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MODIFICATION OF VANADIUM PHOSPHATE CATALYSTS 
SYNTHESIZED VIA THE HYDROTHERMAL METHOD 

 
By 

 
THEAM KOK LEONG 

 
July 2008 

 
 

Chairman: Professor Taufiq Yap Yun Hin, PhD 
 
Faculty: Science 
 

Vanadium phosphorus oxide (VPO) catalysts synthesized via hydrothermal method 

were investigated. Some different dopants, Cr, Ni, Fe and Mn were used in the 

preparation of catalyst precursors, VOHPO4⋅0.5H2O. Besides, the mechanochemical 

treatments were introduced to the catalyst precursor with different milling durations 

in cyclohexane. All these modified precursors were subsequently transformed under 

reaction condition to give the active phase of VPO catalysts, (VO)2P2O7. Several 

techniques were used to characterize the physico-chemical properties of the catalysts 

such as XRD, BET, H2-TPR, redox titration, Laser Raman Spectroscopy and ICP-

AES. The catalytic performance of the catalysts for selective oxidation of n-butane to 

maleic anhydride has been carried out by using a fixed bed microreactor (673 K, 

GHSV=2400 h-1). The results showed that the addition of dopants into the VPO 

catalysts had increased the surface area of the catalysts. Introduction of dopants had 

also induced the formation of V5+ phases as shown in XRD and Raman Spectra. 

However, a further extraction step with water at reflux temperature gave only 

catalysts with (VO)2P2O7. Interestingly, the doped samples showed a higher total 

amount of O2 removed from the oxygen lattice of the catalyst. The doping and water 
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reflux treatment had affected the morphologies of the catalysts. The introduction of 

mechanochemical treatment produced materials with a mixture of V4+ and V5+ 

phases. SEM micrographs showed that the morphology of catalysts which milled in 

cyclohexane was in smaller platelet compared to the unmilled material. A significant 

high surface area was obtained for catalysts milled for 30 minutes (40 m2g-1) and 60 

minutes (36 m2g-1). However, a longer milling duration drastically lowered the 

surface area due to the agglomeration of the particles as observed in the SEM 

micrographs. H2 -TPR revealed two type of oxygen species removed for all the 

catalysts associated with V5+ and V4+. The amount of active oxygen species removed 

associated with V4+ was significantly increased for 30 min mechano-treated. An 

increase of the oxygen species associated with V4+ phase which was correlated to the 

catalytic activity and a higher amount of oxygen species released associated to V5+ 

phase also contributed to the activity of the catalysts.      
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Vanadium fosforus oksida (VPO) yang dihasilkan dengan menggunakan kaedah 

hidroterma telah dikaji. Dopan yang berlainan seperti Cr, Ni, Fe dan Mn telah 

digunakan dalam penyediaan prekursor, VOHPO4⋅0.5H2O. Di samping itu, rawatan 

secara mekanokimia juga diberikan kepada prekursor mangkin dengan masa kisaran 

yang berlainan dalam siklohexana. Semua prekursor mangkin yang telah 

dimodifikasikan telah ditukar kepada mangkin VPO dalam keadaan reaksi untuk 

menghasilkan fasa yang aktif bagi mangkin VPO iaitu (VO)2P2O7. Beberapa teknik 

telah digunakan untuk mencirikan mangkin-mangkin yang dihasilkan seperti XRD, 

BET, H2-TPR, titratan redoks, Laser Raman Spektroscopi dan ICP-AES. Kecekapan 

mangkin-mangkin untuk pengoksidaan terpilih n-butana ke malik anhidrida juga 

telah dibuat dengan menggunakan mikroreaktor (673 K, GHSV=2400 h-1). 

Keputusan eksperimen telah menunjukkan tambahan dopan-dopan ke dalam 

mangkin-mangkin VPO telah meningkatkan luas permukaan mangkin-mangkin 

tesebut. Penambahan dopan-dopan telah mengakibatkan penghasilan fasa-fasa V5+. 

Walau demikian, langkah pengekstrakan pada suhu penyulingan hanya menghasilkan 

mangkin-mangkin yang mempunyai fasa (VO)2P2O7 sahaja. Menariknya, sampel-
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sampel yang mempunyai dopan menghasilkan lebih banyak jumlah oksigen yang 

terlepas dari kekisi oksigen mangkin. Pengedopan dan rawatan penyulingan air telah 

menpengaruhi morfologi mangkin-mangkin. Rawatan mekanokimia telah 

menghasilkan bahan-bahan yang menpunyai campuran fasa V4+ dan V5+. Mikrograf 

SEM menunjukkan morfologi mangkin-mangkin yang dikisar dalam siklohexana 

menghasilkan kepingan yang lebih kecil berbanding dengan bahan yang tidak kisar. 

Luas permukaan yang tinggi telah diperolehi bagi mangkin-mangkin yang dikisar 

pada 30 minit (40 m2 g-1) dan 60 minit (36 m2 g-1). Walau demikian, masa kisaran 

yang lebih panjang megurangkan luas permukaan mangkin secara mendadak 

disebabkan oleh timbunan kepingan kecil yang dapat dilihat dalam mikrograf SEM. 

