UNIVERSITI PUTRA MALAYSIA

SYNTHESIS AND CHARACTERIZATION OF SEMISYNTHEtic METALLOThERMOLySIN

SYARAJATUL ERMA KHALID

FS 2008 17
SYNTHESIS AND CHARACTERIZATION OF SEMISYNTHETIC METALLOTHERMOLYSIN

By

SYARAJATUL ERMA KHALID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science.

April 2008
SYNTHESIS AND CHARACTERIZATION OF SEMISYNTHETIC METALLOTHERMOLYSIN.

SYARAJATUL ERMA KHALID

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2008
Modification of native enzyme has gone through various strategies and evolution of the process itself. Thermolysin (TLN) from Bacillus thermoproteolyticus rokko was modified as a semisynthetic metallothermolysin which comprises enzyme, ligand and metal ion. Ligands used were benzamidine (BEN), 1,10-phenanthroline (PHN), p-aminobenzamidine (PBZ) and ethanolamine (ETA). The metal ions chosen were magnesium (Mg$^{2+}$), zinc (Zn$^{2+}$), calcium (Ca$^{2+}$) and nickel (Ni$^{2+}$). The semisynthetic metallothermolysin activities were evaluated on hydrolysis reaction of azocasein. Among the four ligands, complex of TLN-PBZ showed the highest specific activity (2219.5 Unit per mg (U/mg)) at optimum PBZ concentration of 0.6 mM. The study followed by the attachment of Mg$^{2+}$ to TLN-PBZ complex which gave the best specific activity compared to other metal ions (39406.4 U/mg). The optimum concentration of Mg$^{2+}$ was found
best at 0.08 mM. Several parameters were also investigated such as studies on effect of pH, temperature, time course and thermostability. As a result, the semisynthetic metallothermolysin maintained at pH surrounding of 7.0 in tris-HCl buffer and found optimum at 80°C for reaction up to 3 hours (96.7% of relative activity). For thermostability test, the semisynthetic metallothermolysin can retain its activity up to 90% at pre-heated temperature of 80°C.

Electronic absorption like the UV/Visible (UV/Vis) and UV/Fluorescence spectrophotometer and Circular Dichroism (CD) spectropolarimetry method were used to characterize the optical properties of metallothermolysin. In UV/Vis spectrophotometer, the binding of PBZ to TLN curve caused a bathocromic shift (λ_{max} from 279 nm to 274 nm) and became hypsochromism (λ_{max} from 274 nm to 272 nm) with the additional of Mg$^{2+}$. Changes in UV/Vis were also supported by UV/Fluorescence, when changes happened to the emission characteristic of TLN-PBZ spectrum (373.2 nm) and the spectrum continues to shift (374.0 nm) for TLN-PBZ-Mg. The CD spectropolarimetry suggested some changes of α helix and β sheet at far UV molar ellipticity readings with decreased of α helix from 37% (TLN) to 20.6% (TLN-PBZ) and then to 19.8% (TLN-PBZ-Mg). Meanwhile, a further decrease of β sheet from 32.6% (TLN) to 18.7% (TLN-PBZ) and then to 11.0% (TLN-PBZ-Mg) was also observed.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

SINTESIS DAN PENCIRIAN METALLOTHERMOLYSIN SEMISINTETIK

Oleh

SYARAJATUL ERMA KHALID

April 2008

Pengerusi : Profesor Madya Mohd. Basyaruddin Abdul Rahman, PhD

Fakulti : Sains

Modifikasi enzim telah melalui pelbagai strategi dan mengalami evolusi tersendiri. Thermolysin (TLN) merupakan sejenis enzim yang telah diekstrak dari Bacillus thermoproteolyticus rokko. Ia telah diubahsuai menjadi metalloenzim semisintetik yang terdiri daripada gabungan enzim, ligan dan ion logam. Beberapa ligan yang digunakan adalah benzamidina (BEN), 1,10-phenantrolina (PHN), p-aminobenzamidina (PBZ) dan etanolamina (ETA). Ion-ion logam yang terlibat pula adalah magnesium (Mg$^{2+}$), zink (Zn$^{2+}$), kalsium (Ca$^{2+}$) dan nikel (Ni$^{2+}$). Aktiviti metallothermolsin semisintetik diperolehi dari tindak balas hidrolisis azocasein. Antara empat jenis ligan tersebut, kompleks TLN-PBZ menunjukkan aktiviti spesifik yang tertinggi (2219.5 U/mg) pada kepekatan optimum PBZ, 0.6 mM. Ujikaji diteruskan dengan penambahan Mg$^{2+}$ pada kompleks TLN-PBZ yang menghasilkan aktiviti spesifik tertinggi berbanding ion logam lain (39406.4 U/mg). Kepekatan optimum Mg$^{2+}$ adalah 0.08 mM. Beberapa parameter telah diuji
kesan pH, suhu, masa tindak balas dan kestabilan suhunya. Sebagai keputusannya, metallothermolysin semisintetik ini dapat mengekalkan persekitaran dalam larutan penimal tris-HCl pada pH 7.0 manakala tindak balas optimumnya adalah pada 80°C selama 3 jam (peratusan aktiviti relatif sebanyak 96.7 %). Metallothermolysin semisintetik ini stabil suhu walaupun melalui pra pemanasan pada suhu 80°C di mana ia mampu bertindak balas dengan kadar 90 %.

