UNIVERSITI PUTRA MALAYSIA

AFLATOXIN BIOMARKERS IN HUMAN BIOLOGICAL SAMPLES AND THEIR POTENTIAL REDUCTION BY PROBIOTIC *Lactobacillus casei* SHIROTA STRAIN

MOHD REDZWAN BIN SABRAN

FPSK(p) 2014 12
AFLATOXIN BIOMARKERS IN HUMAN BIOLOGICAL SAMPLES AND THEIR POTENTIAL REDUCTION BY PROBIOTIC
Lactobacillus casei SHIROTA STRAIN

MOHD REDZWAN BIN SABRAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2014
AFLATOXIN BIOMARKERS IN HUMAN BIOLOGICAL SAMPLES AND
THEIR POTENTIAL REDUCTION BY PROBIOTIC *Lactobacillus casei*
SHIROTA STRAIN

By

MOHD REDZWAN BIN SABRAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

September 2014
All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

AFLATOXIN BIOMARKERS IN HUMAN BIOLOGICAL SAMPLES AND THEIR POTENTIAL REDUCTION BY PROBIOTIC Lactobacillus casei SHIROTA STRAIN

By

MOHD REDZWAN BIN SABRAN

September 2014

Chair : Rosita binti Jamaluddin, PhD
Faculty : Medicine and Health Sciences

This thesis comprised of five main research projects, studied the presence of aflatoxin biomarkers in human biological samples and the use of probiotic Lactobacillus casei Shirota strain (LcS) as a potential aflatoxin adsorbent. The first research project involved a questionnaire survey among 160 subjects to assess their knowledge on fungal and aflatoxin contamination in the diets. More than half of subjects (n=84, 52.5%) participated in the screening stage had low level of knowledge. There were several significant findings between socio-demographic characteristics and subjects’ knowledge on fungal and aflatoxin contamination in the diets. In particular, being female and single and with personal income below RM1500 accounted for a significant 10.6% of the variability in the subjects’ overall scores of knowledge on fungal and aflatoxin contamination in the diets \(R^2=0.106, \) adjusted \(R^2=0.089, F (2, 156)=6.154, p=0.001 \) and the personal income was found to be the sole determinant of subjects’ overall knowledge \((\beta=-0.288, p=0.000) \).

As for the second research project, morning urine samples were collected from the subjects for the measurement of Aflatoxin M\(_1\) (AFM\(_1\)) using enzyme linked immunosorbent assay (ELISA) as well as to determine its association with the food consumption. Ninety-eight urine samples (n=98) were positive with AFM\(_1\). Only four from 37 food items in the food frequency questionnaire (FFQ) namely ready-to-eat cereals \((r=0.222, p=0.036) \), soybean milk \((r=0.266, p=0.011) \), kuih kacang \((r=0.222, p=0.035) \) and peanut butter \((r=0.211, p=0.045) \) showed moderate and positive association with the levels of urinary AFM\(_1\). A significant association \((\phi=0.286) \) was found between the levels of urinary AFM\(_1\) and the consumption of milk and dairy products as subjects with intake of milk and dairy products greater than 67.78 g/day had significantly and higher urinary AFM\(_1\) levels. The estimated dietary Aflatoxin B\(_1\) (AFB\(_1\)) exposure was 11.7 ng/day/ kg body weight, contributing to 0.29 cancer cases in 100, 000 populations where 6.1% of liver cancer could be attributable by aflatoxin exposure.
The third research project pertained to the use of ultra high performance liquid chromatography (UHPLC) for the measurement of urinary AFM$_1$. The UHPLC method was optimized and used to analyse urinary AFM$_1$ among seventy-one subjects (n=71) recruited from 160 subjects that participated in the screening stage. Thirteen subjects (n=13) had detectable urinary AFM$_1$ ranging from 2.4 to 100.34 pg/ml.

