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By 
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December 2009 

 

Chairman: Associate Professor Dr.-Ing. Ir. Renuganth Varatharajoo 

Faculty     : Engineering 

Nowadays, most of the designed satellites are dedicated for high performance 

missions, which require high attitude pointing accuracies. The reaction wheel is the 

most suitable satellite actuator that can provide high attitude pointing accuracies 

(0.1°-0.001°). Commonly, three or four reaction wheel configurations are used for 

a 3-axis satellite attitude control. In fact, higher power is consumed when multiple 

reaction wheels are employed. Thus, it is rather challenging to adopt multiple 

reaction wheels for the small satellite missions because of the power constraint. On 

the other hand, reaction wheels lack of the ability to remove the excess angular 

momentum and that the wheels have a limited capacity to store momentum. 

Without a momentum management control, the satellite may be uncontrollable. 

Therefore, to make the implementation of multiple reaction wheels reliable for a 

small satellite, it is necessary to find a way to minimize the wheel’s power 

consumption. Also, it is compulsory for a satellite to be equipped with a 

momentum management scheme in order to maintain the angular momentum 

within their allowable limits. Momentum management control using magnetic 

torquers are chosen in this work.  
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Indeed, the wheel’s power consumption can be lowered by particularly arranging the 

reaction wheels’ orientation onboard the satellite. In this research, several 

configurations, based on three or four reaction wheels, are investigated in order to 

identify the most suitable orientation with the total minimum power. All the related 

mathematical models are implemented in Matlab


-Simulink
TM 

software. Numerical 

simulations are performed for all the possible reaction wheel configurations with 

respect to an identical reference mission. Two simulation analyses are presented for 

their performance evaluations. First simulation focuses on the satellite attitude 

control only and the second simulation focuses on the satellite attitude control with 

momentum management control. Based on the simulations, the reaction wheel 

configuration that produces a minimum total control torque is identified, which also 

corresponds to the configuration with a minimum power intake. The wheel angular 

momentums and satellite attitude accuracies are also well maintained during the 

control task. 
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SIMULASI KAWALAN ATTITUD UNTUK SATELIT KECIL DENGAN 
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ZULIANA BINTI ISMAIL 

 

Disember 2009 

 

Pengerusi: Profesor Madya Dr.-Ing. Ir. Renuganth Varatharajoo 

Fakulti    : Kejuruteraan 

 

Pada masa kini, kebanyakan satelit yang direka bentuk adalah bertujuan untuk misi 

berprestasi tinggi, di mana keperluan kejituan attitud adalah tinggi (0.1°-0.001°). 

Roda tindak balas adalah penggerak yang paling sesuai untuk satelit kecil di mana ia 

dapat memberikan kejituan attitud yang tinggi. Kebiasaannya, tiga atau empat 

konfigurasi roda tindak balas digunakan untuk kawalan 3 paksi satelit. Menurut 

fakta, kuasa yang tinggi diperlukan apabila beberapa bilangan roda tindak balas 

digunakan. Jadi, penggunaan beberapa bilangan roda tindak balas untuk satelit kecil 

adalah tidak bersesuaian disebabkan oleh had kuasa. Selain dari itu, roda tindak balas 

juga tidak berkebolehan untuk menyingkir momentum yang terkumpul dan roda ini 

juga mempunyai kapasiti terhad untuk menyimpan momentum. Satelit mungkin akan 

hilang kawalan tanpa pengurusan kawalan momentum. Oleh itu, adalah perlu untuk 

meminimumkan penggunaan kuasa oleh roda tindak balas agar penggunaannya di 

dalam satelit kecil dapat direalisasikan. Juga, adalah perlu untuk melengkapkan 

satelit dengan skim pengurusan momentum untuk memastikan momentum roda 

tindak balas sentiasa berada di dalam had yang optimum.  Penggerak kedua (rod 

magnetik dan penujah) boleh digunakan untuk tujuan pengurusan kawalan 
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momentum. Di dalam kajian ini, pengurusan kawalan momentum adalah 

menggunakan rod magnetik.  