Analisis spektroskopi seperti Ultra lembayung boleh nampak (UV/Vis), Ultra lembayung fluoresen (UV/Fluorescence) spektrofotometer dan Circular Dichroism (CD) spektropolarimeter digunakan bagi tujuan pencirian aset optikal metalloenzim semisintetik. Keputusan UV/Vis menunjukkan berlaku anjakan pada bacaan panjang gelombang apabila perlekatan PBZ ke TLN berlaku (λ_max dari 279 ke 274 nm) dan bersifat hipokromik (λ_max dari 274 nm ke 272 nm) apabila Mg^{2+} ditambah. Perubahan bacaan UV/Vis disokong keputusan bacaan UV/Fluorescence yang menunjukkan perubahan bacaan panjang gelombang bagi spektrum TLN-PBZ (373.2 nm) dan anjakan spektrum terus berlaku (374.0 nm) bagi TLN-PBZ-Mg. Keputusan CD spektropolarimetri mengusulkan berlakunya perubahan struktur protein α heliks dan β sheet di mana bacaan unit molar eliptisiti α heliks menurun dari 37.0 % (TLN), ke 20.6 % (TLN-PBZ) dan seterusnya 19.8 % (TLN-PBZ-Mg). Bagi struktur β sheet penurunan dari 32.6 % (TLN) kepada 18.7 % (TLN-PBZ) sehingga ke 11.0 % (TLN-PBZ-Mg).
ACKNOWLEDGEMENTS

Alhamdulillah, praises to Allah s.w.t. for giving me the strength to endure all problems and complete this study.

I wish to express my sincere appreciation and gratitude to my supervisor, Associate Professor Dr. Mohd Basyaruddin Abdul Rahman for his patience and persistent encouragements. Thank you to my supervisory committee, Professor Dr. Mahiran Basri and Professor Dr. Abu Bakar Salleh for their great concern, advices and invaluable assistance from the beginning till the end of this study.

Thank you also to the staff members of the Department of Chemistry who were so helpful and cooperative in many ways during the course of the study.

I wish to thank all my friends and members of Lab 401, Kak Salina, Kak Yati, Ita, Redzuan, Pei Sin, Lam, Us, Mona, Azizah, Nora, Shie Ling, Hasmah and Casey for the friendship and for making my stay in UPM a memorable one with many sweet memories and experiences. Thank you for being friends in need.

My deep expression was also extended to Biochemistry lab mates especially, Kak Ina, Kak Ain, Aiman, Ghani, Leow, Kok Whye, Ropandi and the others for their valuable help.
Not forgotten my colleague in Mardi, Ezy, Dayana, Nisa, Sabeetha and Kak Ju, thank you for your help and support.

Finally, my deepest appreciation goes to my parents, papa and mama, for their never-ending moral and constant support during my studies. Not forgetting, my special thanks to my husband, Wan Ahmad Marzuki B. Wan Ahmad for his patience and to my son, Wan Muhammad Syamim, you are my inspiration.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd. BasyarudDin Abd. Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Abu Bakar Salleh, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 10 July 2007
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at UPM or at any other institution.