H2-TPR menunjukkan dua jenis oksigen dilepaskan bagi semua mangkin berkaitan 

dengan V5+ dan V4+. Jumlah oksigen yang aktif yang telah dilepaskan berkaitan 

dengan V4+ telah bertambah bagi sampel yang dikisar 30 minit. Penambahan oksigen 

dari fasa V4+ akan meningkatkan aktiviti mangkin dan oksigen dari V5+ juga 

menyumbang kepada aktiviti mangkin-mangkin yang dihasilkan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction to Catalysis 

 

The term “catalysis” was introduced as early as 1836 by Berzelius in order to explain 

various decomposition and transformation reactions. A definition that is still valid 

today is due to Ostwald (1895): “A catalysts accelerates a chemical reaction without 

affecting the position of the equilibrium” (Hagen, 1999). Catalysis occurs when there 

is a chemical interaction between catalyst and the reactant-product system without 

changing the chemical nature of the catalyst except at the surface. This means that 

there is a surface interaction and does not penetrate into the interior of the catalyst 

(Bond, 1987). A catalyst usually works by forming chemical bonds to one or more 

reactants and thereby facilitating their conversion. Catalysis always involves a cycle 

of reaction steps, and the catalyst is converted from one form to the next, ideally 

without being consumed in the overall process (Gates, 1992).   

 

In theory, an ideal catalyst would not be consumed, but this is not the case in 

practice. Owing to competing reactions, the catalyst undergoes chemical changes, 

and its activity becomes lower (catalysts deactivation). Thus, catalyst must be 

regenerated or eventually replaced. Apart from accelerating reactions, catalysts have 

another important property: they can influence the selectivity of chemical reactions. 

This means that completely different products can be obtained from a given starting 
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material by using different catalyst systems. Industrially, this targeted reaction 

control is often even more important than the catalytic activity (Hagen, 1999).    

 

1.2 The Importance of Catalysis in Chemical Industries 

 

Catalysis is a multidisciplinary science. It is a combination of fundamental and 

applied science with major contributions from chemistry, physics and material 

science. Its technological importance lies in the tremendous achievements of this 

science to give humanity some cheap, highly convenient and outstanding materials 

(Gai, 2003) .  

 

Catalysis is of crucial importance for the chemical industry, the number of catalysts 

applied in industry is very large and catalysts come in many forms, form 

heterogeneous catalysts in the form of porous solids over homogeneous catalysts 

dissolved in the liquid reaction mixture to biological catalysts in the form of 

enzymes. Today, almost 70 % of all chemicals that are produced have been in 

contact with a catalyst, somewhere in their synthesis process. This number stresses 

the importance of the role of catalysis in the chemical industry. Without a catalyst, 

processes are less clean and sometimes impossible to perform. In principal, catalysis 

can be used to abate environmental pollution (Ruitenbeek, 1999).  

 

Catalysts can be gases, liquids, or solids. Most industrial catalysts are in liquids or 

solids, whereby the latter react only via their surface. The importance of catalysis in 

the chemical industry is shown by the fact that 75% of all chemicals are produced 

with the aid of catalysts; in newly development processes, the figure is over 90%. 
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Numerous organic intermediate products, required for the production of plastics, 

synthetic fibers, pharmaceuticals, dyes, crop-protection agents, resins, and pigments, 

can only be produced by catalytic processes (Hagen, 1999).  

 

It is fascinating to note that many of these processes start out in the laboratory with a 

handful of research scientists experimenting with ideas. These are then transferred to 

a pilot plant and, if successful, to a full plant. The long-term advantage of this 

approach is that a new fundamental scientific knowledge base associated with a 

catalytic process is often developed (Gai, 2003). Catalysts have been successfully 

used in the chemical industry for more than 100 years, examples being the synthesis 

of sulfuric acid, the conversion of ammonia to nitric acid, and catalytic 

hydrogenation. Later developments include new highly selective multicomponent 

oxide and metallic catalysts, zeolites, and the introduction of homogeneous transition 

metal complexes in the chemical industry. This was supplemented by new high-

performance techniques for probing catalyst and elucidating the mechanisms of 

heterogeneous and homogeneous catalysis (Hagen,1999).  

 

1.3 Types of Catalysts 

 

1.3.1 Homogeneous Catalysts 

 

Catalytic processes that take place in a uniform gas or liquid phase are classified as 

homogeneous catalysis. Homogeneous catalysts are generally well-defined chemical 

compounds or coordination complexes, which, together with reactants, are 

molecularly dispersed in the reaction medium. Examples of homogeneous catalysts 
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include mineral acids and transition metal compounds (e.g., rhodium carbonyl 

complexes in oxo synthesis) (Hagen, 1999).  

