UNIVERSITI PUTRA MALAYSIA

SHADING RESPONSES OF THE SEAGRASS
HALOPHILA OVALIS (R. BR.) HOOK. F. FROM
TELUK KEMANG, NEGRI SEMBILAN, MALAYSIA

MOHAMMAD ROZAIMI B JAMALUDIN

FS 2008 31
SHADING RESPONSES OF THE SEAGRASS
HALOPHILA OVALIS (R. BR.) HOOK. F. FROM
TELUK KEMANG, NEGRI SEMBILAN, MALAYSIA

MOHAMMAD ROZAIMI B JAMALUDIN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2008
SHADING RESPONSES OF THE SEAGRASS
HALOPHILA OVALIS (R. BR.) HOOK. F. FROM
TELUK KEMANG, NEGRI SEMBILAN, MALAYSIA

By

MOHAMMAD ROZAIMI B JAMALUDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Masters of Science

June 2008
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

SHADING RESPONSES OF THE SEAGRASS
HALOPHILA OVALIS (R. BR.) HOOK. F. FROM
TELUK KEMANG, NEGRI SEMBILAN, MALAYSIA

By

MOHAMMAD ROZAIMI B JAMALUDIN

June 2008

Chairman: Japar Sidik Bujang, PhD
Faculty: Science

The seagrass *Halophila ovalis* from Teluk Kemang coast (2 ° 30'N, 101 ° 45'E) in Port Dickson, Negeri Sembilan was studied to elucidate its responses towards artificial shading. Responses were firstly based on autotrophic productivity of *H. ovalis* through photosynthesis experiments to determine the effects of prior acclimation to the condition of either in the field (naturally growing) or in cultures (light reduced to 85-90% of ambient conditions). Results showed that the light compensation values in field and cultured leaves (8-13 µmol m$^{-2}$ s$^{-1}$) were similar while saturation point was in the range of 268-275 µmol m$^{-2}$ s$^{-1}$ for field leaves and increased to 290-293 µmol m$^{-2}$ s$^{-1}$ for cultured leaves. A one-month long artificially imposed shading was then performed to plants in the field (50%, 65%, 80% and 95% shading relative to field light intensity) and in cultures (92% shading – Tank 1, and 96% shading – Tank 2, relative to field light intensity) and compared to unshaded plants as a control showed the following responses. Photosynthetic rates of field *H. ovalis* at two tide levels as determined using
the Biological Oxygen Demand bottle method was up to six times higher when compared to the oxygen electrode method. Leaf chlorophyll content was significantly higher from plants under shading for both field and cultured leaves compared to control where leaves from cultures (Tank 2) showed the highest value in leaf chlorophyll content (1353.40 ± 74.00 µg chlorophyll a g⁻¹, p < 0.01, and 11.92 ± 0.59 µg chlorophyll a cm², p < 0.01, by leaf fresh weight and leaf surface area respectively, and 744.30 ± 46.55 chlorophyll b g⁻¹, p < 0.01 and 6.56 ± 0.39 µg chlorophyll b cm², p < 0.01, by leaf fresh weight and leaf surface area respectively). For carbohydrates, starch and the reducing sugars of glucose, sucrose, fructose and maltose were tested for in the below-ground portions of field plants, and above-ground and below-ground portions of cultured plants. Starch was not detected in both above-ground and below-ground plant portions of both field and culture studies. Glucose content was highest among the four sugars, in both field and culture plants but not significantly different compared to the control. Changes in growth rates were the most discernible where increased shading results in decreased growth rates (3.72 ± 0.51 mm apex⁻¹ day⁻¹ from control plants, to the significantly lowest recorded growth rate value of 0.746 ± 0.205 mm apex⁻¹ day⁻¹, p < 0.01, from Tank 1 plants). Leaf morphology based on leaf length, leaf width, leaf petiole length, number of cross veins per leaf, leaf fresh weight and leaf surface area were significantly higher for leaves under shading in culture condition compared to field-shaded leaves and the control. This is substantiated by the data from Tank 2 where leaf length is 24.73 ± 0.54 mm, leaf width – 9.38 ± 0.23, leaf length-width ratio – 2.80 ± 0.030, leaf petiole length – 28.48 ± 1.03, leaf cross vein number – 14.47 ± 0.27, leaf
fresh weight – 0.0179 ± 0.00134 and leaf surface area – 2.011 ± 0.126) compared to the unshaded control (leaf length: 13.20 ± 0.54 mm; leaf width: 6.81 ± 0.29; leaf length-width ratio: 1.93 ± 0.037; leaf petiole length: 11.20 ± 1.43; leaf cross vein number: 11.40 ± 0.35; leaf fresh weight: 0.00680 ± 0.000548; and leaf surface area: 0.796 ± 0.0744). For field biomass values, there were no significant differences between shaded plants and the control.

