UNIVERSITI PUTRA MALAYSIA

FACILE SYNTHESIS, CHARACTERIZATION AND BIOCATALYTIC APPLICATION OF IMIDAZOLIUM-BASED CHIRAL IONIC LIQUIDS

NG SHIE LING

FP 2008 25
FACILE SYNTHESIS, CHARACTERIZATION AND BIOCATALYTIC APPLICATION OF IMIDAZOLIUM-BASED CHIRAL IONIC LIQUIDS

NG SHIE LING

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA
2008
FACILE SYNTHESIS, CHARACTERIZATION AND BIOCATALYTIC APPLICATION OF IMIDAZOLIUM-BASED CHIRAL IONIC LIQUIDS

By

NG SHIE LING

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the Degree of Master of Science
MARCH 2008
In view of the emerging importance of ionic liquids as reaction media in organic synthesis, researchers have recently focused on the synthesis of chiral ionic liquids (CILs) for their particularly potential applications to chiral discrimination. The study of the application of CILs in asymmetric synthesis is not only an opportunity but also a challenge for researchers. Herein, the synthesis of new CILs based on alkyl-imidazole as the cation and four different chiral acids as the anion were reported.

Eighteen chiral ionic liquids were synthesized and characterized by a variety of physico-chemical techniques. Four different chiral acids chosen were L-lactic acid, L-tartaric acid, (R)-(-)-camphor-10-sulfonic acid and L-malic acid. Imidazole was chosen because they are easier to prepare and less toxic compared to thiazole and pyrrolidine which contain sulfur and nitrogen compounds respectively. These salts were prepared using simple ion-exchange reaction which gave good overall yield (> 95 %) at room temperature. All the CILs synthesized are hygroscopic. Their enantiomeric purity was analyzed using 1H NMR spectroscopy. The effect of alkyl
substituents bonded to the nitrogen on imidazolium cation on the physical properties especially its melting point was also examined and observed. The melting points for bulkier ionic liquids are higher as compared to those of small ionic liquids. For the solid CILs, their solubility in organic solvents were tested and followed by recrystallization. Their three dimensional network of cation-anion and hydrogen bonding were analyzed by single-crystal X-ray diffraction analysis. Each CILs optical polarity was measured using polarimeter.

An example of the application of CILs is in biocatalysis. Chiral ionic liquid coated-enzyme (CILCE) was prepared by coating Candida rugosa lipase with 1-hydrogen-3-hexylimidazolium hydrogen-tartrate. CILCE was then used to catalyze some non-chiral and chiral esterification reactions. For non-chiral esterification, we found that CILCE gave higher percentage of conversion compared to native enzyme for short and medium chain acids, where all acids were reacted with oleyl alcohol. For chiral esterification, enantioselective esterification of (±)-menthol with butyric anhydride was studied. Percentage conversion of menthyl butyrate in CILCE (81.91 %) was better than in CRL (28.19 %). However, its enantiomeric excess (ee) from CILCE was low compared to CRL with 1.1 and 3.3, respectively calculated from its enantiomeric value, E.
Abstrak tesis yang dikenalkan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Master Sains.

FASIL SINTESIS, PENCIRIAN DAN APLIKASI DALAM BIOMANGKIN BAGI CECAIR IONIK KIRAL YANG BERDASARKAN IMIDAZOLOIUM.

Oleh

NG SHIE LING

MARCH 2008

Pengerusi: Mohd. Basyaruddin Abdul Rahman, PhD.

Fakulti: Sains

Dewasa ini, kepentingan cecair ionik sebagai media tindak balas dalam sintesis organik semakin berkembang. Kini, para penyelidik mula memfokuskan kepada sintesis cecair ionik kiral (CILs) yang berpotensi dalam aplikasi diskriminasi kiral. Kajian aplikasi CILs dalam sintesis asimetri bukan hanyalah satu peluang malah juga adalah satu cabaran bagi para penyelidik. Dalam kajian ini, sintesis CILs baru yang berasaskan alkil-imidazol sebagai kation dan pelbagai asid kiral sebagai anion dilaporkan.