SYARAJATUL ERMA BINTI KHALID

Date: 24 June 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF EQUATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Proteases

2.2 Metallo Protease (EC number 3.4.24)

2.2.1 Thermolysin

2.3 Semisynthetic metalloenzyme

2.4 Ligands

2.4.1 Types of ligands

2.5 Metal ions

2.5.1 Type of metal ions

2.6 Structural Spectroscopic Studies

2.6.1 UV/Visible

2.6.2 UV/Fluorescence

2.6.3 Circular Dichroism (CD) Spectropolarimetry

3 **MATERIALS AND METHODS**

3.1 Chemicals

3.2 Methods

3.2.1 Purification of Protease

3.2.2 Protease Assay

3.2.3 Protein Determination

3.2.4 Characterization and optimization of the enzyme

3.2.5 Synthesis of the Semisynthetic Metallothermolysin

3.2.6 Electronic Absorption Measurement

4 **RESULTS AND DISCUSSIONS**

4.1 Determination of the purity of Thermolysin

4.2 Synthesis of Thermolysin-ligand
4.2.1 Optimum Activity Based on p-Aminobenzamidine (PBZ) Concentration 51
4.3 Synthesis of Thermolysin-Ligand-Metal 56
 4.3.1 Optimum Activity based on Magnesium (Mg) Concentration 62
4.4 Characterization of Metallothermolysin 66
 4.4.1 Optimal pH 66
 4.4.2 Optimal Temperature and Time Course Study of the Selected Temperature 69
 4.4.3 Time Course Study 72
 4.4.4 Thermostability 74
4.5 Structural Studies 76
 4.5.1 Measurements of UV/Vis 77
 4.5.2 UV/Fluorescence 83
 4.5.3 Circular Dichroism (CD) spectra analysis 88

5 CONCLUSION AND RECOMMENDATION 92
 5.1 Conclusions 92
 5.2 Recommendations 94

REFERENCES 96
APPENDICES 106
BIODATA OF THE STUDENT 111
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hard/soft classifications for ligand and cation</td>
</tr>
<tr>
<td>2</td>
<td>Structure of chemical ligands involved in synthesis of semisynthetic metallothermolysin.</td>
</tr>
<tr>
<td>3</td>
<td>Wavelength ranges</td>
</tr>
<tr>
<td>4</td>
<td>Purification table of TLN</td>
</tr>
<tr>
<td>5</td>
<td>Purification table of crude (C) and pooled samples (S) of TLN-PBZ, TLN-BEN, TLN-ETA and TLN-PHN using the Sephadex G-50 gel filtration chromatography</td>
</tr>
<tr>
<td>6</td>
<td>Final $E_{\text{docked}} \ (\Delta G)$ for different ligands at four largest pockets in thermolysin</td>
</tr>
<tr>
<td>7</td>
<td>Purification table of crude (C) and pooled samples (S) of TLN-PBZ-Mg, TLN-PBZ-Ca, TLN- PBZ-Ni and TLN-PBZ-Zn using the Sephadex G-50 gel filtration chromatography</td>
</tr>
<tr>
<td>8</td>
<td>Ratio values (%) calculated from the CD spectropolarimeter</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrolysis reaction of protein catalysed by protease</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Zinc Protease catalytic logic (a) and (b)</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Catalytic mechanisms of metalloenzyme where the active site Zn$^{2+}$ to coordinate and activate attacking water molecule</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Ribbons representation of thermolysin (1KEI.pdb)</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>The active site of thermolysin enzyme</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>(a) A π–$\pi^$ transition of a C–C double bond, with the lower energy π state. (b) A π – $\sigma^$ transition of a C–C double bond with the same lower energy electron configuration</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>SDS-PAGE test. The commercial thermolysin and the purified thermolysin showed single band</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>Elution graph of thermolysin enzyme using Sephadex G-50 as matrix in gel filtration chromatography column</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Total unit activity (U) versus time (hours) of bonding between TLN with four selected ligands</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>Total activities and total proteins of newly modified TLN-ligand complexes. (Relative protein % are shown)</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Concentrations (mM) versus enzyme activity (U/ml) graph showed the optimum concentration for PBZ was 0.6 mM in 20 mM tris-HCl buffer pH 7.0. The reaction was at 37 °C</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>Visualization of thermolysin structure with four main pockets determined from CASTp: Binding site- pocket 48 (Cyan), Pocket 47 (Green), pocket 46 (Blue) and pocket 45 (Red)</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>Visualization on PBZ docked to pocket 45 in thermolysin structure. PBZ docked onto pocket 45 (left) and inset picture of PBZ docked onto pocket 45 (right)</td>
<td>56</td>
</tr>
<tr>
<td>Page</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Total activities and proteins of TLN-PBZ-metal. (Relative protein % shown)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Concentrations (μM) versus enzyme activity (U/ml) graph showed the optimum concentration for Mg was at 0.08 mM in 20 mM tris-HCl buffer pH 7.0. The reaction was at 37 °C</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Visualization on Mg²⁺ and PBZ docked to pocket number 45 in thermolysin structure</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Effect of pH towards relative activity of TLN, TN-PBZ and TLN-BZ-Mg in pH 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Effect of temperature towards relative activity of TLN, TLN-PBZ and TLN-PBZ-Mg. Reactions were performed in tris-HCl buffer, pH 7.0 for 30 minutes</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Effect of temperature towards relative activity of TLN, TLN-PBZ and TLN-PBZ-Mg. Reactions were performed in tris-HCl buffer, pH 7.0 for 1 hour</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Time course towards relative activity of TLN, TLN-PBZ and TLN-PBZ-Mg. Reaction were performed triplicate in tris-HCl buffer, pH 7.0 at optimum temperature of each samples (80°C: TLN-PBZ-Mg; 60°C: TLN-PBZ; 70°C: TLN)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Effect of pre-incubation temperature towards relative activity of TLN, TLN-PBZ and TLN-PBZ-Mg</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>UV/Vis absorption spectrum of pH 7.0 phosphate buffer without PBZ (dotted line) and 0.2 mM PBZ(solid line) between 200 and 500 nm at room temperature. Molar absorption coefficients, ε value (M⁻¹ cm⁻¹) (italicized)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>UV/Vis spectra of TLN and TLN-PBZ in 20mM phosphate buffer pH 7.0 at room temperature: (i) spectrum of TLN (0.2mM); (ii) spectrum of TLN-PBZ (0.2mM)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PBZ spectra quenching by Mg in 20mM phosphate buffer pH 7.0 at room temperature. UV-vis spectra of PBZ (i) and PBZ-Mg (ii)</td>
<td></td>
</tr>
</tbody>
</table>
PBZ quenching by Mg in TLN-PBZ (in 20mM phosphate buffer pH 7.0 at room temperature). UV/Vis spectra of (i) TLN-PBZ and (ii) TLN-PBZ in presence of 0.08 mM Mg