Comparatively, culture biomass values of Tank 1 were significantly higher for both above-ground biomass (0.0127 ± 0.00238 g DW rhizome⁻¹, p < 0.01) and below-ground biomass (0.0282 ± 0.00245 g DW rhizome⁻¹, p < 0.01) compared to the unshaded control (0.0107 ± 0.000914 g DW rhizome⁻¹ and 0.0192 ± 0.00109 g DW rhizome⁻¹ for above-ground and below-ground biomass respectively). All the observations and results collated showed *H. ovalis* tolerates extreme low light conditions as low as 96% shading (80 µmol m⁻² s⁻¹) by modifying its various physical and biochemical characteristics accordingly with its light environment. This is also evident that the plant survives and continues to maintain productivity with respect to photosynthesis and carbohydrate production even under the highest shading levels imposed in both field (95% shading) and cultures (Tank 2 – 96% shading). Furthermore, it is possible to culture *H. ovalis*, although maximum growth densities equivalent to those observed in the field were not achieved. The findings suggest that lowered light availability may not be the sole causal factor for *H. ovalis* loss in a particular area. Other aspects such as epiphytic fouling and available nutrients could be more important in the loss of *H. ovalis* vegetation, although an interaction of the factor of reduced light and these other factors should not be discounted.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master of Science