Lapan belas CILs telah disintesis dan dicirikan menggunakan pelbagai teknik kimia-fizikal. Empat asid kiral berlainan yang dipilih adalah L-asid laktik, L-asid tartarik, (R)-(−)-asid camphor-10-sulfonik dan L-asid malik. Imidazol telah dipilih kerana ia mudah disediakan dan kurang toksik jika dibandingkan dengan thiazol dan pirolidinium yang mengandungi sulfur dan nitrogen. Kesemua garam ini telah disediakan menggunakan kaedah tindak balas penukargantian-ion mudah yang memberikan hasil yang tinggi (> 95 %) pada suhu bilik. Kesemua cecair ionik kiral

Salah satu contoh aplikasi CILs adalah dalam biopemangkinan. Enzim bersalut cecair ionik kiral (CILCE) disediakan dengan menyalut lipase Candida rugosa dengan 1-hidrogen-3-heksilimidazolium hidrogen-tartrat. CILCE kemudiannya digunakan untuk memangkin beberapa tindak balas pengesteran mudah tak-kiral dan kiral. Bagi pengesteran tak-kiral, CILCE memberikan peratusan penukaran yang lebih tinggi berbanding enzim asli bagi asid berantai pendek dan sederhana, di mana semua asid ditindak balaskan dengan olil alkohol. Bagi pengesteran kiral, pengesteran enantioselektif bagi (\pm)-menthol dengan butirik anhidrida telah dikaji. Peratus penukaran menthil butirat dalam CILCE (81.41 %) adalah lebih bagus daripada dalam CRL (28.19 %). Walau bagaimanapun, lebihan enantiomerik, (ee) daripada CILCE adalah rendah berbanding CRL dan masing-masing memberikan 1.1 dan 3.3 bagi nilai enantiomeriknya, E.
ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt thanks to both of my supervisors, Associate Professor Dr. Mohd. Basyaruddin Abd Rahman from Universiti Putra Malaysia and Professor Kenneth Richard Seddon from Queen's University of Belfast, for their help, advice and tireless encouragement throughout this period of study. I would also like to thank them for giving me the opportunity to come to Belfast; a small city with cold weather, but very warm people.

To my research group, CREAM in UPM, thank you all especially to Professor Abu Bakar Salleh and Professor Mahiran Basri for your valuable advice and suggestions you gave during our weekly meeting. I would also like to express my deepest gratitude to Professor Jim Swindall OBE and Dr. Sarah Thompson for all the paperwork that they had to deal with in order to get me there to Belfast. I really appreciate it. And of course, thanks too, to both super-secretaries, Deborah Poland and Louis Porter.

To all my friends in Malaysia, thanks for always being there for me. I want to thank all of you for the good time we shared together. Your names alone would fill the rest of this thesis, and more importantly, would put me in very difficult position of having to decide on an order of preference. And to Nora, I could never thank you enough for extending a helping hand with all my leftover work during the period when I was in Belfast. Without you, I would not have made it this far.

Special thanks go to Isaac Nyambiya for all his guidance, patience and fruitful chemistry discussions. None of this could have happened without you. To all the
QUILL labmates; Alina, Natasha, Gosia, Geetha, Lynsey, Zheng Xi, Jamie, Laurent, Kris, Marcus, Manuella, Tayeb, Martin, Martyn Earle and Angela, thank you for all your help, support and also the lovely coffee breaks we had together at 12 noon everyday. They were the best! And also to the many people who has already left QUILL, especially Alberto, José Santiago, Marianna and my Scottish buddy, Craig, thank you so much for making my stay at QUILL so enjoyable.

To my Belfast best friend and labmate, Monica Sanches, you will always have a special place in my heart. I will always remember our 3 hours lunch break that ended up in the city centre and all the traveling we did together these past few months. And because of you, I got to meet some of the coolest people on Earth, the IAESTE bunch. To all my IAESTE buddies; Jacobo, Katherina, Stephanie, Anna, Sylvia, Athula, Robin, Diana, Sabrina, Anna, Ewa, Monica (Poland), Qasha, Tom, Sebastian, Manuel, Jørgen, Manuel, Karun, Maria (Austria), Maria (Malta) and Ben, thank you for the lovely times we have had together, for being my friends, for all the trips that we made together and most importantly, for the many experiences that have taught me to be a better person. You are really a wonderful group of people. A million thanks also go out to all my flat-mates and friends in Guthrie House for their food sharing and the party.

