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WEIGHTED MAXIMUM MEDIAN LIKELIHOOD ESTIMATION FOR 
PARAMETERS IN MULTIPLE LINEAR REGRESSION MODEL 

By 

NORAZAN BINTI MOHAMED RAMLI 

May 2008 

Chairman: Associate Professor Habshah Midi, PhD 
Faculty: Science 

The performance of the Maximum Median Likelihood Estimator (MML) proposed 

by Hao (1992) is very inconsistent and sensitive to outliers, which results in biased 

parameter estimates. We propose Weighted Maximum Median Likelihood (WMML) 

estimators as alternatives.  The basic idea in the WMML estimation is to isolate 

outliers from the majority of the observations and use only a certain number of fittest 

observations to estimate parameters. We study in details the performance of the 

WMML estimators in real and simulated data sets. The WMML estimates are 

consistent and can be as good as the MLE estimates in outlier free data sets and more 

efficient for data sets with multiple outliers than the MLE and MML estimates. 

 

The research also develops a diagnostic method for the identification of high-

leverage points. We realize that often their presence in data set gives adverse effect 

on the inference. We propose Diagnostic-Robust Generalized Potentials (DRGP) 



technique as an alternative approach that performs well relative to current 

techniques.  

 

The WMML estimators also function as indirect methods for identifying multiple 

outliers in data sets. Visual analysis of the WMML estimates shows that the 

estimators can be a reliable method to identify multiple outliers in linear regression. 

 

We also propose Transformed Both Sides (TBS) Robust Based estimators, namely 

the TBS-WMML1 Based estimator, the TBS-WMML2 Based estimator and the 

TBS-WMML3 Based estimator for data sets with problems of outliers and non-

constant variance error terms. The problem of non-constant variance error terms is 

also known as heteroscedastic problem. To induce homoscedasticity for data sets 

with outliers, TBS-Robust Based estimators are used. The resulting estimates are 

expected to have constant variance and the resulting model is called the TBS model 

with constant variance error terms. Our analysis shows that the TBS-Robust Based 

estimators provide estimates with lower variance than the MLE and the MML 

methods when both problems of outliers and non-constant variance errors exist. 

 

The thesis also checks the variability of the WMML estimators using bootstrap 

procedures. Current bootstrap procedures such as Fixed- x  Resampling, Random- x  

Resampling and Diagnostic Before Bootstrap are not robust to outliers. To 

accommodate this problem we propose a new bootstrap procedure, which we call as 

  iv



  v

Weighted Bootstrap with Probability (WBP). In the WBP procedure, outlying 

observations are attributed with low probabilities and consequently with low chances 

of being selected in the re-sampling process. Simulation results show that in most 

instances the WBP is more robust against a given number of arbitrary outliers than 

the current bootstrap procedures.  
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Mei 2008 

Pengerusi: Profesor Madya Habshah Midi, PhD 
Fakulti: Sains 
 

Prestasi kaedah penganggaran Kebolehjadian Maksimum Median (MML) yang 

dicadangkan oleh Hao (1992) boleh menjadi tidak konsisten dan sensitif kepada data 

terpencil menyebabkan pincangan dalam anggaran parameter. Kami mencadangkan 

kaedah penganggaran Kebolehjadian Maksimum Median Berpemberat (WMML) 

sebagai alternatif. Secara asasnya, penganggaran Kebolehjadian Maksimum Median 

Berpemberat memisahkan data terpencil dan penganggaran hanya berasaskan data 

terbaik. Beberapa contoh numerik dan kajian simulasi telah dijalankan untuk menguji 

keteguhan kaedah WMML. Keputusan yang diperolehi menunjukkan, tanpa 

kehadiran titik terpencil, anggaran WMML adalah konsisten dan sebaik 

penganggaran MLE dan lebih efisyen berbanding MLE dan MML untuk data yang 

mengandungi titik terpencil berganda. 
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Kami ini juga mencadangkan satu kaedah diagnosis untuk mengenal pasti titik 

“leverage”. Kehadiran titik “leverage” memburukkan takbiran. Kami mencadangkan 

kaedah Diagnosis Potensi Teritlak Teguh (DRGP) sebagai alternatif yang 

menunjukkan prestasi yang baik berbanding dengan beberapa kaedah yang sedia ada.  

 

Kaedah WMML juga berfungsi sebagai kaedah tidak langsung untuk mengenal pasti 

titik terpencil. Analisis visual menunjukkan anggaran WMML juga boleh berfungsi 

sebagai satu kaedah untuk mengenal pasti titik terpencil dalam model regresi linear. 