SHADING RESPONSES OF THE SEAGRASS HALOPHILA OVALIS (R. BR.) HOOK. F. FROM TELUK KEMANG, NEGRI SEMBILAN, MALAYSIA

Oleh

MOHammad Rozaimi B Jamaludin

Jun 2008

Pengerusi: Japar Sidik Bujang, PhD

Fakulti: Sains

Kajian terhadap Halophila ovalis dari Teluk Kemang (2 ° 30'N, 101 ° 45'E), Port Dickson, Negeri Sembilan telah dibuat untuk melihat tindakbalas rumput laut ini kepada keredupan tiruan. Tindakbalas berdasarkan produktiviti autotrofik H. ovalis melalui beberapa eksperimen fotosintesis adalah untuk mengenalpasti kesan adaptasi tumbuhan kepada di lapangan (pertumbuhan semulajadi) atau di dalam kultur (cahaya dikurangkan ke 85-90% dari keamatan cahaya semulajadi). Hasil pemerhatian mendapati nilai kepampasan cahaya adalah tidak berbeza di antara daun dari lapangan atau daun dari kultur (8-13 µmol m⁻² s⁻¹). Manakala titik ketepuan cahaya adalah berada dalam linkungan 268-275 µmol m⁻² s⁻¹ bagi daun dari lapangan dan nilai titik ketepuan cahaya bagi daun dari kultur meningkat ke linkungan 290-293 µmol m⁻² s⁻¹. Kajian selama satu bulan telah dibuat terhadap tumbuhan di lapangan (tahap 50%, 65%, 80% dan 95% daripada intensiti cahaya lapangan) dan di dalam kultur (keredupan 92% pada Tangki 1 dan 96% keredupan pada Tangki 2) berbanding dengan kawalan tanpa keredupan
cahaya. Kadar fotosintesis H. ovalis di lapangan pada aras air surut dan pasang sederhana dan juga daripada kultur berdasarkan kaedah botol 'Biological Oxygen Demand' adalah sehingga enam kali lebih tinggi dari nilai yang didapati melalui kaedah elektrod oksigen. Kandungan klorofil pada daun tumbuhan di lapangan dan kultur yang diredukkan adalah lebih tinggi berbanding dengan kawalan di mana daun dari kultur (Tangki 2) menunjukkan nilai kandungan klorofil tertinggi (1353.40 ± 74.00 µg klorofil a g⁻¹, p < 0.01 bagi berat daun segar, dan 11.92 ± 0.59 µg klorofil a cm², p < 0.01, bagi kawasan permukaan daun, serta 744.30 ± 46.55 klorofil b g⁻¹, p < 0.01 bagi berat daun segar dan 6.56 ± 0.39 µg klorofil b cm², p < 0.01, bagi kawasan permukaan daun). Untuk kandungan karbohidrat, kanji dan empat jenis gula – glukos, sukros, fruktos dan maltos telah diuji pada bahagian tumbuhan yang di atas permukaan substrat (“above-ground”) dan di bawah substrat (“below-ground”) untuk di lapangan dan kultur. Kanji tidak dikesan pada kedua-dua bahagian tumbuhan “above-ground” dan “below-ground” untuk tumbuhan di lapangan dan kultur. Kandungan glukos adalah yang tertinggi berbanding gula yang lain tetapi nilainya tidak jauh berbeza dengan tumbuhan kawalan. Analisis kadar pertumbuhan telah menunjukkan nilai perbezaan yang paling ketara di mana didapati peningkatan kadar keredupan menyebabkan penurunan kadar pertumbuhan (pertumbuhan sebanyak 3.72 ± 0.51 mm apex⁻¹ hari⁻¹ bagi tumbuhan kawalan berbanding dengan tumbuhan pada Tangki 1 yang menunjukkan rekod nilai pertumbuhan yang paling rendah iaitu pada 0.746 ± 0.205 mm apex⁻¹ hari⁻¹, p < 0.01). Morfologi daun berdasarkan parameter kepanjangan daun, kelebaran daun, nisbah panjang-kelebaran daun, kepanjangan ‘petiole’ daun,
jumlah ‘cross veins’ untuk sehelai daun, berat daun segar, dan luas permukaan daun di dalam keadaan keredupan di lapangan dan kultur menunjukkan nilai kesemua parameter-parameter ini adalah lebih tinggi berbanding tumbuhan kawalan. Ini disokong oleh data dari Tangki 2 di mana panjang daun adalah 24.73 ± 0.54 mm, kelebaran daun – 9.38 ± 0.23, nisbah panjang-kelebaran daun – 2.80 ± 0.030, kepanjangan ‘petiole’ daun – 28.48 ± 1.03, jumlah ‘cross vein’ daun – 14.47 ± 0.27, berat daun segar – 0.0179 ± 0.00134 dan kawasan permukaan daun – 2.011 ± 0.126 jika dibandingkan dengan tumbuhan kawalan (panjang daun: 13.20 ± 0.54 mm; kelebaran daun: 6.81 ± 0.29; nisbah panjang-kelebaran daun: 1.20 ± 1.43; kepanjangan ‘petiole’ daun: 11.40 ± 0.35; jumlah ‘cross vein’ daun: 14.47 ± 0.27; berat daun segar: 0.00680 ± 0.000548; dan kawasan permukaan daun: 0.796 ± 0.0744). Bagi nilai biojisim, tiada perbezaan ketara antara tumbuhan yang direduup di lapangan dan tumbuhan kawalan. Secara bandingan, nilai biojisim bagi tumbuhan dari Tangki 1 adalah lebih tinggi (0.0127 ± 0.00238 g DW rhizome⁻¹, p < 0.01, bagi bahagian di atas permukaan substrat dan 0.0282 ± 0.00245 g DW rhizome⁻¹, p < 0.01, bagi bahagian di bawah substrat) berbanding tumbuhan kawalan (0.0107 ± 0.000914 g DW rhizome⁻¹ bagi bahagian di atas permukaan substrat dan 0.0192 ± 0.00109 g DW rhizome⁻¹ bagi bahagian di bawah substrat). Berdasarkan kesemua pemerhatian dan hasil tinjauan yang telah dijalankan, didapati *H. ovalis* adalah toleran kepada keadaan keamatan cahaya yang rendah di mana tumbuhan ini melalui perubahan secara fizikal dan biokimia, mengikut kedapatan cahaya di persekitarannya. Ini juga terbukti bahawa tumbuhan ini mampu hidup dan mengekalkan produktiviti walaupun pada tahap keredupan yang tinggi, iaitu
sebanyak 95% keredupan di lapangan dan sebanyak 96% keredupan di dalam kultur (Tangki 2). Adalah tidak mustahil untuk mengkulturkan *H. ovalis*, walaupun kadar maksimum bagi kepadatan pertumbuhan seperti tumbuhan di lapangan tidak tercapai. Hasil kajian ini memperlihatkan bahawa kerendahan terdapat cahawa bukan hanya faktor yang menyebabkan kehilangan *H. ovalis* di sesuatu kawasan. Aspek-aspek lain seperti “epiphytic fouling” dan kedapatan nutrien berinteraksi dengan faktor kurangnya terdapat cahaya perlu diambil kira juga.
ACKNOWLEDGEMENTS