Last but definitely not least, to my family, especially my mom, there is no way I can adequately express my gratitude in words, for the support, love and encouragement you have shown me throughout the years and for the many sacrifices that you have made for me. I will always cherish it in my heart and soul.

I love you all.
I certify that an Examination Committee met on 24 March 2008 to conduct the final examination of Ng Shie Ling on her Master of Science thesis entitled “Facile Synthesis, Characterization and Biocatalysis Application of Imidazolium-Based Ionic Liquids” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the degree of Master of Science, MSc.

Members of the Examination Committee are as follows:

Dr. Nor Azah, Ph.D.
Lecturer,
Faculty of Science,
Universiti Putra Malaysia
(Chairman)

Dr. Mohamed Ibrahim Mohamed Tahir, D. Phil.
Lecturer,
Faculty of Science,
Universiti Putra Malaysia
(Internal examiner)

Dr. Tan Yen Ping, Ph.D.
Lecturer,
Faculty of Science,
Universiti Putra Malaysia
(Internal examiner)

Dr. (forget his name), Ph.D.
Associate Professor,
Faculty of Science,
Universiti Teknologi Malaysia
(External examiner)

HASANAH MOHD. GHAZALI, Ph.D.
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
The thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohd. Basyaruddin Abdul Rahman, PhD.
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Mahiran Basri, PhD.
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Abu Bakar Salleh, PhD.
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

__

AINI IDERIS, PhD.
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been acknowledged. I also declare that is has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NG SHIE LING

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>PENGESAHAN</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Research Objectives</td>
<td>4</td>
</tr>
</tbody>
</table>

2. LITERATURE REVIEW	5
2.1 The Prehistory	5
2.2 Introduction to Ionic Liquids	6
2.3 Bulk Physical and Chemical Properties	11
2.3.1 Melting point	12
2.3.2 Thermal stability	14
2.3.3 Viscosity	14
2.3.4 Density	15
2.3.5 Miscibility with water	15
2.3.6 Polarity	17
2.4 Ionic Liquids and Its Application	18
2.4.1 ILs as Solvents for Extraction	18
2.4.2 ILs in Biocatalysis	19
2.5 Chiral Ionic Liquid	21
2.6 Synthesis and Applications	23
2.7 Ionic Liquid-Coated Enzyme (ILCE)	26

3. MATERIALS AND METHODS	27
3.1 Materials	27
3.1.1 Solvents	27
3.1.2 Chemicals	28
3.1.3 Enzymes	29
3.1.4 Equipments/ Instruments	29
3.1.5 Other Materials	30
3.2 Methods

3.2.1 Recrystallization of Imidazole
3.2.2 Distillation of N-alkylimidazole
3.2.3 Synthesis of N-hexylimidazole
3.2.4 Synthesis of Chiral Ionic Liquids via Ion-exchange Reaction
3.2.5 Preparation of Chiral Ionic Liquid-Coated Enzyme (CILCE)
3.2.6 Esterification of Non-Chiral Esters
3.2.7 Preparation of Standard Menthyl Esters
3.2.8 Esterification of (±)-Menthyl butyrate

3.3 Analytical Methods

3.3.1 Nuclear Magnetic Resonance (NMR) Spectroscopy
3.3.2 CHN – Element Analysis
3.3.3 Differential Scanning Calorimetry (DSC)
3.3.4 X-Ray Crystallography
3.3.5 Optical Rotation
3.3.6 Thin Layer Chromatography (TLC)
3.3.7 Gas Chromatography (GC) Analysis

4. RESULTS AND DISCUSSIONS

4.1 Synthesis and Characterization of Chiral Ionic Liquids (CILs)
4.2 Properties of Synthesized Chiral Ionic Liquids

4.2.1 N-Alkylimidazole with L-lactic acid
1, 3-dihydrogenimidazolium lactate, [H2-im] [lac]
1-hydrogen-3-methylimidazolium lactate, [H-mim] [lac]
1-hydrogen-3-butylimidazolium lactate, [H-bim] [lac]
1-hydrogen-3-hexylimidazolium lactate, [H-him] [lac]