As for the fourth research project, the study was conducted to determine the effectiveness of 4 weeks cross-over intervention study with fermented milk containing LcS in reducing the levels of aflatoxin biomarkers in human blood and urine samples. Seventy-one subjects (n=71) were divided into two groups namely Blue and Yellow group. Overall, the intervention did not significantly reduce the levels of serum AFB$_1$-lysine adduct and urinary AFM$_1$ as well as the liver and kidney biomarkers. Nonetheless, the potential of LcS as an aflatoxin adsorbent to a certain extent was observed in some subjects especially in the Blue group. Within 2 weeks of intervention, the levels of serum AFB$_1$-lysine adduct reduced significantly from 6.24 ± 3.42 pg/mg albumin (ALB) to 5.14 ± 2.15 pg/mg ALB, with 17.63% of reduction. Although not significant (p=0.332), the levels of AFB$_1$-lysine at the end of intervention (4th week) was lower compared to the baseline levels. As for the urinary AFM$_1$ levels, a decreasing trend was observed over the 4 weeks of intervention.

The fifth project was conducted to determine the effect of LcS on the bioaccessibility of AFB$_1$ through an in vitro simulation of human digestion under fed condition. Peanut samples were artificially contaminated by spiking with two contamination levels of AFB$_1$ namely 4.53 and 8.56 ng/g. The contaminated peanut samples were applied to the simulation model together with three treatments namely activated carbon, cultured LcS and probiotic drink containing LcS. The average AFB$_1$ bioaccessibility of 83.92% from both spiked peanut samples with 4.53 ng/g and 8.56 ng/g indicated that AFB$_1$ was released completely from the food matrix (i.e peanut samples). The addition activated carbon reduced greatly AFB$_1$ bioaccessibility. By comparison, the addition of LcS (cultured LcS and probiotic drink containing LcS) did not produce a big reduction of AFB$_1$ bioaccessibility as seen with the application of activated carbon. Nonetheless, the treatment to a certain extent decreased AFB$_1$ bioaccessibility about 20% especially in the peanut samples spiked with 8.56 ng/g AFB$_1$.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENANDA BIO AFLATOKSIN DI DALAM SAMPEL BIOLOGI MANUSIA DAN POTENSI PENGURANGANNYA DENGAN PROBIOTIK Lactobacillus casei STRAIN SHIROTA

Oleh

MOHD REDZWAN BIN SABRAN

September 2014

Pengerusi : Rosita binti Jamaluddin, PhD
Fakulti : Perubatan dan Sains Kesihatan

Tesis ini merangkumi lima projek penyelidikan utama, mengkaji kehadiran penanda bio aflatoksin di dalam sampel biologi manusia dan penggunaan probiotik Lactobacillus casei strain Shirota (LcS) sebagai penyerap aflatoksin yang berpotensi. Projek penyelidikan pertama melibatkan satu kajian soal selidik di kalangan 160 subjek untuk menilai pengetahuan mereka terhadap pencemaran kulat dan aflatoksin di dalam diet. Lebih separuh daripada subjek (n=84, 52.5%) yang telah mengambil bahagian di dalam peringkat saringan mempunyai tahap pengetahuan yang rendah. Terdapat beberapa penemuan yang signifikan di antara ciri-ciri sosio-demografik dengan pengetahuan subjek mengenai pencemaran kulat dan aflatoksin dalam diet. Khususnya, subjek perempuan dan bujang yang mempunyai pendapatan kewangan peribadi di bawah RM1500 menyumbang dengan signifikan 10.6% daripada kebolehubahan di dalam skor keseluruhan pengetahuan subjek mengenai pencemaran kulat dan aflatoksin di dalam diet [R²=0.106, R² diselaraskan=0.089, F(2, 156)= 6.154, p=0.001] dan pendapatan kewangan peribadi merupakan penentu tunggal bagi pengetahuan keseluruhan subjek (β=-0,288, p=0.000).