It is with the utmost and foremost humility that I owe my thanks to the One Great God, Allah Almighty, for the success of this thesis and study. I am in gratitude to my mentor and teacher, Dr Japar Sidik Bujang for accepting me as his student, for guiding me throughout my tenure as a post-graduate candidate, and for being patient with me in my haste to graduate. My gratitude goes towards my co-supervisors, Dr Misri Kusnan and Dr Hishammudin Omar as well, for their guidance in my study.

I would also like to thank my parents, Jamaludin and Jumiah, my wife, Raja Yana, my brothers, Mohammad Roslan and Mohammad Rozmand, for their continued inspiration, support and belief in me to succeed in this endeavour. Also not forgetting are friends like Mahathir and Efrizal who ever so often had been there for me in so many ways in this journey. Many thanks are also due to lab-mates and the staff of Universiti Putra Malaysia Research Station for helping me in the whole study. Lastly, I would also like to thank anyone else not mentioned here who have helped complete this study in one way or another.

This research is made possible through the grant funded by the Ministry of Science, Technology and Environment Malaysia, under the ‘Intensification of Research in Priority Areas’ programme entitled “Seagrass taxonomy, biology and habitat characteristics: EA-001-09-02-04-0679”. Some financial and travel supports from Japan Society for the Promotion of Science (JSPS) are also acknowledged.
I certify than an Examination committee has met on the 12th of June, 2008 to conduct the final examination of Mohammad Rozaimi b Jamaludin on his Master of Science thesis entitled “Shading responses of the seagrass Halophila ovalis (R. Br.) Hook. f. from Port Dickson, Negri Sembilan, Malaysia” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and the Universiti Pertanian Malaysia (Higher Degree) Regulations1981. The Committee recommends that the student be awarded the Master of Science.

Members of the Examination Committee were as follows:

Aziz Arshad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Umi Kalsom Yusuf, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Abdul Rahim Ismail, PhD
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Phang Siew Moi, PhD
Professor
Faculty of Science
University of Malaya
Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory committee were as follows:

Japar Sidik Bujang, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Misri Kusnan, PhD
Faculty of Science
Universiti Putra Malaysia
(Member)

Hishamuddin Omar, PhD
Faculty of Science
Universiti Putra Malaysia
(Chairman)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 August 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMMAD ROZAIMI B JAMALUDIN

Date: 8th July 2008
TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	x
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xvii
LIST OF FIGURES	xx
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1 GENERAL INTRODUCTION
2 LITERATURE REVIEW
 Seagrasses and their distributions
 5
 Seagrasses from Malaysia
 7
 Importance of seagrasses and the threats to its existence
 10
 Light attenuation in the sea and its effects on seagrasses
 19
 Physiological responses to light reduction by shading
 28
 Halophila ovalis
 33

3 PHOTOSYNTHETIC LIGHT RESPONSES OF NATURALLY GROWING AND CULTURED HALOPHILA OVALIS
 Abstract
 38
 Introduction
 39
 Materials and methods
 42
 Plant material
 42
 Experimental mechanism
 43
 Leaf parameters
 44
 Graphical analyses
 45
 Statistical analyses
 46
 Results
 46
 Discussions
 50