 

1.3.2 Heterogeneous Catalysts 

 

Catalysis occurring in the presence of more than one phase is called heterogeneous 

catalysis. Most practically important examples of heterogeneous catalysis involved 

solid catalysts and gas phase reactants (Gates, 1992).  Heterogeneous catalysts are 

frequently defined as solids or mixtures of solids which accelerate chemical reaction 

without themselves undergoing changes. This definition however is too limited in 

scope, considering that the properties of catalysts can change significantly with use, 

with service lives that vary from minutes to years. Hence, the overall chemical 

reactions concern the gas-phase species. The solid is involved in the formation of 

intermediate species and the influence of the solid does not effectively extend more 

than an atomic diameter into the gas phase. The direct involvement of atoms below 

the topmost layers is not usually possible (Campanati et al., 2003). Examples of 

heterogeneous catalyst are Pt/Rh nets for the oxidation of ammonia to nitrous gases 

(Ostwald process) and amorphous or crystalline aluminosilicates for cracking 

petroleum fraction (Hagen, 1999).  Table 1.1 summarizes the advantages and 

disadvantages of the two classes of catalyst. 
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Table 1.1. Comparison of homogeneous and heterogeneous catalysts  
                  (Hagen, 1999) 

 

  Homogeneous Heterogeneous 
Effectivity     

Active centers all metal atoms only surface atoms 

Concentration low high 

Selectivity high lower 

Diffusion problems practically absent present (mass-transfer-
controlled reaction) 

Reaction conditions mild (323-473 K) severe (often >523 K) 

Applicability limited wide 

Activity loss irreversible reaction with 
products (cluster 
formation); poisoning 

sintering of the metal 
crystallites; poisoning 

   

Catalyst properties   

Structure/stichiometry defined undefined 

Modification possibilities high low 

Thermal stability low high 

Catalyst separation sometimes laborious 
(chemical decomposition, 
distillation, extraction) 

fixed-bed: unnecessary 
suspension: filtration 

Catalyst recycling possible unecessary (fixed-bed) or 
easy (suspension) 

Cost of catalyst loses high low 

 

1.3.3 General Principles of Heterogeneous Catalysis 

 

The fundamental processes occurring when a gas mixture is passed through a 

catalytic reactor may be described as follows: 

Step 1: Diffusion of the reactants to the active site. This terms covers 

boundary layer diffusion and pore volume diffusion. 

Step 2: Adsorption of at least one reactant on the catalyst surface. 
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Step 3: Surface reaction. 

Step 4: Desorption of the products. 

 Step 5: Diffusion away from the active site. 

 

The rates for steps 1 and 5 are determined by diffusion coefficients and porosity, 

whereas steps 2-4 are determined by chemical phenomena occurring at the molecular 

scale. Any one of these steps can represent the slow step of the overall process 

(Hodnett, 2000). 

 

1.4 Selective Oxidation 

 

Interest in the transformation of light alkanes to valuable oxygenated compounds and 

olefins by means of oxidation has been growing in recent years due to the possibility 

of developing new processes of lower environmental impact and of lower cost. Many 

papers have been published which analyzed the fundamental aspects related to the 

oxidative activation and transformation of light alkanes over heterogeneous catalysts. 

The general picture that can be drawn on the basis of the most important factors 

which are examined in these reviews clearly shows that the problem of paraffin 

conversion and selectivity to the desired product has to be solved within a complex 

framework of inter-related aspects (Cavani and Trifirò, 1999). 

 

Selective oxidation reactions can be divided into two categories, one involves only 

dehydrogenation and the other involves both dehydrogenation and oxygen insertion 

into the hydrocarbon molecule. Table 1.2 shows the common oxide-catalyzed 

selective oxidation reactions and the catalysts (Kung, 1986). 
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Table 1.2. Common oxide-catalysed selective oxidation reactions (Kung, 1986) 

Reaction Catalyst 

Dehydrogenation 

Ethylbenzene → Styrene Fe-Cr-K-O 

Isooentane, Isopentene →Isoprene Sn-Sb-O 

Butane, Butene → Butadiene Bi-Mo-O, promoted Fe-O, 
promoted V-O 

Methanol → Formaldehyde Fe-Mo-O, MoO3 

  

Dehydrogenation and Oxygen Insertion 

Butane, Butene → Maleic Anhydride  V-P-O 

Propene → Acrolein  Bi-Mo-O 

Propene and NH3 → Acetronitrile Bi-Mo-O, U-Sb-O, Fe-Sb-O, 
BI-Sb-Mo-O 

propene → acrolein, acrylic acid, acetaldehyde Co-Mo-Te-O, Sb-V-Mo-O 

benzene → maleic anhydride V-P-O, V-Sb-P-O 

o-xylene, naphthalene → phthalic anhydride promoted V-O 

methane → methanol, formaldehyde Mo-O, V-O 

ethylene → ethylene oxide Fe-Mo-O, promoted Ag 

methyl ethyl ketone → biacetyl Co-O (promoted by Ni, Cu) 

methyl ethyl ketone → acetaldehyde, acetic acid V-Mo-O 

 

1.4.1 Dehydrogenation Reactions 

 

The reactions in which a hydrocarbon molecule is converted into a more unsaturated 

hydrocarbon by breaking carbon-hydrogen bonds and forming C=C bonds. In the 

absence of oxidants, hydrogen is a byproduct. In such cases, the reactions are run at 

rather high temperatures (above 500 ºC) because the thermodynamic equilibrium 
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