flow-Density Relationships 38
 2.5.1 Field Data Observations 40
 2.5.2 Mathematical Description of Speed-Flow-Density Relationships 41
 2.5.3 Statistical Modelling of Speed-Density Relationships 42
 2.5.4 Speed-Density Models from Past Studies 45
 2.5.5 Derivation of Flow-Speed and Flow-Density Relationships 52
 2.5.6 Determining Capacity from Speed-Flow-Density Models 54
3 METHODOLOGY
3.1 Phase 1-Defining the Key Components of a Motorcycle Traffic System
 3.1.1 Sites Reconnaissance
 3.1.2 Sites Selection and Criteria
 3.1.3 Standard Field Parameters and Measuring Equipment
 3.1.4 Pilot study
 3.1.5 Defining the Design Motorcycle
 3.1.6 Defining Static Space of Motorcycle/Rider Unit
 3.1.7 Defining Operating Space of Motorcycle/Rider Unit
 3.1.8 Defining Riding Manner Along the Exclusive Motorcycle Lanes
3.2 Phase 2-Motorcycle Speed-Flow-Density Models, Capacity and LOS Boundaries of Exclusive Motorcycle Lanes
 3.2.1 Modelling Motorcycle Speed-Flow-Density
 3.2.2 Determining Capacity for Exclusive Motorcycle Lanes
 3.2.3 Defining LOS for Exclusive Motorcycle Lanes

4 CHARACTERISTICS OF KEY COMPONENTS OF MOTORCYCLE-TRAFFIC SYSTEM IN MALAYSIA
4.1 The Design Motorcycle
4.2 Static Space of Motorcycle/Rider Unit
4.3 Operating Space of Motorcycle/Rider Unit
4.4 Riding Manner along the Exclusive Motorcycle Lanes
 4.4.1 Stage 1: Field Study along F02 Highway
 4.4.2 Stage 2: Experimented Study at UPM Campus
 4.4.3 Stage 3: Experimented Study at F02 Highway
 4.4.4 Riding Characteristics along Various Motorcycle Lane Widths

5 MOTORCYCLE SPEED-FLOW-DENSITY RELATIONSHIPS
5.1 Observed Data
5.2 Scatter Plots of Motorcycle Speed-Flow-Density Relationships
 5.2.1 Scatter Plots of Headway Concept
 5.2.2 Scatter Plots of Space Concept
 5.2.3 New Scatter Plots of Space Concept
5.3 Motorcycle Speed-Flow-Density Models (Headway Concept)
 5.3.1 Model Fitting of Motorcycle Speed-Density Regression Model (Headway Concept)
 5.3.2 Model Validation of Motorcycle Speed-Density Regression Model (Headway Concept)
 5.3.3 Motorcycle Speed-Density Equation (Headway Concept)
 5.3.4 Established Motorcycle Speed-Flow-Density Relationships (Headway Concept)
5.4 Motorcycle Speed-Flow-Density Models (Space Concept) 125
5.4.1 Motorcycle Speed-Density Equation (Space Concept) 129
5.4.2 Established Motorcycle Speed-Flow-Density Relationships (Space Concept) 132

6 CAPACITY AND LOS BOUNDARIES FOR EXCLUSIVE MOTORCYCLE LANES 136
6.1 Determining Capacity for Uninterrupted Exclusive Motorcycle Lanes 136
6.2 LOS for Uninterrupted Exclusive Motorcycle Lanes 143
 6.2.1 Motorcycle Service Flow Rates 144
 6.2.2 Motorcycle Facility Performance and Service Measures 144
 6.2.3 LOS Designation for Motorcycle Lanes (Headway Concept) 146
 6.2.4 LOS Designation for Motorcycle Lanes (Space Concept) 154
 6.2.5 Maximum Motorcycle Flow Rates at Various LOS for Ranges of Motorcycle Lane Widths 157
 6.2.6 Sample Calculation to Estimate Service Life of Exclusive Motorcycle Lanes 160