4 IN SITU RESPONSES OF HALOPHILA OVALIS TOWARDS SHADING
 Abstract
 57
 Introduction
 59
 Materials and Methods
 63
 Study site
 63
 Shading apparatus
 65
 Analyses of plant material
 67
 Photosynthetic rates
 68
 Chlorophyll content
 69
 Carbohydrate content
 69
 Plant growth rates
 70
Leaf morphological measurements 70
Plant biomass 71
Statistical analyses 71
Results 72
Photosynthetic rates 72
Mean photosynthetic rates based on leaf fresh weight 73
Mean photosynthetic rates based on leaf surface area 76
Mean photosynthetic rates based on leaf chlorophyll content 77
Chlorophyll content 79
Mean chlorophyll a content 81
Mean chlorophyll b content 82
Mean ratio of chlorophyll a to chlorophyll b 84
Carbohydrate content 84
Mean glucose content 87
Mean sucrose content 87
Mean fructose content 88
Mean maltose content 88
Plant growth rates 89
Leaf morphological measurements 89
Mean leaf length 91
Mean leaf width 91
Mean leaf length to width ratio 93
Mean leaf petiole length 93
Mean number of leaf cross-veins 95
Mean leaf fresh weight 95
Mean leaf surface area 97
Plant biomass 97
Above-ground biomass 99
Below-ground biomass 99
Above-ground to below-ground biomass ratio 101
Discussions 101

5 RESPONSES OF HALOPHILA OVALIS TOWARDS SHADING IN CULTURES 120
Abstract 120
Introduction 122
Materials and Methods 126
Plant source 136
Plant material and shading setup 127
Analyses of plant material 132
Leaf chlorophyll content and leaf morphology 132
Above-ground versus below ground biomass and ratios 133
Carbohydrate content 133
Statistical analyses 135
Results

Photosynthesis rates
- Mean photosynthetic rates based on leaf fresh weight
- Mean photosynthetic rates based on leaf surface area
- Mean photosynthetic rates based on leaf chlorophyll content

Chlorophyll content
- Mean chlorophyll a content
- Mean chlorophyll b content
- Mean ratio of chlorophyll a to chlorophyll b

Carbohydrate content
- Mean glucose content
- Mean sucrose content
- Mean fructose content
- Mean maltose content

Plant growth rates

Leaf morphological measurements
- Mean leaf length
- Mean leaf width
- Mean leaf length to width ratio
- Mean leaf petiole length
- Mean number of leaf cross-veins
- Mean leaf fresh weight
- Mean leaf surface area

Above-ground and below ground plant biomass
- Mean above-ground and below-ground biomass
- Mean ratio of above-ground to below-ground biomass

Discussions

6 GENERAL DISCUSSIONS

Basics of seagrass shading
Study descriptions
Various responses of *H. ovalis* to shading

7 CONCLUSION

REFERENCES
APPENDIX 1 – EXPERIMENTAL METHODS
APPENDIX 2 – DATA VALUES
APPENDIX 3 – REGRESSION ANALYSIS OF FIELD EXPERIMENTS
BIODATA OF THE AUTHOR
LIST OF PUBLICATIONS PRODUCED
<table>
<thead>
<tr>
<th>No.</th>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Functions and values of seagrass from the wider ecosystem perspective.</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Characteristic differences between plants adapted or acclimated to sunny versus shady extremes in irradiance level.</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Summary of the photosynthetic rates (R_{dark}, I_c, I_k and P_{max} values) inferred from their respective curves.</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Photosynthetic irradiance values (I_c and I_k) and its corresponding plant part used from selected Halophila by exposure to graded light regimes.</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Comparisons of the photosynthetic rates between the method used in Chapter 3 (oxygen electrode method) and that used in this chapter (BOD incubations).</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>Comparisons of the photosynthetic rates between the method used in Chapter 3 (oxygen electrode method) and that used in this chapter (BOD incubations).</td>
<td>169</td>
</tr>
<tr>
<td>7a</td>
<td>Summary of the photosynthetic rates of field and cultured Halophila ovalis as recorded through oxygen electrode incubation.</td>
<td>195</td>
</tr>
<tr>
<td>7b</td>
<td>Summary of the photosynthetic rates of field and cultured Halophila ovalis as recorded through biological oxygen demand (BOD) bottle incubation method.</td>
<td>196</td>
</tr>
<tr>
<td>8</td>
<td>Summary of the chlorophyll content of field and cultured Halophila ovalis.</td>
<td>197</td>
</tr>
<tr>
<td>9a</td>
<td>Summary of starch content of field and cultured Halophila ovalis.</td>
<td>198</td>
</tr>
<tr>
<td>9b</td>
<td>Summary of sugar content of field and cultured Halophila ovalis.</td>
<td>199</td>
</tr>
<tr>
<td>10</td>
<td>Summary of growth rates of field and cultured Halophila ovalis.</td>
<td>200</td>
</tr>
<tr>
<td>11a</td>
<td>Summary of the morphology (leaf length, leaf width, leaf length to width ratio and leaf petiole length) of field and cultured Halophila ovalis.</td>
<td>201</td>
</tr>
<tr>
<td>11b</td>
<td>Summary of the morphology (leaf cross-vein number, leaf fresh weight and leaf surface area) of field and cultured Halophila ovalis.</td>
<td>202</td>
</tr>
</tbody>
</table>
Halophila ovalis.