Fluorescence spectra of TLN, TLN-PBZ and TLN-PBZ-Mg in 20 mM phosphate buffer pH 7.0 at 20°C

Far UV CD spectra of TLN (red), TLN-PBZ (green) and TLN-PBZ-Mg (blue)

LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
</tr>
</tbody>
</table>

Molar absorptivity (M⁻¹ cm⁻¹)
Left and right-circularly polarized light
Molar ellipticity
Determination of Protease Activity
LIST OF ABBREVIATIONS

Enzyme

Protease X from *Bacillus Thermoproteolyticus rokko* (Thermolysin enzyme)
TLN

Ligands

- p-Aminobenzamidine
 PBZ
- Benzamidine
 BEN
- Ethanolamine
 ETA
- 1, 10- phenanthroline
 PHN

Metals/ Metal ions

- Cadmium
 Cd
- Calcium ion (II)
 Ca$^{2+}$
- Cromium
 Cr
- Cuprum
 Cu
- Ferum
 Fe
- Kalium
 K
- Lithium
 Li
- Magnesium ion (II)
 Mg$^{2+}$
- Manganese
 Mn
- Natrium
 Na
- Nickel ion (II)
 Ni$^{2+}$
- Zinc ion (II)
 Zn$^{2+}$
Amino Acids

- Alanine Ala
- Asparagine Asn
- Aspartate Asp
- Glutamine Glu
- Glysine Gly
- Histidine His
- Isoluecine Ile
- Leucine Leu
- Lysine Lys
- Methionine Met
- Serine Ser
- Tyrosine Tyr
- Valine Val
- Adenosine triphosphate ATP

Spectrocopy Instruments

- Circular Dichroism CD
- Ultra-violet/ Fluoresence UV/Fluo
- Ultra-violet/Visible UV/Vis
Units

Absorbance [A]

Centimeter cm

Dalton Da

Gram g

Kilo-dalton kDa

Liter L

Microgram μg

Microliter μl

Mililiter ml

Miligram mg

Molar M

Molar absorptivity ε

Molar ellipticity θ

Optical Density OD

Temperature °C

Unit U

Wavelength nm
I certify that an Examination Committee has met on 11 April 2008 to conduct the final examination of name of Syarajatul Erma Binti Khalid on her Master of Science thesis entitled “Synthesis and Characterization of Semisynthetic Metallothermolysin” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Master of science.

Members of the Examination Committee were as follows:

Kamaliah Sirat, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Abdullah, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Johari Ramli, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wan Azlina Ahmad, PhD
Professor
Faculty of Science
Universiti Teknologi Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia.