7 DISCUSSIONS AND CONCLUSION 163
7.1 Motorcycle Characteristics and Riding Concepts 163
 7.1.1 Headway Concept 164
 7.1.2 Hybrid Concept (Headway-Space) 166
 7.1.3 Space Concept 168
7.2 Motorcycle Speed-Flow-Density Relationships 170
 7.2.1 Motorcycle Speed-Density Relationship (Headway and Space Concepts) 171
 7.2.2 Motorcycle Flow-Density Relationship (Headway and Space Concepts) 173
 7.2.3 Motorcycle Speed-Flow Relationship (Headway and Space Concepts) 175
7.3 Capacity of Uninterrupted Exclusive Motorcycle Lanes (Headway and Space Concepts) 177
 7.3.1 Maximum Flow Rates: Motorcycles vs Cars 180
 7.3.2 Maximum Flow Rates: Motorcycles vs Bicycles 181
 7.3.3 PWD (Arahan Teknik) vs Research Results 182
7.4 LOS Criteria for Exclusive Motorcycle Lanes 184
7.5 New Estimates of Benefit-Cost Ratio (BCR) 185
7.6 Conclusions 187
7.7 Further Research 190

REFERENCES 192
APPENDICES 196
BIODATA OF THE AUTHOR 221
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>LOS Criteria for Basic Freeway Segments</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Width of Cycle Lane</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>LOS Criteria for Uninterrupted Bicycle Facilities</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Pedestrian Level of Service on Walkways</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Summarised Basic Speed-Density Models</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Features of 6 Study Sites along the Exclusive Motorcycle Lane at FO2 Highway</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Motorcycles by types as observed at six sites</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Range of Motorcycle/Rider Unit Physical Measurements</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical features of 3 study sites on motorcycle lane at FO2 highway</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Descriptions of 3 experimental studies in UPM campus</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Descriptions of 3 experimented study sites at FO2 highway</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Motorcyclists riding characteristics along different lane widths</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Number of lines formed along various lane widths under low and high flow conditions</td>
<td>98</td>
</tr>
<tr>
<td>4.9</td>
<td>Motorcyclists riding manner along various lane widths under low and high flow conditions</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>Study sites and motorcycle lane widths</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>Measured and computed parameters in Headway concept (1 minute-interval)</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Measured and computed parameters in Space concept (1 minute-interval)</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of estimates and goodness-of-fit values for motorcycle speed-density regression models (Headway concept)</td>
<td>114</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of residual analysis for motorcycle speed-density regression models (Headway concept)</td>
<td>117</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary of estimates and goodness-of-fit values for motorcycle speed-density regression models (Space concept)</td>
<td>125</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary of residual analysis for motorcycle speed-density regression models (Space concept)</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>Values of parameters at capacity conditions for motorcycle facility</td>
<td>136</td>
</tr>
<tr>
<td>6.2</td>
<td>Maximum Motorcycle Flow Rates for Motorcycle Lane of various Widths at Capacity Condition</td>
<td>137</td>
</tr>
<tr>
<td>6.3</td>
<td>Difference in Motorcycle Flow Rates at Capacity between Headway and Space concepts</td>
<td>140</td>
</tr>
<tr>
<td>6.4</td>
<td>Revised Maximum Motorcycle Flow Rates for Various Motorcycle Lane Widths at Capacity</td>
<td>142</td>
</tr>
<tr>
<td>6.5</td>
<td>v/c Ratio for Basic Freeway Segments of different Free-Flow Speeds and LOS (HCM, 2000)</td>
<td>146</td>
</tr>
<tr>
<td>6.6</td>
<td>LOS Criteria for one-way Exclusive Motorcycle Lane (Headway concept)</td>
<td>153</td>
</tr>
<tr>
<td>6.7</td>
<td>LOS Criteria for one-way Exclusive Motorcycle Lane (Space concept)</td>
<td>156</td>
</tr>
<tr>
<td>6.8</td>
<td>Maximum Motorcycle Flow Rates for Various LOS and Lane Widths</td>
<td>158</td>
</tr>
<tr>
<td>7.1</td>
<td>PWD (Arahan Teknik) Values Compared to Research Results</td>