12a Summary of the biomass of field and cultured Halophila ovalis. 203

12b Summary of above-ground to below-ground biomass ratio. 204

13 Photosynthetic rates (x ± S. E.) of Halophila ovalis based on leaf fresh weight (13a), leaf surface area (13b) and leaf chlorophyll content (13c). 244

14a Values of mean photosynthesis rates at low tide level. 245

14b Values of mean photosynthesis rates at moderate tide level. 246

15a Values of mean chlorophyll a content relative to the respective parameters. 247

15b Values of mean chlorophyll b content relative to the respective parameters. 247

15c Table 15c. Mean ratio value of chlorophyll a to b content. 248

16 Values of mean sugar content (glucose, sucrose, fructose and maltose). 249

17 Mean values of the growth rates of Halophila ovalis rhizomes from the four shading grades and control. 250

18 Mean values of the morphological measurements from the parameters of leaf length, leaf width, leaf length to width ratio, leaf petiole length, number of leaf cross-veins, leaf fresh weight and leaf surface area. 251

19a Mean values of above-ground biomass. 253

19b Mean values of below-ground biomass 253

19c Mean value of the ratio of above-ground to below-ground biomass. 253

20 Photosynthesis rates from the parameters of leaf fresh weight (20a), leaf surface area (20b) and leaf chlorophyll amount (20c). 254

21 Chlorophyll a content (21a-i, ii), chlorophyll b content (21b-i, ii) and chlorophyll a to b ratios (21c) from culture shadings. 257

22 Values of mean glucose (Table 22a), sucrose (Table 22b), fructose (Table 22c) and maltose (Table 22d) content. 262
23 Mean values of the growth rates of *Halophila ovalis* from cultures.

24 Mean morphological measurements from the parameters of leaf length, leaf width (Table 24a), leaf length to width ratio, leaf petiole length (Table 24b), number of leaf cross-veins, leaf fresh weight (Table 24c) and leaf surface area (Table 24d).

