
 
 

UNIVERSITI PUTRA MALAYSIA 

 
 
 
 
 
 
 
 
 
 
 

CHU BEE WANG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2009 115 

DEVELOPMENT OF MACHINABILITY DATA MODEL FOR END 
MILLING USING ARTIFICIAL NEURAL NETWORKS 



© C
OPYRIG

HT U
PM

DEVELOPMENT OF MACHINABILITY DATA MODEL FOR END 

MILLING USING ARTIFICIAL NEURAL NETWORKS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

CHU BEE WANG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfilment of the Requirements for the Degree of Master of Science  

 

June 2009 

 



© C
OPYRIG

HT U
PM

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To: 

 

Dad and Mom  

Sisters Bee Lan, Bee Sin, Mei Yea and Brother Chang Jie  

 

Teachers and Guides 

 

Friends and Companions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 iii 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Master of Science 

 

 

DEVELOPMENT OF MACHINABILITY DATA MODEL FOR END 

MILLING USING ARTIFICIAL NEURAL NETWORKS 

 

By 

 

CHU BEE WANG 

 

June 2009 

 

 

Chairman: Wong Shaw Voon, PhD 

 

Faculty: Engineering 

 

 

Machinability data is a crucial factor affecting manufacturing cost and quality.  Two 

artificial neural network machinability data models have been developed for the 

recommendation of proper cutting speed and feed rate for the peripheral end milling 

process.  The first model is for single tool of high speeds steel with inputs of material 

hardness, cutter diameter and ration of radial depth of cut to cutter radius. An 

identical model is developed with an additional input of cutter tool type has shown to 

be are able give appropriate recommendation of cutting speed and feed rate. The 

models were trained and tested with data from the most general and widely used 

Machining Data Handbook by Metcut and Associates. Model A and B results in the 

best least MSE of 4.91 x 10
-5

 and 1.61 x 10
-4

 respectively, after being trained for 3 x 

10
-8 

iterations. The development aspects of the models, the mapping ability of 

hyperbolic tangent functions in perspective of summation neurons used to develop 

the neural network model are discussed.  The minimum number of hidden neurons 

needed for mapping stepped pattern using hyperbolic tangent function was analysed. 

Two hidden layer networks are able to represent the nonlinearity of the machinability 
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data to be modelled.  The evaluation of the network is enhanced with the inclusion of 

standard deviation.  
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Data kebolehmesinan merupakan faktor yang penting dalam menentukan kos dan 

kualiti hasil buatan. Dua model data kebolehmesinan telah dibangunkan 

menggunakan rangkaian neural buatan untuk memberi cadangen berkenaan kelajuan 

pemotong dan kadar suapan pemotong semasa proses pemotongan pengisar hujung 

tepi.  Model yang pertama dibangunkan untuk hanya satu jenis pemotong iaitu keluli 

kelajuan tinggi, dengan mengambil kira tiga input iaitu kekerasan bahan yang 

dipotong, diameter pemotong dan nisbah kedalaman jejari potongan kepada diameter 

pemotong.  Satu lagi model serupa yang telah dibangunkan untuk mengambil kira 

jenis pemotong ke dalam model tersebut, juga diperhatikan dapat memberikan 

cadangan kelajuan pemotongan dan kadar suapan yang sesuai. Kedua-dua model 

telah diajar dan diuji dengan data yang diperolehi dari “Buku Panduan Data 

Pemotongan” oleh Metcut Research dan Associates, salah satu panduan data 

kebolehmesinan yang paling am dan luas dipakai.  Selepas dilatih sebanyak 3 x 10
-8 

ulangan, Model A and B mencapai keputusan purata kuasa dua ralat yang terendah 

sebanyak 4.91 x 10
-5

 dan 1.61 x 10
-4

 masing-masing. Aspek pembangunan kedua-dua 
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model tersebut, kebolehan pemetaan fungsi tangen hiperbolik dari perspektif neuron 

pertambahan yang dipakai untuk membangunkan model tersebut telah dibincangkan. 

Bilangan minimum neuron tersembunyi yang diperlukan untuk memetakan corak 

tangga menggunakan fungsi tangen hiperbolik telah dianalisa. Rangkainan neural 

dengan dua lapisan tersembunyi didapati boleh mewakili ketidakselarian data 

kebolehmesinan yang ingin dimodelkan.  Penilaian rangkaian telah dipertingatkan 

dengan mengambil kira kriteria sisihan piawai.   
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CHAPTER 1 

INTRODUCTION 

1.1 Machining and Machinability Data 

Manufacturing is critical to the economic welfare and living standard of a country, as 

the living standard is determined primarily by the goods and services available to its 

people.  Manufacturing adds value to raw materials by converting them into saleable 

goods.   Machining is the process of removing unwanted material from a workpiece 

in the form of chips.  If the workpiece is metal, the process is often called metal 

cutting or metal removal.  United States industries annually spend $60 billion to 

perform metal removal operations because the vast majority of manufactured 

products require machining at some stage in their production, ranging from relatively 

rough or nonprecision work, such as cleanup of castings or forgings, to high-

precision work involving tolerances of 0.0001 inch or less and high quality finishes.  