 

Kami juga mencadangkan kaedah Merubah Kedua Sisi Berasaskan Penganggar 

Teguh, iaitu TBS-WMML1, TBS-WMML2 dan TBS-WMML3 untuk data yang 

mempunyai masalah ralat varians yang tidak konsisten dan titik terpencil. Masalah 

ralat varians yang tidak konsisten ini juga dikenali sebagai ralat heteroskedasti. 

Kaedah Merubah Kedua Sisi Berasaskan Penganggar Teguh (TBS-Robust Based 

estimator) digunakan untuk mencetuskan ralat homokedastisiti untuk data yang 

bermasaalah titik terpencil dan ralat varians yang tidak konsisten. Anggaran yang 

terhasil mempunyai ralat varians yang lebih konsisten dan model yang terhasil 

dikenali sebagai TBS-Berasaskan Penganggar Teguh. Analisis juga menunjukkan 

kaedah TBS-Berasaskan Penganggar Teguh menghasilkan anggaran dengan varians 

yang lebih rendah berbanding kaedah MLE dan MML apabila kedua-dua masalah 

titik terpencil dan ralat berheteroskedasti wujud bersama. 

 



Tesis ini juga menguji variasi penganggaran kaedah WMML menggunakan kaedah 

“bootstrap”. Kaedah “bootstrap” yang sedia ada seperti Pensampelan Semula - x  

Secara Tetap (Fixed- x  Resampling), Pensampelan Semula - x  Secara Rawak 

(Random- x  Resampling) dan Diagnolisis-Sebelum “Bootstrap” adalah tidak teguh 

apabila titik terpencil hadir. Untuk menyelesaikan masalah ini, kami mencadangkan 

kaedah “bootstrap” yang baru, yang kami kenali sebagai “Bootstrap” Keberangkalian 

Berpemberat (WBP). Mengikut kaedah WBP, titik terpencil akan menerima 

kebarangkalian yang rendah dan mempunyai peluang yang tipis untuk terpilih 

semasa proses pensampelan semula. Hasil simulasi dalam setiap kes kajian 

menunjukkan kaedah WBP adalah lebih teguh berbanding dengan kaedah 

“bootstrap” yang sedia ada. 
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2.7 Density plots for comparing the recalculated  for the MML 
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2.8 Density plots for comparing the recalculated  for the MML 
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2.9 Density plots for comparing the recalculated  for the MML 
estimates based on 1000 simulations (replicates), for samples of 
size 40 and outliers (0%, 10% and 20%) in Y. 
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2.10 Density plots for comparing the recalculated  for the MML 
estimates based on 1000 simulations (replicates), for samples of 
size 40 and outliers(0%, 10% and 20%) in X. 
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2.11 Density plots for comparing the recalculated  for the MML 
estimates based on 1000 simulations (replicates), for samples of 
size 40 and outliers (0%, 10% and 20%) in both 
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2.12 Density plots for comparing the recalculated  for the MML 
estimates based on 1000 simulations (replicates), for samples of 
size 100 and outliers (0%, 10% and 20%) in Y. 
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2.13 Density plots for comparing the recalculated  for the MML 
estimates based on 1000 simulations (replicates), for samples of 
size 100 and outliers (0%, 10% and 20%) in X. 
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2.14 Density plots for comparing the recalculated  for the MML 
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3.11 
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Density plots representing the s, estimated using different 
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Density plots representing the s, estimated using different 
methods. 1000 simulated clean data sets of size 100 were used.  
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3.14 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 10% outliers in Y. 
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3.15 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 20% outliers in Y.  
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3.16 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 40 were used. These data 
sets were contaminated with 10% outliers in Y. 
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3.17 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 40 were used. These data 
sets were contaminated with 20% outliers in Y. 
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3.18 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 100 were used. These data 
sets were contaminated with 10% outliers in Y. 
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3.19 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 100 were used. These data 
sets were contaminated with 20% outliers in Y. 
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3.20 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 10% outliers in X. 
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3.21 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 20% outliers in X. 
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3.22 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 40 were used. These data 
sets were contaminated with 10% outliers in X. 
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3.23 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 40 were used. These data 
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3.24 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 100 were used. These data 
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3.25 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 100 were used. These data 
sets were contaminated with 20% outliers in X. 
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3.26 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 10% outliers in both X and Y. 
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3.27 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 20 were used. These data 
sets were contaminated with 20% outliers in both X and Y. 
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3.28 
Density plots representing the s, estimated using different 
methods. 1000 simulated data sets of size 40 were used. These data 
sets were contaminated with 10% outliers in both X and Y. 
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