 

Sebenarnya, penggunaan kuasa oleh roda tindak balas boleh diminimakan melalui 

penyusunan roda tindak balas yang sesuai di dalam satelit. Di dalam kajian ini, 

beberapa konfigurasi yang terdiri dari tiga atau empat roda tindak balas diselidik 

untuk mengenalpasti susunan roda tindak balas yang paling sesuai dengan jumlah 

kuasa paling minimum. Semua model matematik yang berkenaan dilaksanakan di 

dalam perisian Matlab


-Simulink
TM

. Simulasi dijalankan untuk kesemua susunan 

roda tindak balas yang dicadangkan berdasarkan rujukan misi yang tertentu. Dua 

simulasi dilakukan untuk penilaian prestasi. Simulasi pertama tertumpu kepada 

kawalan attitud satelit sahaja dan simulasi kedua tertumpu kepada kawalan attitud 

satelit beserta pengurusan kawalan momentum. Berdasarkan simulasi, konfigurasi 

roda tindak balas yang memberikan jumlah kilasan kawalan yang paling minimum 

dapat dikenalpasti. Konfigurasi ini juga menunjukkan penggunaan kuasa paling 

minimum. Simulasi juga menunjukkan kadar momentum dan attitud yang 

memuaskan sewaktu proses kawalan.  
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 General Overview 

Low cost, shorter time development, simplicity and the ability to provide valuable 

scientific returns are the main reasons of the increasing development in small 

satellites. Serious attention in their development is not only considered by the 

countries with emerging space programs but also by the developing countries. For 

developing countries, small satellites are considered as the best solution for 

enabling them to be involved in space activities (Paul and Rhoda, 2005). Thus, 

such research on small satellites has become most significant nowadays. A lot of 

effort has been put in designing small satellite; such as, miniaturization and 

optimization of all components onboard. The purpose is to reduce costs and 

development time of the satellite while retaining their high performances (Alale et 

al., 2008) 

Either larger satellites or smaller one, the same subsystems are being equipped as 

depicted in Figure 1.1. The reason is that the satellites deal with the same 

fundamental features (e.g., space dynamics, kinematics law, environmental 

disturbances, etc.) in the space environments. However, the methods and 

components integrated inside the subsystems might differ based on the satellite 

missions. There are various methods in designing the satellites, and they are 

upgraded simultaneously with the advancement of the technology. Thus, by having 

the smart design solution, any satellite can perform its mission successfully and 
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consequently provide benefits for any country that have high enthusiasm in the 

space exploration. 

 

SATELLITE 

SYSTEM 

DESIGN

Attitude Control  

System

Onboard Data 

Handling System

Payload :

(i.e., Antenna, 

Camera & Space 

Science Instrument) Electric Power 

System

Propulsion 

System

Communication 

System

Thermal System

 
 

Figure 1.1: Satellite Components 

 

 

In order to realize the satellites mission objectives with the best return in scientific 

results and the control performances, the satellites especially their payloads have to 

be strongly controllable. For instance the satellite’s antenna is pointed directly 

towards the ground station’s antenna and the camera, at a single point of trajectory, 

is targeted constantly to the desired object.  

Being stable will help the satellites to hold their target pointing steadily in the 

space environment that is susceptible to many external disturbances torques, i.e., 

Earth’s magnetic field, gravity gradient effect, solar radiation pressure and 

aerodynamic drag (Larson and Wertz, 1999). The Attitude Control System (ACS) 

therefore can be said as the one of the important subsystems that guarantees the 

stability of a satellite and its payloads. 
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1.2 Satellite Attitude Control System  

Generally, the means of accurately controlling a satellite is referred to the term of 

‘attitude’ which can be defined as an angular orientation of the satellite body axes 

with respect to a defined orbit coordinate system (Sidi, 1997).  Satellite’s attitude 

must be continuously controlled for all the duration of the mission. It can be 

controlled in many ways, and the attitude control method is usually relied on what 

types of hardware (e.g., actuators and sensors) and software (e.g., controllers) is 

being equipped. The standard closed-loop satellite attitude control system is shown in 

Figure 1.2 . 

 

Reference 
Attitude

-
+

+
 -Attitude 

Controllers

Satellite

Dynamics 

Attitude 

Actuators

Attitude 

Sensors 

External 

Disturbance 

Torques 

Error
 Signal

Control 
Torques

Applied  
Torques

Actual 
Attitude

 
 

Figure 1.2: Block Diagram of a Closed-Loop Satellite Attitude Control System 
 

 

The objective of the control loop is to ensure the current attitude of the satellite 

approximately equal to the satellite’s reference attitude. The sensors measure the 

orientation of the satellite. The controller calculates the command torque to be 

applied by the actuators based on the attitude error in order to counteract the 

external disturbance torques and then correcting the satellite’s attitude.  Generally, 

the control method and the types of actuator or sensor to be utilized by a satellite 
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are chosen based on the satellite’s mission requirements (e.g., cost, lifetime, 

pointing accuracy and maneuverability) and satellite’s applications (e.g., remote 

sensing, communications, space explorations, technology demonstrations, etc).   