25 Mean values of above-ground and below-ground plant biomass (25a) and the mean ratio value of above-ground and below-ground biomass (25b).
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The major and important seagrass areas, associated habitats, utilization by coastal communities and other users in Peninsular Malaysia (A) and East Malaysia – Sabah (A) and Sarawak (C).</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Depth limits compiled for 31 marine angiosperm species.</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Halophila ovalis population in Teluk Kemang.</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Ulva sp. canopy upon Halophila ovalis at Tanjung Chek Jawa, Singapore.</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Halophila ovalis from Teluk Kemang covered with epiphytes.</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Theoretical progression of a photosynthesis-irradiance (P-I) curve.</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Comparisons of photosynthetic parameters of some studied seagrasses.</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Botanical classification of Halophila ovalis.</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Key to the species from section Halophila.</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>World geographical distribution of Halophila ovalis.</td>
<td>36</td>
</tr>
<tr>
<td>11a</td>
<td>Photosynthetic rates ($\bar{x} \pm \text{S. E.}$) based on leaf fresh weight by the oxygen electrode method.</td>
<td>47</td>
</tr>
<tr>
<td>11b</td>
<td>Photosynthetic rates ($\bar{x} \pm \text{S. E.}$) based on leaf surface area by the oxygen electrode method.</td>
<td>47</td>
</tr>
<tr>
<td>11c</td>
<td>Photosynthetic rates ($\bar{x} \pm \text{S. E.}$) based on leaf chlorophyll content by the oxygen electrode method</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>Location of the study site at Teluk Kemang (2° 30' N, 101° 45' E).</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Shading frames staked upon the seabed in Teluk Kemang.</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Some of the shading frames used for the field shading experiments at Teluk Kemang.</td>
<td>66</td>
</tr>
<tr>
<td>15a</td>
<td>Photosynthetic rate ($\bar{x} \pm \text{S. E.}$) of leaves from field by leaf fresh weight (FW).</td>
<td>75</td>
</tr>
<tr>
<td>15b</td>
<td>Photosynthetic rate ($\bar{x} \pm \text{S. E.}$) of leaves from field by leaf surface area (Area).</td>
<td>78</td>
</tr>
</tbody>
</table>
15c Photosynthetic rate ($\bar{x} \pm S.E.$) of leaves from field by leaf chlorophyll content (Chl).

16a Mean of chlorophylls a and b ($\bar{x} \pm S.E.$) of leaves from field samples by leaf fresh weight (FW).

16b Mean of chlorophylls a and b ($\bar{x} \pm S.E.$) of leaves from field samples by leaf surface area (Area).

16c Mean of ratio ($\bar{x} \pm S.E.$) of chlorophyll a to b of leaves from field samples.

17 Mean content of reducing sugars ($\bar{x} \pm S.E.$) in below-ground plant portions per gram of dried field samples.

18 Mean values of the growth rate ($\bar{x} \pm S.E.$) of *Halophila ovalis* rhizomes from the four shading grades and control.

19a Mean length of leaves ($\bar{x} \pm S.E.$) from field samples.

19b Mean width of leaves ($\bar{x} \pm S.E.$) from field samples.

19c Mean ratio ($\bar{x} \pm S.E.$) of leaf length to width of field samples.

19d Mean petiole length of leaves ($\bar{x} \pm S.E.$) from field samples.

19e Mean number of cross-veins ($\bar{x} \pm S.E.$) of leaves from field samples.

19f Mean fresh weight of leaves ($\bar{x} \pm S.E.$) from field samples.

19g Mean surface area of leaves ($\bar{x} \pm S.E.$) from field samples.

20a Above-ground and below ground biomass ($\bar{x} \pm S.E.$) of field samples

20b Mean of ratio ($\bar{x} \pm S.E.$) of above-ground biomass to below ground biomass of field samples

21a Theoretical diagram on the energy level flow during photosynthesis.

21b Components of the antenna proteins involved in photosynthesis.

22a Evidence of grazing on *H. ovalis* leaves by *Clithon* sp. (arrow).

22b *Clithon* sp. that grazes on *H. ovalis* leaves.

23a Sprorbid polychaete fouling on *H. ovalis* leaves.
23b The spirorbid polychaetes attached to *H. ovalis* leaf as observed under a light microscope.

24 Tank placements layout of the culture shading study.

25 Node positions of the leaves taken for analysis.

26a Photosynthetic rate ($\bar{x} \pm S. E.$) of field leaves by leaf fresh weight.

26b Photosynthetic rate ($\bar{x} \pm S. E.$) of field leaves by leaf surface area.

26c Photosynthetic rate ($\bar{x} \pm S. E.$) of field leaves by leaf chlorophyll content.

27a Mean content of chlorophylls a and b ($\bar{x} \pm S. E.$) from culture samples by leaf fresh weight.

27b Mean content of chlorophylls a and b ($\bar{x} \pm S. E.$) from culture samples by leaf surface area.

27c Mean of ratio of chlorophyll a to b ($\bar{x} \pm S. E.$) of leaves from culture.