Bagi projek penyelidikan kedua, sampel urin pagi telah dikumpul daripada subjek untuk pengukuran Aflatoksin M₁ (AFM₁) menggunakan penetapan kadar imunosorben taut-enzim (ELISA) serta untuk menentukan perkaitannya dengan pengambilan makanan. Sembilan puluh lapan sampel urin (n=98) adalah positif dengan AFM₁. Hanya empat daripada 37 barangan makanan di dalam soal selidik kekerapan makanan (FFQ) iaitu bijirin sedia ada (r=0.222, p=0.036), susu kacang soya (r=0.266, p=0.011), kuih kacang (r=0.222, p=0.035) dan mentega kacang (r=0.211, p=0.045) menunjukkan perkaitan yang sederhana dan positif dengan tahap AFM₁ di dalam urin. Satu hubungan yang signifikan (φ=0.286) didapati antara tahap AFM₁ di dalam urin dan pengambilan susu dan produk tenusu di mana subjek dengan pengambilan susu dan produk tenusu lebih daripada 67.78 g/hari
mempunyai tahap AFM₁ di dalam urin yang lebih tinggi dan signifikan. Anggaran pendedahan Aflatoksin B₁ (AFB₁) melalui makanan adalah 11.7 ng/hari/kg berat badan, menyumbang kepada 0.29 barah di dalam 100,000 penduduk di mana 6.1% daripada barah hati boleh berpunca daripada pendedahan aflatoksin.

Projek penyelidikan ketiga adalah mengenai penggunaan kromatografi cecair prestasi ultra tinggi (UHPLC) bagi pengukuran AFM₁ di dalam urin. Kaedah UHPLC ini telah dioptimunkan dan digunakan untuk menganalisis AFM₁ di dalam urin bagi tujuh puluh satu subjek (n=71) yang dipilih daripada 160 subjek yang terlibat di dalam peringkat saringan. Tiga belas subjek (n=13) mempunyai tahap AFM₁ di dalam urin yang boleh dikesan, berada di antara 2.4 sehingga 100.34 pg/mL.

Bagi projek penyelidikan yang keempat, kajian dijalankan untuk menentukan keberkesanan intervensi kajian silang selama 4 minggu dengan susu fermentasi yang mengandungi LcS untuk mengurangkan tahap penanda bio aflatoksin di dalam sampel darah dan urin manusia. Tujuh puluh satu subjek (n=71) telah dibahagikan kepada dua kumpulan iaitu kumpulan Biru dan Kuning. Secara keseluruhan, intervensi tersebut tidak dapat mengurangkan secara signifikan tahap serum aduk AFB₁-lisin dan AFM₁ di dalam urin serta penanda bio hati dan buah pinggang. Walau bagaimanapun, potensi LcS sebagai penyerap aflatoksin sedikit sebanyak dapat diperhatikan dalam beberapa subjek terutamanya di dalam kumpulan Biru. Dalam tempoh 2 minggu intervensi, tahap serum aduk AFB₁-lisin berkurang dengan signifikan daripada 6.24 ± 3.42 pg/mg albumin (ALB) kepada 5.14 ± 2.15 pg/mg ALB, dengan pengurangan sebanyak 17.63%. Walaupun tidak signifikan (p=0.332), tahap aduk AFB₁-lisin di akhir intervensi (minggu ke-4) adalah lebih rendah berbanding dengan tahapnya di permuana. Bagi tahap AFM₁ di dalam urin, satu trend penurunan dapat diperhatikan sepanjang tempoh 4 minggu intervensi.

Projek kelima dijalankan untuk menentukan kesan LcS terhadap kebolehcapaian bio AFB₁ melalui simulasib in vitro pencernaan manusia di bawah keadaan diberi makan. Sampel kacang telah dicemarkan dengan mencampurkan AFB₁ pada dua tahap pencemaran iaitu sebanyak 4.53 dan 8.56 ng/g. Kacang yang dicemarkan itu telah melalui model simulasib bersama tiga rawatan iaitu dengan karbon yang diaktifkan, kultur LcS dan minuman probiotik yang mengandungi LcS. Purata kebolehcapaian bio AFB₁ adalah 83.92%, daripada kedua-dua sampel kacang yang dicampurkan dengan 4.53 ng/g dan 8.56 ng/g menunjukkan bahawa AFB₁ dibebas sepenuhnya dari matriks makanan (iaitu sampel kacang). Penambahahan karbon yang diaktifkan mengurangkan kebolehcapaian bio AFB₁ dengan ketara. Sebagai perbandingan, penambahahan LcS (kultur LcS dan minuman probiotik yang mengandungi LcS) tidak menghasilkan pengurangan yang besar bagi kebolehcapaian bio AFB₁ seperti yang dilihat dengan rawatan oleh karbon yang diaktifkan. Walaubagaimanapun, rawatan tersebut untuk satu tahap tertentu dapat menurunkan kebolehcapaian bio AFB₁ lebih kurang 20% terutamanya di dalam sampel kacang yang dicampurkan dengan 8.56 ng/g AFB₁.
ACKNOWLEDGEMENTS

First and foremost, all thanks to Allah S.W.T., for the strength and health given to me to complete my PhD research. I would like to express my heartfelt appreciation to my supervisor, Associate Professor Dr. Rosita Jamaluddin for her continuous support of my PhD study and research, for her patience, motivation, enthusiasm and guidance. Her assistance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor for my PhD study.