<td>183</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Registered Vehicles (by type) in Malaysia for Year 2002</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Various Types of Cycle Tracks Used</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Bikeway Clearance Requirements</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Bicycle LOS and Speed-Flow Relationships for Uninterrupted Flow</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationships between Pedestrian Speed and Density</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Relationships between Pedestrian Flow and Space</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Relationships between Pedestrian Speed and Flow</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Relationships between Pedestrian Speed and Space</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Basic Form of Speed-Flow-Density Relationships</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Illustrations of Speed-Density Hypotheses</td>
<td>46</td>
</tr>
<tr>
<td>2.10</td>
<td>Speed-Flow-Density Relationships: Greenberg Hypothesis</td>
<td>49</td>
</tr>
<tr>
<td>2.11</td>
<td>Speed-Flow-Density Relationships: Underwood Hypothesis</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Overall Research Methodology</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Observation from Overhead Pedestrian Bridge</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Unknowing Motorcyclists Moving Away from Observer</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Front View of a Motorcycle/Rider Unit</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Side View of a Motorcycle/Rider Unit</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Distances between centres of rear tyres (d1) and effective width (d2) as the faster motorcyclist passed the slower ones</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Small-sized Motorcycle (110 c.c.) commonly found in Malaysia</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Small-sized Motorcycle representing the Design Motorcycle-vehicle</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Front outline of a static motorcyclist - breadth of 0.8 m</td>
<td>85</td>
</tr>
</tbody>
</table>
4.4 Side outline of a static motorcyclist - length of 2.0 m
4.5 Side-by-side motorcyclists separation distance of 0.50 m
4.6 Operating space of 1.3 m required by a motorcyclist
4.7 Study Site 1 at FO2 highway, Selangor (W=2.4 m)
4.8 Study Site 2 at FO2 highway, Selangor (W=3.0 m)
4.9 Study Site 3 at FO2 highway, Selangor (W=3.3 m)
4.10 Experimented Study Site 4 at UPM campus (W=1.5 m)
4.11 Experimented Study Site 6 at UPM campus (W=1.9 m)
4.12 Experimented set-up at segment of motorcycle lane (W=2.0 m) near Kg. Kerinchi, FO2 highway
4.13 Approaching the experimented segment of motorcycle lane (W=2.0 m) near Kg. Kerinchi, FO2 highway
4.14 Motorcycle speed versus motorcycle flow
5.1 Scatter plot of speed-density relationship, N = 90 (Headway concept)
5.2 Scatter plot of flow-density relationship, N = 90 (Headway concept)
5.3 Scatter plot of speed-flow relationship, N = 90 (Headway concept)
5.4 Scatter plot of speed-density relationship, N = 103 (Space concept)
5.5 Scatter plot of flow-density relationship, N = 103 (Space concept)
5.6 Scatter plot of speed-flow relationship, N = 103 (Space concept)
5.7 New Scatter plot of speed-density relationship, N = 193 (Space concept)
5.8 New Scatter plot of flow-density relationship, N = 193 (Space concept)
5.9 New Scatter plot of speed-flow relationship, N = 193 (Space concept)
5.10 Residual P-P plot and Scatter plot of Model (H1) (Headway concept) 118
5.11 Residual P-P plot and Scatter plot of Model (H2) (Headway concept) 118
5.12 Residual P-P plot and Scatter plot of Model (H3) (Headway concept) 118
5.13 Relationship between motorcycle speed and motorcycle density (Headway concept) 124
5.14 Relationship between motorcycle flow and motorcycle density (Headway concept) 124
5.15 Relationship between motorcycle speed and motorcycle flow (Headway concept) 125
5.16 Residual P-P plot and Scatter plot of Model (S1) (Space concept) 128
5.17 Residual P-P plot and Scatter plot of Model (S2) (Space concept) 128
5.18 Residual P-P plot and Scatter plot of Model (S3) (Space concept) 128
5.19 Relationship between motorcycle speed and motorcycle density (Space concept) 133
5.20 Relationship between motorcycle flow and motorcycle density (Space concept) 133
5.21 Relationship between motorcycle speed and motorcycle flow (Space concept) 134
5.22 Relationship between motorcycle flow and motorcycle space (Space concept) 135
5.23 Relationship between motorcycle speed and motorcycle space (Space concept) 135
6.1 Maximum motorcycle flows for various motorcycle lane widths at capacity 137
6.2 Revised chart of maximum flow rates for motorcycle lanes of various widths at capacity 142
6.3 v/c Ratio and Free-Flow Speed Relationship for a Basic Freeway Segment (HCM, 2000) 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Motorcycle Speed-Flow Curve and LOS boundaries for uninterrupted motorcycle facility (Headway Concept)</td>
<td>153</td>
</tr>
<tr>
<td>6.5</td>
<td>Motorcycle Speed-Flow Curve and LOS boundaries for uninterrupted motorcycle facility (Space Concept)</td>
<td>156</td>
</tr>
<tr>
<td>6.6</td>
<td>Chart of Maximum Motorcycle Flow Rates for Various LOS and Lane Widths</td>
<td>159</td>
</tr>
</tbody>
</table>