1.3 Satellite Attitude Control Methods  

In the earliest day of small satellite developments, the passive control methods were 

usually adopted for attitude stabilization due to their attractive low cost and hardware 

simplicity. However, only poor attitude accuracy and limited control torques can be 

offered from these low cost methods (Chen et al., 2000; Silani and Lovera, 2005). 

The achievement of typical attitude accuracy with comparison between passive and 

active control techniques are simplified in Figure 1.3.  

 

ATTITUDE 

CONTROL 

METHODS

PASSIVE CONTROL 

METHOD

ACTIVE CONTROL 

METHOD

Gravity 

Gradient 

Control

Spin 

Stabilized

Momentum bias 

system: 

Momentum 

wheel

Reaction 

control system: 

Thrusters

Accuracy: ± 1-5 deg

Accuracy: ± (0.1- 1) deg

Magnetic 

Control

Accuracy: ± 5 deg

Zero-momentum 

system: 

Reaction wheel

Control Moment 

Gyros

Accuracy: ± (0.1-1) deg

Accuracy: ± (0.001-1) deg

Accuracy: ± (0.01- 1.0) deg

 
 

Figure 1.3: Satellite Attitude Control Methods 

 

 

Basically, high attitude accuracy and 3-axis attitude control can be achieved by the 

active control methods. For small satellites mission however, the use of control 
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moment gyros and thrusters are considered as unreasonable options due to their high 

mass budget and high fuel consumption, respectively (Sidi, 1997). The reaction 

wheel and momentum wheel are more appropriate for small satellites. Reaction 

wheel and momentum wheel are distinguished by the nominal spin rate of the 

wheels. Reaction wheels have zero nominal angular velocity (zero momentum), 

while momentum wheels have a nominal spin rate above zero to provide a nearly 

constant angular momentum (bias momentum). The combination of a single 

momentum wheel along pitch axis and 2-axis magnetic torquers along the roll and 

yaw axes have been popular in many low cost small satellite missions. However, 

their achieved attitude pointing accuracies were still inadequate for high performance 

missions. 

Alternatively, either two or three reaction wheels configuration are employed for a full 

3-axis attitude control and high attitude pointing accuracies. A set of four reaction 

wheels is a common option for a satellite, in which the last wheel can be a back-up in 

case of any other operated wheel fails. Reaction wheels act as a source of action-

reaction energy to generate the control torques. The reaction wheel concept relies on 

the principle angular momentum conservation. When a satellite rotates one way due to 

the disturbance torque, the reaction wheel will be counter rotated to produce a same 

magnitude reaction torque in order to correct the attitude (Sidi 1997). Typically, 

reaction wheel consists of a motor that provides torque to drive the wheel, high-inertia 

rotor, wheel drive electronic and housing to place all components, see Figure 1.4.  
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(a) 

 

(b) 

Figure 1.4: (a) Reaction Wheel Cross-Sectional View by Ithaco 

                 (b) Reaction Wheel by Sunspace (Walchko, 2003) 

 

1.4 Motivation 

Actually, the effectiveness of reaction wheels as satellite actuators is already well 

known. The famous Hubble Space Telescope (HST) and Midcourse Space 

Experiment (MSX) spacecraft have proven the capability of reaction wheels in 

controlling the spacecraft attitude. The pointing control system for both the 

spacecraft consists of four reaction wheel assemblies for higher attitude pointing 

accuracies, i.e., ±0.00002º and ±0.0014º, respectively (Beals et al., 1988 and 

Radford et al., 1996). However, it is important to point out that the reaction wheel 

has been also used in many small satellites such as BIRD, ODIN and MOST 

microsatellites (Berge et al., 1997; Jacobsson et al., 2002; Zee et al., 2002 and 

Brieβ et al., 2005). 

It is evident that the ACS determines the success of the satellite missions. The reaction 

wheel is the most suitable small satellite actuator that can provide high attitude 

pointing accuracies. Having precision pointing, high performance missions can be 

accomplished. Therefore, small satellite attitude control using the reaction wheels is 

indeed an important subject of research. 
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1.5 Problem statements 

The ACS is one of the highest power consumers of all of the satellite subsystems, see 

Table 1.1. 