Besides my supervisor, I would like to thank my supervisory committee members; Associate Professor Dr. Mohd Sokhini Abd. Mutalib and Associate Professor Dr. Zuraini Ahmad for their encouragement, insightful comments and hard questions. My sincere thanks also go to Professor Dr. Jia-Sheng Wang and my colleagues at the Molecular Biomarker Laboratory of University of Georgia, Athens, USA for the opportunity given to me on working with diverse and exciting research project during my attachment in USA.

My PhD research would not have been possible unless with the financial supports from UPM and Yakult Honsha Co. Ltd. In addition, I would like to thank Ministry of Education, Malaysia for sponsoring my PhD through the MyBrain15 scholarship (MyPhD). Besides, I would like to thank the laboratory officers and assistants from the Department of Nutrition and Dietetics of Faculty of Medicine and Health Sciences, UPM for their helps and assistances. I thank also my research assistant and fellow friends for their input and stimulating discussion and for all the fun we had for the last three and half year in UPM.

Last but not the least, I would like to convey my highest gratitude to my parents; Haji Sabran Bokhri and Hajah Don Lazim for giving birth to me at the first place and supporting me spiritually and physically throughout my life. I also like to thank my sisters, brother, younger sister and brother-in-law for their moral support. This PhD thesis would have remained a dream had it not been for the supports that I have received from all my family members.
I certify that a Thesis Examination Committee has met on 5 September 2014 to conduct the final examination of Mohd Redzwan bin Sabran on his thesis entitled “Aflatoxin Biomarkers in Human Biological Samples and their Potential Reduction by Probiotic *Lactobacillus casei* Shirotu Strain” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Asmah binti Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Hani Said El-Nezami, PhD
Associate Professor
University of Hong Kong
Hong Kong
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 September 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows

Rosita binti Jamaluddin, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Mohd Sokhini bin Abd. Mutalib, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Zuraini binti Ahmad, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original works;
- quotations, illustrations and citation have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:_________________________ Date:_____________________

Name and Matric No.: Mohd Redzwan bin Sabran (GS28588)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________
Name of Member of Supervisory Committee: Associate Professor Dr. Rosita binti Jamaluddin

Signature: ____________________
Name of Member of Supervisory Committee: Associate Professor Dr. Mohd Sokhini bin Abd. Mutalib

Signature: ____________________
Name of Member of Supervisory Committee: Associate Professor Dr. Zuraini binti Ahmad
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of the study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Significance of study</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Hypothesis</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Objective</td>
<td>5</td>
</tr>
<tr>
<td>1.5.1 General objective</td>
<td>5</td>
</tr>
<tr>
<td>1.5.2 Specific objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Flow chart of the study</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Mycotoxin</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 History of mycotoxin</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Aflatoxin and historical background</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Aflatoxin metabolites</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Dietary exposure of aflatoxin</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Aflatoxicosis and human exposure to aflatoxin</td>
<td>18</td>
</tr>
<tr>
<td>2.2.4 Toxikinetics of aflatoxin</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5 Toxidynamics and carcinogenic effects of aflatoxin</td>
<td>25</td>
</tr>
<tr>
<td>2.2.6 Regulations and approaches to reduce risk of aflatoxin exposure</td>
<td>26</td>
</tr>
<tr>
<td>2.3 Probiotic</td>
<td>27</td>
</tr>
<tr>
<td>2.3.1 Definition</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2 Lactic acid bacteria (LAB)</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Lactobacillus casei Shirota strain (LcS)</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1 Beneficial health effects of LcS</td>
<td>30</td>
</tr>
<tr>
<td>2.5 Binding of probiotic lactic acid bacteria to food carcinogens and mutagen</td>
<td>34</td>
</tr>
<tr>
<td>2.5.1 Aflatoxin binding by probiotic lactic acid bacteria</td>
<td>34</td>
</tr>
<tr>
<td>2.5.2 Nature and mechanism of aflatoxin binding to LcS</td>
<td>35</td>
</tr>
<tr>
<td>3 DETERMINANT OF ADULTS’ KNOWLEDGE ON FUNGAL AND AFLATOXIN CONTAMINATION IN THE DIETS</td>
<td>40</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>40</td>
</tr>
</tbody>
</table>
3.2 Materials and methods
3.2.1 Development of questionnaire
3.2.2 Sample size calculation
3.2.3 Recruitment of the subjects
3.2.4 Statistical analysis
3.3 Results
3.3.1 Socio-demographic characteristics and health status of the subjects
3.3.2 Analyses of the questionnaire
3.3.3 Subjects’ knowledge on fungal and aflatoxin contamination in the diets
3.3.4 Subjects’ knowledge according to socio-demographic characteristics
3.3.5 Determinants of subjects’ knowledge on fungal and aflatoxin contamination in the diets
3.4 Discussion
3.5 Conclusion
3.6 Disclaimer

