
 

 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

DEVELOPMENT OF A PHOTOTHERMAL DEFLECTION ANALYZER 
FOR MEASUREMENT OF THERMOPHYSICAL AND THERMO-OPTICAL 

PROPERTIES OF FLUIDS 
 
 
 
 
 

KUAN YA CHIN 
 
 
 
 
 
 
 

FS 2008 16 



 

 

DEVELOPMENT OF A PHOTOTHERMAL DEFLECTION 
ANALYZER FOR MEASUREMENT OF THERMOPHYSICAL 

AND THERMO-OPTICAL PROPERTIES OF FLUIDS 
 

 

 

 

 

 

 

KUAN YA CHIN 

 

 

 

 

 

 

 

 

 

 

MASTER OF SCIENCE  
UNIVERSITI PUTRA MALAYSIA 

 
2008 

 

© C
OPYRIG

HT U
PM



 

 

DEVELOPMENT OF A PHOTOTHERMAL DEFLECTION ANALYZER 
FOR MEASUREMENT OF THERMOPHYSICAL AND THERMO-OPTICAL 

PROPERTIES OF FLUIDS 
 

 

 

 

 

 

 

 

By 

 

KUAN YA CHIN 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Master of Science 

 
March 2008 

© C
OPYRIG

HT U
PM



 ii

 

 

 

 

 

 

 

To: 

beloved family, 

and  

dearest friends. 

 

 

© C
OPYRIG

HT U
PM



iii 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Master of Science. 

 
 

DEVELOPMENT OF A PHOTOTHERMAL DEFLECTION ANALYZER 
FOR MEASUREMENT OF THERMOPHYSICAL AND THERMO-OPTICAL  

PROPERTIES OF FLUIDS 
 

By 

KUAN YA CHIN 

March 2008 

Chairman : Associate Professor Ionel Valeriu Grozescu, PhD 

Faculty : Science 

 

Photothermal deflection techniques are non-contact methods for optical and thermal 

properties characterization of solids, liquids and gases. The main focus in this project 

was to design, construct and test reliability of an instrument based on the principle of 

photothermal deflection technique. In this technique, the heating source is a NiCr 

resistance wire and the probe beam is a CW HeNe. The instrument is intended for the 

characterization of thermal properties of liquids and it is named Photothermal 

Deflection Analyzer (PTDA).  

 

The PTDA setup consists mainly of a CW HeNe probe laser beam, a NiCr resistance 

wire, a position sensitive detector and a personal computer with an installed data 

acquisition card. The PTDA measured the deflection of a probe beam passing near a 

heating source immersed in a liquid sample. The beam deflection is caused by the 

refractive index gradient induced by the temperature change in the liquid. The 

deflection angle of the probe laser beam is measured by the position sensitive 
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detector. Short electrical pulses from a data acquisition card generated across the 

resistance wire cause a heating gradient in the liquid. The duration and temporal 

shape of the electrical pulses can be change in a wide range.  

 

The temperature distribution of the heating wire and liquid is simulated by solving 

numerically a coupled transient heat conduction equations for wire and liquid. The 

effect of different temporal profiles and pulse durations of the heating source to the 

temperature distribution in the liquid is discussed. Using obtained temperature profile 

it is possible to calculate the probe beam displacement. Thermal properties of the 

liquid can be determined by comparing the numerical and experimental probe beam 

displacement. 

 

In order to test the reliability of the PTDA, thermal properties of selected liquid 

samples: distilled water, alcohol, sodium chloride liquid solution and coconut oil 

were determined. The thermal properties for distilled water and alcohol show a good 

agreement with the literature. For sodium chloride liquid solution, the PTDA is 

sensitive enough to sense the changes of thermal properties due to the variation of the 

solution concentration. The thermal diffusivity of coconut oil was dependent to the 

moisture content whereas the thermal conductivity and thermo-optical properties was 

not affected by the moisture content. Presently to the best of our knowledge, there is 

no literature data on thermal properties of coconut oil versus moisture content. © C
OPYRIG
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains. 
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Faculty : Sains 

 

Teknik pesongan fototerma merupakan satu teknik tak bersentuh untuk pencirian 

sifat optik dan haba bagi pepejal, cecair dan gas. Fokus utama dalam projek ini 

adalah untuk mereka, membina dan menguji kebolehpercayaan satu alat penganalisa 

berdasarkan teknik pesongan fototerma. Dalam teknik ini, unit pemanasan ialah NiCr 

dawai rintangan dan sinaran laser ialah CW HeNe. Alat ini bertujuan untuk pencirian 

sifat haba bagi cecair and dinamakan sebagai Penganalisa sesaran fototerma. 

 

Penyusunan alat-alat untuk teknik pesongan fototerma terdiri daripada satu laser CW 

HeNe, satu dawai rintangan NiCr, satu pengesan sensitif kedudukan dan satu 

komputer yang dipasang dengan kad pemerolehan data. Penganalisa sesaran 

fototerma mengukur pesongan sinaran laser yang melalui penjana haba yang 

direndam dalam sampel cecair. Pemesongan sinaran laser ini dicetus oleh perubahan 

indeks pembiasan yang disebabkan oleh perubahan suhu dalam sampel cecair. Sudut 

pesongan sinaran laser ini diukur dengan menggunakan pengesan sensitif kedudukan. 
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Denyut elektrik yang daripada kad pemerolehan data yang dijana merentasi dawai 

rintangan menyebabkan perubahan pemanasan dalam sampel cecair. Tempoh dan 

bentuk denyut elektrik pulse boleh diubah.  

 

Taburan suhu dalam dawai pemanas dan cecair telah disimulasi dengan 

menyelesaikan dalam bentuk angka gandingan persamaan haba kekonduksian singkat 

bagi dawai dan cecair. Kesan perbezaan profil masa dan tempoh denyut daripada 

sumber pemanasan terhadap taburan haba dalam dawai pemanas dan cecair juga 

dibincangkan. Dengan menggunakan taburan suhu yang diperolehi pesongan sinaran 

dapat dikirakan. Sifat terma dapat ditentukan dengan membandingkan model 

berangka dan data eksperimen. 

  

Untuk menguji kebolehpercayaan penganalisa sesaran fototerma, sifat terma bagi 

cecair ujian terpilih: air suling, alkohol, cecair sodium klorida dan minyak kelapa 

dapat ditentukan. Nilai sifat terma bagi air suling dan alkohol adalah dekat dengan 

nilai rujukan. Bagi cecair sodium klorida, penganalisa sesaran fototerma adalah peka 

untuk mengesan perubahan sifat terma untuk kepakatan cecair yang berubah-ubah. 

Nilai keteresapan bagi minyak kelapa adalah bergantung kepada kandungan air 

sebaliknya kekonduksian terma dan sifat termooptikal tak bergantung kepada 

kandungan air. Masa kini dalam pengetahuan yang ada, tidak ada data rujukan dalam 

nilai sifat terma untuk minyak kelapa dengan kandungan air. © C
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