Thus machining is undoubtedly the most important of the basic manufacturing 

processes (Degarmo, Black & Kohser, 2003). 

Machining is complex due to the interaction of multiple parameters that are involved 

in the process which includes (i) the machine selected to perform the process, (ii) the 

geometry and material of the cutting tool, (iii) the properties and parameters of the 

workpiece, (iv) the cutting parameters of speed, feed, depth of cut, and (v) the 

workpiece holding devices or fixtures or jigs.  The use of proper machinability data 

during machining is important. The finished product quality, production efficiency 

and manufacturing cost are directly influenced machinability data used.   
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Improper machinability data causes damage to the work surface, unacceptable 

dimension and surface roughness tolerances, which might need rework of the surface 

or possible scraping of the part.  Production halts for tool change when the tool wears 

out.  Tools and down time are expensive, thus it is important to optimize the tool life. 

Gradual tool wear is preferred as it leads to the longest possible use of tool and the 

economic advantage of that longer use.  Tool or tool holder break cause hazards 

which endanger machinist, and incurs machine repair, tool and workpiece 

replacement costs.  Thus, proper machinability data leads to reduced industry wastes, 

machining time, and production cost, and increased product quality.  

The task of machinability data selection has long been the task of human machinist. 

The main objective of machining is to satisfy the demand of part dimensions and 

surface finish after design requirement, workpiece material and machining process 

are determined.  To achieve these, machinists are left with a wide range of possible 

speeds, feeds, depths of cut, and other machining parameters.  In order to learn the 

proper machinability data to use, machinists can (i) attend classes at the tool and 

machining centre manufacturer, or, (ii) depend on their own experience and intuition.  

Trained manpower is important to production, and world class factories are guided 

by the best trained men.  In high production workshops, it pays to send a lead 

machinist to a milling cutter school for a week, and then use them to set up each job 

on the milling machines. There, they learn the best inserts for different materials, 

feed rates and cutting speeds, rules of basic milling, and how to compute cutting 

speed for fast stock removal (Brown, 1998).  Training manpower costs company 

time and money. Expertise is not always available and is lost when they leave the 

company.  



© C
OPYRIG

HT U
PM

 3 

Traditionally, the machinist usually performs machining based on decades of 

experience without giving much thought to optimizing conditions.  Hence, product 

fabrication cost has been higher than it should be.  In the past, the problem may not 

be as pronounced because the actual cutting time is so small in proportion to the time 

a part spent on the machine for setting up, fixing and aligning the parts on machine.  

The introduction of Numerical Controlled/Computer Numerical Controlled 

(NC/CNC) machines and Computer Aided Process Planning (CAPP) has introduced 

the automation of tool change, tool path, and tool alignment tasks.  Thus, the time 

spent on actual cutting has become very significant and a competitive edge for 

company.   

NC/CNC and CAPP has also shifted the responsibility of assigning machinability 

data to part programmers and process planners.  These planners may not have the 

same experience as machinist do to accomplish this task effectively.  Further, these 

planners perform their functions in an office, receiving little feedback from the 

workshop concerning the adequacy of their plans.  They need a system to provide 

accurate machinability data efficiently.  Computer Integrated Manufacturing (CIM) 

is an integrated system recognized as the best solution to increase productivity, and 

NC/CNC and CAPP are two important components of CIM.  Therefore, the use of an 

effective computer system to provide machinability data to assist people in 

generating machinability data are critical, both in the industry and research institutes 

(Wang, 1986). 
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1.2 Problem Statements 

The importance of the proper machinability data has lead extensive efforts to capture, 

document, represent, and recommend the appropriate machinability data.  These 

result in handbooks, manuals, datasheets, tool manufacturer catalogues, database 

systems and expert systems, and mathematical equations.  

Machinability data modelling has been difficult due to large amount and variability 

of machinability data.  Manuals, datasheets, tool manufacturer catalogues are 

provided by the tool manufacturer. These machinability recommendations are 

generally very specific to the tool from the manufacturer. Bulky handbooks have 

been produced from actual data collected from workshop and laboratory 

experiments.  The most general and widely used handbook which covers a wide 

range of machining processes, tools and materials is the Machining Data Handbook 

(MDH) from Metcut and Associates (1980).   

Database systems are difficult to maintain, prone to human error in dataset record 

updating, and only able to give discreet outputs for datasets available in the database.  

Rule based expert systems are difficult to maintain when rules exceeds two hundred 

in number.   