4 ASSOCIATION BETWEEN URINARY AFM$_1$ WITH FOOD CONSUMPTION AND RISK ASSESSMENT OF AFLATOxin EXPOSURE
4.1 Introduction
4.2 Materials and methods
4.2.1 Development of semi-quantitative food frequency questionnaire (FFQ)
4.2.2 Recruitment of the subjects
4.2.3 Collection of morning urine samples
4.2.4 Semi-quantitative food frequency questionnaire (FFQ)
4.2.5 Quantification of urinary AFM$_1$
4.2.6 Method validation
4.2.7 Estimation of dietary AFB$_1$ exposure
4.2.8 Risk characterization
4.2.9 Statistical analysis
4.3 Results
4.3.1 Analysis of the semi-quantitative FFQ
4.3.2 Detection of urinary AFM$_1$
4.3.3 Urinary AFM$_1$ level based on socio-demographic characteristics
4.3.4 Association between urinary AFM$_1$ and food consumption
4.3.5 Estimated exposure and risk characterization of dietary AFB$_1$
4.4 Discussion
4.5 Conclusion
4.6 Disclaimer
5 DETERMINATION OF URINARY AFM₁ USING ULTRA HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (UHPLC)

5.1 Introduction 75
5.2 Methods 76
 5.2.1 Chemicals and materials 76
 5.2.2 Collection of morning urine samples 76
 5.2.3 Preparation of stock, working and calibrant standard solutions 77
 5.2.4 Safety precautions 78
 5.2.5 Extraction of AFM₁ from urine samples 77
 5.2.6 Determination of AFM₁ by UHPLC 77
 5.2.7 Confirmation of AFM₁ identity 78
 5.2.8 Method validation 78
5.3 Results 79
 5.3.1 Configuration of chromatographic conditions 79
 5.3.2 Linearity, LOD and LOQ 80
 5.3.3 Recovery, intra- and inter-day precision 80
 5.3.4 Identity of AFM₁ 81
 5.3.5 Analysis of urine samples and the occurrence of AFM₁ 83
 5.3.5 Regression graph of urinary AFM₁ based on age 84
5.4 Discussion 84
5.5 Conclusion 87
5.6 Disclaimer 87

6 EFFECTS OF FERMENTED MILK CONTAINING PROBIOTIC Lactobacillus casei SHIROTA STRAIN ON THE LEVEL OF AFLATOXI BIOMARKERS AMONG STAFFS IN UNIVERSITI PUTRA MALAYSIA