4.2.2 N-Alkylimidazole with L-tartaric acid
1, 3-dihydrogenimidazolium hydrogen-tartrate, [H2-im] [H-tar]
1-hydrogen-3-methylimidazolium hydrogen-tartrate, [H-mim] [H-tar]
1-hydrogen-3-butylimidazolium hydrogen-tartrate, [H-bim] [H-tar]
1-hydrogen-3-hexylimidazolium hydrogen-tartrate, [H-him] [H-tar]
1, 3-dihydrogenimidazolium tartrate, [H2-im] [tar]
4.2.3 N-Alkylimidazole with camphor-10-sulfonic acid 54
1, 3-dihydrogenimidazolium camphor-10-sulfonate, [H$_2$-im] [sulf] 54
1-hydrogen-3-methylimidazolium camphor-10-sulfonate, [H-mim] [sulf] 55
1-hydrogen-3-butylimidazolium camphor-10-sulfonate, [H-bim] [sulf] 56
1-hydrogen-3-hexylimidazolium camphor-10-sulfonate, [H-him] [sulf] 57

4.2.4 N-Alkylimidazole with L-malic acid 59
1, 3-dihydrogenimidazolium hydrogen-malate, [H$_2$-im] [H-mal] 59
1-hydrogen-3-methylimidazolium hydrogen-malate, [H-mim] [H-mal] 60
1-hydrogen-3-butylimidazolium hydrogen-malate, [H-bim] [H-mal] 61
1-hydrogen-3-hexylimidazolium hydrogen-malate, [H-him] [H-mal] 62
1, 3-dihydrogenimidazolium malate, [H$_2$-im] [mal] 63

4.3 Elemental Analysis of Chiral Ionic Liquids 67
4.4 Solubility Test and X-Ray Crystallographic Analysis 69
1, 3-dihydrogenimidazolium lactate, [H$_2$-im] [lac] 69
1, 3-dihydrogenimidazolium hydrogen-tartrate, [H$_2$-im] [H-tar] 71
1, 3-dihydrogenimidazolium camphor-10-sulfonate, [H$_2$-im] [sulf] 73

4.5 Optical Rotation 75
4.6 Chiral Ionic Liquid-Coated Enzyme (CILCE) 79
4.7 Non-Chiral Esterification Reactions 80
4.8 Chiral Esterification of (±)-Menthyl butyrate 83
4.9 Analysis of Standard Menthyl Butyrate 85
4.10 Chiral Esterification Reaction 90

5. CONCLUSION 94
5.1 Recommendation for Further Studies 97

REFERENCES & BIBLIOGRAPHY
APPENDICES
BIODATA OF STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Starting material for the chiral ionic liquids synthesized using the ion-exchange procedure.</td>
<td>33</td>
</tr>
<tr>
<td>Table 2</td>
<td>Elemental Analysis Data for CILs.</td>
<td>67</td>
</tr>
<tr>
<td>Table 3</td>
<td>Optical Rotation Data for CILs.</td>
<td>76</td>
</tr>
<tr>
<td>Table 4</td>
<td>Percentage conversion and enantioselectivity value for menthyl butyrate.</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>The structure of the ‘red oil’, heptachlorodialuminate salt.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Simple alkylammonium nitrates; ethylammonium nitrate.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Difference between an ionic solution and an ionic liquid.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Structures of selected common organic cations.</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Structures of selected common inorganic anions.</td>
<td>8</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Structures of selected simple non-halogenated organic anions.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 7</td>
<td>1-ethyl-3-methylimidazolium hexafluorophosphate, [emim][PF₆].</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Possible routes for asymmetric syntheses in ILs.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 9</td>
<td>NMR spectrum for 1, 3-dihydrogenimidazolium lactate.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 10</td>
<td>NMR spectrum for 1-hydrogen-3-methylimidazolium lactate.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 11</td>
<td>NMR spectrum for 1-hydrogen-3-butylimidazolium lactate.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 12</td>
<td>NMR spectrum for 1-hydrogen-3-hexylimidazolium lactate.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 13</td>
<td>NMR spectrum for 1, 3-dihydrogenimidazolium hydrogen-tartrate.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 14</td>
<td>NMR spectrum for 1-hydrogen-3-methylimidazolium hydrogen-tartrate.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 15</td>
<td>NMR spectrum for 1-hydrogen-3-butylimidazolium hydrogen-tartrate.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 16</td>
<td>NMR spectrum for 1-hydrogen-3-hexylimidazolium hydrogen-tartrate.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 17</td>
<td>NMR spectrum for 1, 3-dihydrogenimidazolium tartrate.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 18</td>
<td>NMR spectrum for 1, 3-dihydrogenimidazolium camphor-10-sulfonate.</td>
<td>54</td>
</tr>
</tbody>
</table>
Figure 19 NMR spectrum for 1-hydrogen-3-methylimidazolium camphor-10-sulfonate.