The numerous input and output parameters involved in machinability data selection 

led to the difficulties in modelling the relationship using mathematical equations.  

The best practices for calculations, methods and procedures have been drawn 

(Degarmo, Black & Kohser, 2003; Walsh, 2001; Groover, 2002; Metcut, 1980).  
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Mathematical equations have been developed to optimize the cutting conditions in 

terms of the economics of machining.  The Taylor tool life equation (Equation 2.2 in 

Section 2.6.2) has been one of the important references in the industry to select 

proper machinability data.  Equations for calculating the economics of machining 

such as the equation for maximizing production rate and minimizing production cost 

are based on Taylor’s tool life equation.  However, the equations are limited to usage 

on the material where the relative constant for a given material, n, and parameter 

whose value depends on feed, depth of cut, work material, tooling and tool life 

criterion used, C, variables of the Taylor tool life equation are available because the 

Taylor tool life equation depends on the n and C variables which differs for different 

materials, and therefore needs many experiments and are costly to determine. This 

leads to the knowledge bottleneck (Yeo, Rahman and Venkatesh, 1988) when new 

materials and machining processes are being introduced, while the knowledge of the 

proper machinability data selection are yet to be available due to costly and time 

consuming experiments.  Additional studies and research are necessary as new tools 

and materials are developed.  Despite extensive work for the past decades, most 

development in machinability data had evolved through trial-and-error methods and 

learnt on an empirical basis.  

This study attempts to model the machinability data using artificial neural network. 

Artificial neural network (ANN) is an information processing paradigm inspired by 

the way our biological nervous system, the brain, process information.  ANN model 

is built from interconnections of processing elements (neurons) that map the system 

inputs to the outputs.  The key element of ANN is its ability to learn from example.  

After being trained, it is able to provide sensible output for the given input 
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combination which does not exists during training.  In this study, ANN act as a 

function approximation to map the input to the appropriate output without having to 

know a priori the exact relationship between the input and output parameters.  This 

replaces the need to develop exact empirical mathematical formulas for efficient and 

optimized machinability data. This will also enable the machinability data 

representation to be computerized, eliminate the use of bulky handbooks, the ability 

to be trained continuously from incomplete examples sets as new materials are 

created without the hassle of finding the exact rules and relationship of the inputs and 

outputs.  

1.3 Research Objectives  

The objectives of this study are: 

To build neural network based machinability data models for the peripheral end 

milling process. 

To train, test and validate the machinability data recommendation from the neural 

network models. 

1.4 Scope of research  

This study concentrates on machinability data representation of the peripheral end 

milling process of wrought carbon steel, which is a versatile and widely used 

machining process as the first step towards building a generalized artificial neural 
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network based machinability data model. The scope of parameters involved in this 

study is shown in Table 1.1. 

Workpiece Material Wrought Carbon Steel 

Tool Material  High Speeds Steel, Carbide 

Input Variables Cutter tool type (CT), Material hardness (MH), Cutter 

diameter (CD), Radial depth of cut (RDOC) 

Output Variables Cutting speed (CS), Feed rate (FR) 

Table 1.1 Parameters involved in neural network machinability data model. 

1.5 Contribution of Study 

This study contributes to the development of machinability data model for the 

peripheral end milling process using a method that can be trained to learn from 

example data to map the relationship between machinability data parameters, and the 

recommended the appropriate cutting speed and feed rate, which are crucial to the 

economics of machining, quality and productivity.    

The developed models have the potential to close the gap between Computer Aided 

Design (CAD) and the actual cutting process in the Computer Numerical Controlled 

(CNC) machining centre.  The specification of material hardness, tool type, cutter 

diameter, and the specified radial depth of cut is read from the CAD drawing in the 

form of G-Code. The developed neural network model will automatically 

recommend the appropriate cutting speed and feed rate to be written into the G-code 

before being sent to the CNC machining for actual machining. 
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1.6 Summary of Contents 

Chapter 1 introduces the machining processes and machinability data selection 

procedures, the difficulties in identifying appropriate machinability data, the 

objectives and scope of research, and the contribution of the study towards 

machining process. Chapter 2 highlights related work that has been carried out on the 

subjects prior to this study. The machinability data selection methods have evolved 

from conventional methods to artificial intelligence-based methods. Advantages and 

disadvantages of the methods of study is discussed that leads to the current method 

selected. Chapter 3 addresses the overall research methodology, neural network 

machinability data model developement methodology, data analysis and data 

processing methodology. Chapter 4 discusses the results achieved by the developed 

neural network based machinability data model. The justification and implication of 

the methods and parameters selection on the developed model, and advantages and 

limitation of the developed model are deliberated. The analysis of neural network 

mapping characteristics based on hyperbolic tangent function and neuron concept are 

discussed as well. Chapter 5 concludes the finding from the study and recommends 

future work for the study. 
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