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ABSTRACT 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science 

 

Crash Deformation Simulation of Tubular Structure to Determine Automotive 

Centre of Gravity 

 

 

 

By 

REZA AFSHAR HOSSEINABADI 

September 2009 

 

Chairman:     Aidy Ali, PhD 

Faculty:          Engineering 

 

In this study, the effects of crush behaviour of tubular structures have been 

investigated throughout simulation work. The axial crush was performed to predict 

the behaviour of tubular structures in terms of displacement of centre of gravity 

(COG) and mass moments of inertia (𝐼𝑦𝑦  𝑎𝑛𝑑 𝐼𝑥𝑧). 

 

Crush simulation includes two sections; close and open cross-sections respectively. 

In the case of close cross-sections, a displacement of COG of tubular structures with 

various polygonal cross-sections is numerically investigated under axial crush using 

program code of ANSYS/LS-DYNA. A subroutine is developed using this code to 

calculate the COG of deformed shape, during and after crush condition. The effect of 

wall thickness on displacement of COG is also investigated. Subsequently, a 
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procedure to find real time COG of tubular structure during and after crush is 

developed. Base on this procedure, a macro is added in the frame work of 

ANSYS/LS-DYNA to study the deformation behaviour of tubular structure by the 

accurate criteria of COG, 𝐼𝑦𝑦  𝑎𝑛𝑑 𝐼𝑥𝑧. Furthermore, the optimum number of edge of 

polygonal cross-section to have a reasonable symmetric deformed shape during crush 

is determined. It is found that the effect of number of polygonal edges on symmetric 

deformation of COG becomes more prominent as wall thickness of tubular structure 

decreases. The higher number of edges stabilizes the deformation shape. 

 

To examine the open cross-sections, the tubular structures with various Cee-shaped 

cross sections are numerically investigated. The subroutine used for the first section 

is performed again. Yet, the effect of wall thickness was also studied. Subsequently, 

the effect of opening angle of Cee becomes more prominent as the wall thickness of 

the structure decreases. As the thickness increases, displacement of the COG in crush 

direction almost stabilizes for all opening angle of Cee in the range of 100 −

900 degrees. Furthermore, variation of 𝐼𝑦𝑦  of structure with thicker wall for different 

cases of applied mass is approximately identical. As a contribution to real 

application, Cee-shaped cross-sections with higher wall thicknesses can be used in 

the form of frame structures in automotive industry in order to reduce the overall 

weight of the structure and therefore, to save more energy. 

 

The study is the continue by incorporating a developed subroutine that added in the 

pre-processing module, in the frame work of ANSYS, distribution of the extra mass 

according to specific assigned COG and calculation the first bending and torsional 

natural frequencies of the simplified model in order to maximize these frequencies 
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with final mass constraint was successfully investigated. It was found that adding the 

extra mass symmetrically about longitudinal axes of Body In White (BIW), higher 

values for first bending and torsional natural frequency is achieved. 
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ABSTRAK 

Abstrack tesis yang dikemukakan kepada Senat Universiti Putra Malaysia  

sebagai memenuhi keperluan untuk ijazah Master of Sains 

 

 

Simulasi Deformasi Remuk Struktur Berongga Bagi Penentuan Pusat Graviti 

Automotif  

 

Oleh 

 

REZA AFSHAR HOSSEINABADI 

September 2009 

 

Pengerusi:     Aidy Ali, PhD 

Fakulti:          Kejuruteraan 

 

Didalam kajian ini, kesan sifat remukkan struktur berongga dikaji dengan 

menggunakan kaedah simulasi. Remukkan arah menegak dijalankan bagi menjangka 

anjakan pusat gravity (COG) dan momen inersia (𝐼𝑦𝑦  𝑎𝑛𝑑 𝐼𝑥𝑧). 

 

Simulasi remuk kesan hentaman ini dibahagikan kepada dua bahagian: tertutup dan 

terbuka. Bagi kes tertutup, COG untuk struktur dengan polygonal keratin rentas 

dikaji secara berangka. Menggunakan program kod ANSYS/LS-DYNA. Sebuah 

pengatur caraan program di  talis untuk mengukun COG bagi perubahan bentuk, 

ketika dan selepas hentaman. Kesan ketebalan struktur berongga ini juga dikaji. 

Seterusunya, kaedah mentukan COG secara seuanasa juda dibangunkan. Berasaskan 

kaedah ini, makro ditambah didalam rangka ANSYS/LS-DYNA untuk mengkaji 
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sifat deformasi tiub COG, 𝐼𝑦𝑦  𝑎𝑛𝑑 𝐼𝑥𝑧 .  tambahan lagi, segi optimum poligonal 

keratan rentas memiliki remukkan bentuk simetri. Di dalam kajian ini, didapati 

jumlah segi poligonal adalah signifikan apabila ketebalan meningkat. Semakin tinggi 

jumlah segi, semakin stabil keadaan remukkan. 

 

Untuk mengkaji kes keratin rentas terbuka, tiub dengan beberapas bentuk Cee 

terbuka diuji. Pengatucaraan yang sama untuk kes tertutup digunakan sekali lagi. 

Kesan tebelatan juga dikaji. Kesan ketebales semakin jelas, anjakan COG disetuap 

arah semakin stabil untuk setiap sudut 100 − 900 darjah. Tambahan lagi, variasi 𝐼𝑦𝑦  

dengan beban yang seragan ditemui serupa. Sebagai sumbangan applikasi, bentuk 

Cee dengan ketebalan tinggi boleh digunakan untuk struktur automotive bagi 

mengurangkan berat seteterusnya tenaga. 