Figure 20 NMR spectrum for 1-hydrogen-3-butylimidazolium camphor-10-sulfonate.

Figure 21 NMR spectrum for 1-hydrogen-3-hexylimidazolium camphor-10-sulfonate.

Figure 22 NMR spectrum for 1, 3-dihydrogenimidazolium hydrogen-malate.

Figure 23 NMR spectrum for 1-hydrogen-3-methylimidazolium hydrogen-malate.

Figure 24 NMR spectrum for 1-hydrogen-3-butylimidazolium hydrogen-malate.

Figure 25 NMR spectrum for 1-hydrogen-3-hexylimidazolium hydrogen-malate.

Figure 26 NMR spectrum for 1, 3-dihydrogenimidazolium malate.

Figure 27 Single crystal structure of 1, 3-dihydrogenimidazolium lactate with intermolecular hydrogen bonding.

Figure 28 Packing of 1, 3-dihydrogenimidazolium lactate, perspective view from b-axis.

Figure 29 Single crystal structure of 1, 3-dihydrogenimidazolium hydrogen-tartrate with intermolecular hydrogen bonding.

Figure 30 Packing of 1, 3-dihydrogenimidazolium hydrogen-tartrate, perspective view from c-axis.

Figure 31 Single crystal structure of 1, 3-dihydrogenimidazolium camphor-10-sulfonate with intermolecular hydrogen bonding.
Figure 32 Packing of 1, 3-dihydrogenimidazolium camphor-10-sulfonate, perspective view from the b-axis.

Figure 33 Polarimeter and how it rotates a polarized light.

Figure 34 Percentage of conversion of straight chain acids to esters in hexane. Reactions were performed at 50 °C for 1 hr with the shaking speed of 150 rpm.

Figure 35 Thin layer chromatography analysis of (±)-menthol, butyric anhydride and (±)-menthyl butyrate.

Figure 36 IR spectrum of (-)-Menthyl butyrate.

Figure 37 GC chromatogram of standard (-)-menthyl butyrate.

Figure 38 GC chromatogram of standard (+)-menthyl butyrate.

Figure 39 Chiral capillary GC chromatogram of enantioselective esterification before reaction.

Figure 40 Chiral capillary GC chromatogram of enantioselective esterification after reaction at 40 °C for 24 hrs with the shaking speed of 150 rpm.
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1</td>
<td>Synthesis of lactate imidazolium IL.</td>
<td>24</td>
</tr>
<tr>
<td>Scheme 2</td>
<td>The Baylis-Hillman reaction.</td>
<td>25</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>General route for the synthesis of chiral ionic liquids.</td>
<td>42</td>
</tr>
<tr>
<td>Scheme 4</td>
<td>Chiral esterification reaction of (+)-Menthol and butyric anhydride</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ILs Ionic liquids
RTIL Room-temperature ionic liquid
CILs Chiral ionic liquids