Table 1.1: Power Consumption of Satellite Subsystems (Larson and Wertz,     

                       1999)       

Satellite Subsystems %  of operating power (~200W) 

Payload 40 

Propulsion 0 

Attitude Control 15 

Communications 5 

Data Handling 5 

Thermal  5 

Power 30 

Structure 0 

 

In fact, higher power is consumed when multiple reaction wheels are employed. The 

power represents the cost. Thus, it is rather challenging to adopt multiple reaction 

wheels for the small satellite missions because of the power constraint. 

    Table 1.2: Power consumption of ACS (Larson and Wertz, 1999) 

Attitude Control Hardware Typical Power (Watt) 

Earth Sensor 2 to 10 

Sun Sensor 0 to 0.2 

Star Sensor 2 to 20 

Magnetometer 0.2 to 1 

Gyroscope 5 to 20 

Processors 2 to 25 

Reaction Wheels 10 to 110 

Magnetic torquers 0.6 to 16 
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Table 1.2 gives an overview of the required power by typical attitude control 

hardwares. Note that, the reaction wheel’s power consumption varies with respect 

to the wheel speed and the control torques. Thus, under high control torque 

demands, the amount of power can increase up to 110 W in order to drive the 

motor to spin the reaction wheel (Larson and Wertz, 1999). Therefore, to make the 

implementation of multiple reaction wheels reliable for a small satellite, it is 

necessary to find a way to minimize the wheel’s power consumption. Particularly 

arranging the reaction wheels’ orientation onboard satellites actually can minimize 

the consumed power in the attitude control thus reduces the mission cost as well. 

Moreover, reaction wheel lacks capability to remove the excess angular momentum 

that accumulates over time. Therefore, the reaction wheels’ angular momentum 

unloading scheme is needed so that the wheel speed is always within the acceptable 

limit. Magnetic torquers have been used for angular momentum unloading scheme in 

this work. In this regards, suitable attitude control strategies are required for a small 

satellite equipped with the combination of reaction wheels and magnetic torquers as 

the control actuators. 
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1.6 Research Objectives 

Suitable attitude and wheel angular momentum control strategies for small satellites 

using multiple reaction wheels and magnetic torquers are proposed in this thesis. The 

aims of this research are: 

 To implement the attitude control and momentum control laws of a satellite 

attitude control system using reaction wheels and magnetic torquers. 

 To seek and investigate the best orientation of reaction wheels onboard a 

satellite corresponding to a minimum power consumption. 

 To implement the wheel angular momentum unloading techniques magnetic 

torquers without compromising satellite attitude controls. 

1.7 Scope of Study 

This research performs a study of reaction wheels’s configurations for a 3-axis small 

satellite attitude control, which includes the reaction wheel angular momentum 

management controls using magnetic torquers. The study is performed through the 

mathematical modeling and simulation analysis using Matlab


-Simulink
TM

. Two 

simulation analyses are performed i.e., first for only the satellite attitude control and 

second is for the satellite attitude control with wheel angular momentum unloading 

controls. Conventional PD (proportional-derivative) and PI (proportional-integral) 

type controllers are employed to effectively control the satellite system with respect 

to its attitudes (roll, pitch and yaw) considering three and four reaction wheel 

systems in the presence of disturbance torques in two different inclinations. 
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1.8 Thesis Outline 

In this first chapter, a brief description about small satellites and attitude control 

methods are introduced, which is focused on reaction wheels. Apart from that, 

motivation, problem statement and objective of the research are also presented. 

Chapter 2 presents literature review which includes the previous and current 

researches on the 3-axis satellite attitude control using reaction wheels. It covers the 

implementation of different control laws, issues on the reaction wheel’s angular 

momentum unloading and the reaction wheel power requirement. 

 Chapter 3 details all the satellite fundamental theories, which are used in this study. 

The standard satellite attitude dynamics and kinematics equation are formulated. The 

reaction wheel’s control strategies and the angular momentum unloading scheme are 

also presented in the chapter.   

The numerical simulations based on the proposed control strategy are presented in 

Chapter 4. The satellite attitude control and wheel angular momentum unloading 

performances for all the test cases are presented and discussed as well. 

The conclusion is drawn in Chapter 5 and some suggestions are given for future 

research works.  
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