 

Kejuan ini diteruskan dengan menanbahkan pengatucaraan didalam per proses 

modul, didalam ANSYS, taburan lebihan beban mengikut keperluan spesifik COG, 

dengan mengira lenturan dan puntiran frekuensi asli, didalam model yang diubah 

suai, bagi memaksimumkan kekangan beban. Didapti, penanbahan beban secara 

simetri di ats poksi memanjang di badan automotif, lenturan dan puntiran frekuensi 

dicapai. 
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CHAPTER 1 

 

1 INTRODUCTION 

1.1. Introduction 

The performance of vehicle in the event of collision is one of the most prominent 

areas that must be considered at the design stage. For instance a dangerous situation 

resulting in injury of the occupants can occur if the deformation of vehicle body 

members extends into the passenger compartment. To ensure adequate occupant 

protection, the crash energy must be absorbed through a deformation of front-end of 

automotive body structure. 

 

All of the members, including the front-end and side members, particularly, play a 

major role in absorbing crash energy. Therefore, rising up their energy absorption 

efficiency is an important key point in improving the crashworthiness of the 

vehicle’s front-end. The side members are generally structured as thin-walled 

components which have square, rectangular or hat-shaped cross-sections. It is 

generally curved positioned below the passenger compartment due to their positional 

relationship with the suspensions and other parts. However its front portion needs to 

be kept as straight as possible in order to make them capable to withstand greater 

loads. It is evident that the ability of side members to absorb energy is efficiently 

increased by proper design so that the collapse will be in predicted manner with 

preventing their side walls collapse in bending. This type of collapse mode can be 

engineered through several innovative techniques such as placing beading or 

reinforcements at appropriate place along the side members. 
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Furthermore, it was found that aluminium columns are also connected to the vehicle 

bumpers as a crush boxes to protect the passengers and the structure itself under 

impact loading. The aluminium columns are used to absorb the initial kinetic energy 

and keep the force level sufficiently low, so that lead to prevent from damage to the 

front-end compartment. Generally, the energy absorption will take place by extensive 

folding and bending collapse of the column wall. A specific characteristic of such a 

deformation mechanism is obtained when the rate of energy dissipation is located 

over the narrow zones, while the rest of the structure experiences a rigid body 

motion. At present, an increased of interest on vehicle safety have led to a 

comprehensive research [1] of the crash response of aluminium tubes from all 

aspects, experimental, analytical and numerical means. In this study, the Finite 

Element Method (FEM) was used to locate the centre of gravity (COG) of such 

tubular structures during and after axial crush deformation in order to have an 

accurate situation of deformed shape concerning the COG. Further more it will lead 

to come out with proper criteria to decide on the behaviour of tubular structure in 

term of deformation shape. 

 

 1.2. Research Problem 

Thin-walled tubular structures are commonly used as the strengthening members in 

an automotive Body In White (BIW). Many researchers [2-20] have paid 

considerable attention on the crush behaviour of tubular structure for the past two 

decades. There have been a lot of activities on dynamic crush of tubular structures 

during recent years and most of them have been concerned with the energy absorbing 

systems of vehicles [21-29]. 
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Assessing the general deformed shape of tubular structure during crush has been 

performed based on visual observation. However, this deformation is accessible in 

finite element simulation, having an accurate situation of deformed shape concerning 

the COG of structure was the lack of studies. Hence having a subroutine in FEM will 

help the researchers to obtain the inertia properties of arbitrary tubular shapes during 

and after crush deformation, and evaluate the accuracy of phenomenon of deformed 

shape of tubular structure during and after crush. 

 

A number of automobile manufacturers have developed and produced all-aluminum 

bodies as a means of weight reduction [67]. Hence, examining the deformation 

behavior of various tubular structures made of aluminum by means of variation of 

their COG during and after crush deformation will help to extend the application of 

light materials for automotive BIW. 

 

Furthermore, the correct location of COG is prominent for engineers in Computer 

Aided Engineering (CAE) analysis, when it comes to vehicle yaw, moment and 

rotation due to impact. Yet again, at design stage, mass in CAE model should be 

evenly distributed in order to obtain the correct COG. For instance, by having some 

extra parts in new designs such as adding fuel tanks in Natural Gas Vehicle (NGV), 

having the correct COG is a very prominent issue. 

 

1.3. Research Objectives 

The objectives of the study are: 

1. To develop an algorithm that can auto adjust the location of COG of 

deformed shape, during and after crush. 
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2. To simulate the real time location of COG of the tubular structure during and 

after axial crush. 

 

3. To develop a subroutine to distribute the extra mass according to specific 

assigned COG and access the first bending and torsion natural frequencies of 

the simplified model in order to maximize these frequencies with final mass 

constraint. 

 

1.4. Scope of the Study 

The study involves finite element simulation of crushing the tubular structures with 

different polygonal and open cross-sections, incorporating the subroutine integrated 

to the post processing module, in the framework of ANSYS/LS-DYNA. The 

experimental determination of COG location during deformation is not covered in 

the scope. The verification of the developed modelled was carried out based on 

analytical establish calculation. 

 

1.5. The Layout of this Thesis 

This thesis consists of five chapters including the introduction in Chapter 1, followed 

by literature review on Chapter 2. The literature review is covered from the previous 

works have been performed by many researchers on analysis of tubular structures 

subjected to crushing using different approaches, including: experimental, theoretical 

and FEM. The COG definition and different methods used in determining COG also 

discussed in this chapter.  

 

 Chapter 3 discusses the methods used and finite element analysis procedure 

involved. In addition the procedures of subroutines that added in the post-processing 
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and pre-processing module of ANSYS/LS-DYNA code to calculate COG of 

deformed shape and adjust the COG in specified location are also discussed. Chapter 

4 presents the results and discussion of the results. Chapter 5 highlights the 

contribution to new study, conclusions and recommendations for future work.  
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