28 Mean content of reducing sugars ($\bar{x} \pm S. E.$) in above and below-ground plant portions per gram of dried leaf cultures.

29 Mean growth rate ($\bar{x} \pm S. E.$) of *Halophila ovalis* from cultures

30a Mean length of leaves ($\bar{x} \pm S. E.$) from cultures.

30b Mean width of leaves ($\bar{x} \pm S. E.$) from cultures.

30c Mean ratio of leaf length to width ($\bar{x} \pm S. E.$) from cultures.

30d Mean petiole length of leaves ($\bar{x} \pm S. E.$) from cultures.

30e Mean number of cross-veins of leaves ($\bar{x} \pm S. E.$) from cultures.

30f Mean fresh weight of leaves ($\bar{x} \pm S. E.$) from cultures.

30g Mean surface area of leaves ($\bar{x} \pm S. E.$) from cultures.

31a Mean values of above-ground and below-ground plant biomass ($\bar{x} \pm S. E.$) from cultures.

31b Mean ratio ($\bar{x} \pm S. E.$) of above-ground and below-ground plant biomass from cultures.
Basic hypothetical relationships of the parameters under investigations done in Chapters 4 and 5.

Sucrose and starch biosynthesis and catabolism in plant cells.

Illustration of the experimental setup used for the photosynthesis analysis by the oxygen electrode method.

An example of a single sprig of *Halophila ovalis* used for analyses.

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of photosynthesis by leaf fresh weight at low water level (Figure 36a); photosynthesis by leaf surface area at low water level (Figure 36b); and photosynthesis by leaf chlorophyll content at low water level (Figure 36c).

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of photosynthesis by leaf fresh weight at moderate water level (Figure 37a); photosynthesis by leaf surface area at moderate water level (Figure 36b); and photosynthesis by leaf chlorophyll content at moderate water level (Figure 37c).

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of chlorophyll *a* content by leaf fresh weight (Figure 38a-i); field experiments of chlorophyll *b* content by leaf fresh weight (Figure 38a-ii); chlorophyll *a* content by leaf surface area (Figure 38b-i); field experiments of chlorophyll *b* content by leaf surface area (Figure 38b-ii); and chlorophyll *a* to *b* ratio (Figure 38c).

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of glucose content (Figure 39a); sucrose content (Figure 39b); fructose content (Figure 39c) and maltose content (Figure 39d).

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of leaf length (Figure 40a); leaf width (Figure 40b); leaf length to width ratio (Figure 40c); leaf petiole length (Figure 40d); leaf cross-vein number (Figure 40e); leaf fresh weight (Figure 40f) and leaf surface area (Figure 40g).

Curve-fit regression analysis of values obtained in Chapter 4 from field experiments of above-ground biomass (Figure 41a); below-ground biomass (Figure 41b) and above-ground to below ground biomass ratio (Figure 41c).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Photosynthetic efficiency</td>
</tr>
<tr>
<td>AG</td>
<td>Above-ground Area</td>
</tr>
<tr>
<td>BG</td>
<td>Below-ground Area</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>Chl</td>
<td>Chlorophyll</td>
</tr>
<tr>
<td>DW</td>
<td>Leaf Dry Weight</td>
</tr>
<tr>
<td>FW</td>
<td>Leaf Fresh Weight</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>I_c</td>
<td>Light compensation point</td>
</tr>
<tr>
<td>I_k</td>
<td>Light saturation point</td>
</tr>
<tr>
<td>IUCN</td>
<td>The World Conservation Union</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
</tr>
<tr>
<td>LHC</td>
<td>Light-Harvesting Complex</td>
</tr>
<tr>
<td>LHC II</td>
<td>Light Harvesting Complex II</td>
</tr>
<tr>
<td>NCSS</td>
<td>Number Cruncher Statistical System</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>P-I</td>
<td>Photosynthesis-Irradiance</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Maximal photosynthetic capacity</td>
</tr>
<tr>
<td>PS I</td>
<td>Photosystem complex I</td>
</tr>
<tr>
<td>PS II</td>
<td>Photosystem complex II</td>
</tr>
<tr>
<td>R_{dark}</td>
<td>Dark respiration</td>
</tr>
</tbody>
</table>