6.1 Introduction 88
6.2 Materials and methods 89
 6.2.1 Study design 89
 6.2.2 Study location 89
 6.2.3 Sample size calculation 90
 6.2.4 Subjects’ recruitment 91
 6.2.5 Study protocol 92
 6.2.6 Chemical and reagents for analysis of serum AFB₁-lysine adduct 94
 6.2.7 Analysis of serum AFB₁-lysine adduct 94
 6.2.8 Analysis of AFM₁ in urine samples 98
 6.2.9 Analysis of serum liver and kidney functions 98
 6.2.10 Analysis of food intake 98
 6.2.11 Statistical analysis 99
6.3 Results 99
 6.3.1 Subjects’ socio-demographic characteristics 99
 6.3.2 Adherence to experimental protocol 100
 6.3.3 Energy, macronutrients and fibre intake 102
 6.3.4 Liver and kidney functions 107
 6.3.5 Modulation of serum AFB₁-lysine adduct 112
6.3.6 Modulation of urinary AFM₁ 116
6.3.7 Trend of aflatoxin biomarkers over 4 weeks of intervention 118

6.4 Discussion 121
6.5 Conclusion 126
6.6 Disclaimer 126

7 EFFECT OF PROBIOTIC LACTIC ACID BACTERIA ON THE BIOACCESSIBILITY OF AFB₁ IN HUMAN MODEL DIGESTION UNDER FED CONDITION 127
7.1 Introduction 127
7.2 Materials and methods 128
 7.2.1 Chemicals and reagents 128
 7.2.2 Preparation of AFB₁ spiked-peanut samples 129
 7.2.3 Cultivation of Lactobacillus casei Shirota (LcS) 129
 7.2.4 Confirmation of LcS by 16S rRNA gene sequencing 129
 7.2.5 Estimation of LcS concentration with 0.5 McFarland standard 130
 7.2.6 Preparation of digestive juices 130
 7.2.7 Simulation of in vitro digestion model 131
 7.2.8 Experimental protocol 132
 7.2.9 Analysis of AFB₁ in the supernatant (chyme) 132
 7.2.10 Bioaccessibility of AFB₁ 132
 7.2.11 Statistical analysis 133
7.3 Results 133
 7.3.1 16S rRNA gene sequencing of cultured LcS and Yakult drink 133
 7.3.2 AFB₁ contamination levels in the spiked peanut samples 134
 7.3.3 Bioaccessibility of AFB₁ 134
 7.3.4 Effect of the treatments on the bioaccessibility of AFB₁ 134
7.4 Discussion 136
7.5 Conclusion 139

8 GENERAL DISCUSSION 140

9 SUMMARY, GENERAL CONCLUSION, LIMITATION AND RECOMMENDATION FOR FUTURE RESEARCH 142
9.1 Summary 142
9.2 General conclusion 143
9.3 Limitations 144
9.4 Recommendations 145