Date: 26 June 2008
CHAPTER 1

INTRODUCTION

Enzymes as biocatalyst are in high demand by the industrial field for their high rates and high reaction specificity and stereoselectivity. Enzymes can accomplish the reactions at mild pH, temperatures and pressures, thereby it consumes less energy. As enzymes are non-toxic, it minimizes problem of downstream waste and by-product disposal in ecologically acceptable processes.

Native enzyme nowadays has gone through evolution where many modifications have been done to fulfill these demands (Abdul Rahman, 1993). One of the modification types is by synthesizing a semisynthetic enzyme. Semisynthetic enzyme refers to an artificial enzyme that was developed at a define site with cofactor or new functional group for its novel properties and unique features. It consists of enzyme, ligand and metal (Rawling and Barrett, 1995).

In this regards, isolated thermolysin from *Bacillus thermoproteolyticus rokko* was selected to be modified to produce a new enzyme known as the semisynthetic metalloenzyme. Thermolysin is known for its high thermostability and many studies have been done by researchers from all over the world (Boonyaras *et al.*, 2000).
According to Ory et al., (1998), an enzyme has regions on its surface where small molecule or ion can bind. Some binding sites on the surface of enzymes may allow binding but only to a limited range of the chemical compounds. The design for development of semisynthetic enzyme was based on the use of protein pockets that can accommodate ligand as an intermediate between the pockets at the surface of the enzyme and metal. According to Conn et al., (1987), approximately one-third of known enzymes has metals as part of their structure, which requires metals to be added for activity or is further activated by metals. Several additions of ligand and metal were highlighted in this study to observe the best complex synthesized that was capable in enhancing or inhibiting the enzyme reaction.

Recently, protein engineering and chemical modification has become a successful valuable tool for creating or improving protein function for practical uses. Therefore introducing cofactors or other reactive moieties into proteins provides enormous flexibility for the design of semisynthetic catalysts that could be employed for a variety of purposes especially to enhance its reaction activity (Distefano and Davies, 1997).

Understanding the structural and functional significance of these ligand and metal effects requires a specialized array of sophisticated instrumentation and techniques as well as the expertise to use them. It is only through a detailed understanding of structure and function that enzymes can be selected or redesigned to perform industrially relevant catalysis (Kazlauskas, 2000). Owing to its inherent sensitivity, simplicity and to some extent
selectivity, UV/Visible (UV/Vis) and UV/Fluorescence spectroscopy were among the selected spectroscopy techniques for more valuable structural proposal (Donald et al., 2001). Circular Dichroism (CD) spectropolarimetry was also used for prediction of the secondary structure of a protein that was modified.

This research focused on developing positive biocatalysts for a variety of purposes especially in pharmaceutical and chemical industries. Therefore the objectives of this study are:

1) To design and synthesize metalloenzyme as biocatalyst in bio-based industries.

2) To study the characterization and optimization of the modified enzyme.

3) To evaluate the activity of the novel semisynthetic metallothermolysin through hydrolysis of azocasein.

4) To analyze the semisynthetic metalloenzyme structure using modern spectroscopy.

In order to fulfill the above objectives, the native thermolysin had gone through screening before modification. The proteolytic activity was determined by using azocasein as the substrates. Identified as hydrolases
enzyme which cleave peptide bond, thermolysin catalyzed amide (peptide) bond hydrolysis in protein or peptide substrates.

Parameters involved were the optimum pH, temperature, reaction time and thermostability. These screening results helped us to determine the suitable environment of the native enzyme. Modification steps of the native enzyme were held by mixing the enzyme with ligands and metal ions (one at a time) to form a couple of protein complexes. Then these protein complexes were purified and assayed. The total activity of each complex had been compared among the protein complexes and native enzyme activity. The protein complex that yields highest total activity was chosen for further investigation. The chosen complex was characterized and optimized for its pH surrounding, temperature and thermostability.

This was followed by confirming its structure with an electronic probe such as UV/Vis, UV/Fluorescence spectroscopy and CD spectropolarimeter. The use of UV/Vis proved to us on how different molecules absorbed spectrum showed a number of absorption bands corresponding to structural groups within the molecule at different wavelengths. The same absorbance understanding goes to UV/Fluorescence spectroscopy that had been used and applied to study the fundamental physical processes of molecules and one of them was in structure–function relationships and interactions of biomolecules such as proteins and nucleic acids. CD spectropolarimeter on the other hand will predict protein secondary structure by obtaining information from the UV region of the spectrum.