$[\text{H}_2\text{-im}]^+$ 1,3 dihydrogenimidazolium
$[\text{H-mim}]^+$ 1-hydrogen-3-methylimidazolium
$[\text{H-bim}]^+$ 1-hydrogen-3-butylimidazolium
$[\text{H-him}]^+$ 1-hydrogen-3-hexylimidazolium
$[\text{bmim}]^+$ 1-butyl-3-methylimidazolium
$[\text{emim}]^+$ 1-ethyl-3-methylimidazolium
$[\text{lac}]^-$ Lactate
$[\text{tar}]^-$ Tartrate
$[\text{H-tar}]^-$ Hydrogen-tartrate
$[\text{sulf}]^-$ Camphor-10-sulfonate
$[\text{mal}]^-$ Malate
$[\text{H-mal}]^-$ Hydrogen-malate
$[\text{BF}_4]^-$ tetrafluoroborate
$[\text{PF}_6]^-$ hexafluorophosphate
$[\text{Tf}_2\text{N}]^-$ bis(trifluoromethylsulfonyl)imide
$[\text{Ms}_2\text{N}]^-$ bis(methanesulfonyl)imide
DABCO 1,4-diazabicyclo[2.2.2]octane
VOC Volatile organic compounds
ee Enantiomeric excess
E Enantiomeric ratio
<table>
<thead>
<tr>
<th>Short Form</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRP</td>
<td>Atom transfer radical polymerization</td>
</tr>
<tr>
<td>MMA</td>
<td>Methyl methacrylate</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>TBAB</td>
<td>Tetrabutylammonium bromide</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>CILCE</td>
<td>Chiral ionic liquid-coated enzyme</td>
</tr>
<tr>
<td>ILCE</td>
<td>Ionic liquid-coated enzyme</td>
</tr>
<tr>
<td>CRL</td>
<td>Candida rugosa lipase</td>
</tr>
<tr>
<td>CHNS</td>
<td>Carbon hydrogen nitrogen sulphur</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>QUILL</td>
<td>Queen’s University Ionic Liquid Laboratory</td>
</tr>
<tr>
<td>ASEP</td>
<td>The Analytical Services and Environmental Projects Unit</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A Calculation for Non-Chiral Esterification.

Appendix B Calculation for Chiral Esterification.

Appendix C Crystal data for sample 1, 3-dihydrogenimidazolium lactate, [H₂-im][lac].

Appendix D Crystal data for sample 1, 3-dihydrogenimidazolium Hydrogentartrate, [H₂-im][H-tar].

Appendix E Crystal data for sample 1, 3-dihydrogenimidazolium camphor-10-sulfonate, [H₂-im][sulf].
CHAPTER 1

1. INTRODUCTION

As we advanced into the 21st century, it has become more evident that chiral drugs have become a major focus of most pharmaceutical companies. The increasing demand for many organic esters and chiral drugs creates the need for developing highly specific catalyst and for this reason, the application of enzymes as the catalyst for the synthesis of esters is undergoing rapid development (Garcia et al., 1996; Gryglewicz, 2003). Enzymatic synthesis offers various advantages over chemical synthesis such as lower energy requirement and enhanced selectivity and quality of the product. Moreover, enzymes especially lipases have high specificity towards ester bond and hence eliminating the presence of undesirable side-reactions and by-products in esterification reaction (Yadav and Devi, 2003).

Chiral analysis is an important subject in science as well as in technology. Enantiomeric forms of many compounds are known to have different psychological and therapeutic effects. Very often, only one form of an enantiomeric pair is pharmacologically active. The other form of the same enantiomeric pair can reverse or otherwise limit the effect of the desired enantiomer. Recognizing the importance of chiral effects, the Food and Drug Administration (FDA) in 1992 issued a mandate requiring pharmaceutical companies to verify the enantiomeric purity of chiral drugs that are produced. It is, thus, hardly surprising that the pharmaceutical industry needs effective methods to determine enantiomeric purity and high enantiomeric excess (ee) (Tran et al., 2006).
Room temperature ionic liquids (ILs) are novel and promising materials for a variety of chemical applications. They have unique chemical and physical properties; including possessing a high solubility power and virtually no vapour pressure (Earle et al., 2000 and Earle and Seddon, 2000). Because of these two properties, they can serve as an alternative to the volatile organic compounds that are traditionally used as industrial solvents. In view of the emerging importance of ILs as reaction media in organic synthesis, researchers have focused on the synthesis of chiral ionic liquids (CILs) for their particularly potential applications to chiral discrimination, including asymmetric synthesis and optical resolution of racemates (Wang et al., 2005). Chiral ionic liquids therefore may offer a solution for determining enantiomeric purity and high ee in asymmetric reactions.

The popularity stems from the fact that it is possible to use CILs to replace the organic solvent for the enantiomeric purity determination method. Specifically, the CILs with its high solubility power should dissolve many different types of analytes (Zhao and Malhotra, 2002). Its chirality may produce the needed diastereomeric interactions with both enantiomeric forms of an analyte. Unfortunately, despite their potentials, CILs have been synthesized and the synthesis of reported CILs required rather expensive reagents and elaborates synthetic schemes. Because of these limitations, the study and applications of CILs have been severely hindered (Tran et al., 2006). Therefore, it is of particular importance to develop a novel synthesis by which CILs can be simply and easily prepared from commercially available reagents by researchers.