REFERENCES 147
APPENDICES 167
BIODATA OF STUDENT 232
LIST OF PUBLICATIONS 233
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of mycotoxins based on their fungal origin</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Some diseases associated with fungi</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Occurrences of aflatoxin in foodstuffs in Malaysia</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Some recent (2000-2012) examples of human exposure to aflatoxin from the literatures</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Differential characteristic of lactic acid bacteria (LAB)</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Initial statements used in Part B of questionnaire</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Socio-demographic characteristics of 160 recruited subjects</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Varimax rotate factor structure of the seven statements on knowledge of fungal and aflatoxin contamination in the diets</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Descriptive analysis on the statements used for assessing subjects’ knowledge on fungal and aflatoxin contamination in the diets (n=160)</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Subject’s score of knowledge on fungal and aflatoxin contamination in the diets based on socio-demographic backgrounds</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Chi-square analyses on the association between socio-demographic variables and subjects’ knowledge status on fungal and aflatoxin contamination in the diets</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Predictive utility of each predictor in the MRA model</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Conversion factor of frequency of intake used in the FFQ (Norimah et al., 2008)</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Intakes from 37 food items in the semi-quantitative FFQ</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Descriptive statistic of urinary AFM$_1$ levels (n=98)</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>The level of urinary AFM$_1$ based on socio-demographic characteristics (n=98)</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Cross-tabulation of food consumption with urinary AFM$_1$ (n=98)</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>AFM$_1$ level based on milk and dairy products intake (n=98)</td>
<td>69</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of risk assessment of aflatoxin exposure in Malaysia</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Intra-day, inter-day and recovery experiment of spiked urine samples</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Calculation of population standard deviation (SD)</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Preparation of albumin standard from stock solution (4g/dL)</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>Preparation of protein standard from stock solution (1 mg/mL)</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Mobile phase composition for analysing AFB$_1$-lysine adduct</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Conversion factor of calorie for carbohydrate, fat and protein</td>
<td>98</td>
</tr>
<tr>
<td>6.6</td>
<td>Subjects’ socio-demographic, food intake and urinary AFM$_1$ based on data obtained from the screening stage</td>
<td>100</td>
</tr>
<tr>
<td>6.7</td>
<td>Energy, macronutrient and dietary fibre intake for subjects in the Blue group over 10 week-intervention study (n=34)</td>
<td>103</td>
</tr>
<tr>
<td>6.8</td>
<td>Energy, macronutrient and dietary fibre intake for subjects in the Yellow group over 10 week-intervention study (n=32)</td>
<td>104</td>
</tr>
<tr>
<td>6.9</td>
<td>Energy, macronutrient and dietary fibre intake of all subjects (n=66)</td>
<td>105</td>
</tr>
<tr>
<td>6.10</td>
<td>Comparison of energy, macronutrients and dietary fibre intake during the probiotics consumption period</td>
<td>106</td>
</tr>
<tr>
<td>6.11</td>
<td>Liver and kidney functions of subjects in the Blue group (n=34)</td>
<td>108</td>
</tr>
<tr>
<td>6.12</td>
<td>Liver and kidney functions of subjects in the Yellow group (n=32)</td>
<td>110</td>
</tr>
<tr>
<td>6.13</td>
<td>Overall analysis of liver and kidney functions (n=66)</td>
<td>111</td>
</tr>
<tr>
<td>6.14</td>
<td>Recovery and intra- and inter-day validation results</td>
<td>112</td>
</tr>
<tr>
<td>6.15</td>
<td>Levels of serum AFB$_1$-lysine adduct at different time points for both treatments</td>
<td>115</td>
</tr>
<tr>
<td>6.16</td>
<td>Levels of urinary AFM$_1$ at different time points for both treatments</td>
<td>117</td>
</tr>
<tr>
<td>7.1</td>
<td>AFB$_1$ level detected in spiked peanut samples and recovery data</td>
<td>134</td>
</tr>
<tr>
<td>7.2</td>
<td>AFB$_1$ bioaccessibility reduction of two contamination levels</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of aflatoxin B₁ (AFB₁). The terminal furan ring double bond indicated by the arrow. 3 and 9a indicated carbon 3 and carbon 9a. -OCH₃ = oxymethyl group (Source: Paterson and Lima, 2010a).</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>The metabolic pathway of AFB₁. GST = Glutathione-S-Transferase, mEH = microsomal exopoxide hydrolase, AFB₁-NAC = AFB₁-Mercapturic Acid, PI = Phase 1, PII = Phase 2 (Source: Adapted and modified from Mykkänen et al., 2005 and Wang et al., 1999)</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>The morphology of common (a) and exposed Lactobacillus casei Shirota strain (LcS) to AFB₁ (b) of tapping mode under atomic force microscope (AFM) (Source: Hernandez-Mendoza et al., 2010)</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>The presence of oxy-methyl group (-OCH₃) of aflatoxin B₁ (AFB₁) that forms hydrogen bond (Source: Yiannikouris et al., 2006)</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Model of AFB₁ binding to the structure of β-D-glucan. The arrow indicates hydrogen bonding between oxy-methyl group (-OCH₃) of AFB₁ to the β-D-glucan structure while the rest of AFB₁ molecule docks inside the structure of β-D-glucan through the Van de Waals interaction. The numbers indicate a possible binding configuration of AFB₁ with the β-D-glucan structure (Source: Yiannikouris et al., 2006)</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>The health status of 160 recruited subjects</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Frequency of subjects’ total score of knowledge on fungal and aflatoxin contamination in the diets. The red bar represents total score of 8 and below (low knowledge), whereas the blue bar represents subjects’ total score above 8 (high knowledge)</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>ELISA procedures for quantification of AFM₁ in urine samples</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation between dietary AFB₁ and AFM₁ detected in urine samples. Graph was plotted based on data and information by Zhu et al. (1987)</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>UHPLC chromatograms of urine sample [A], spiked AFM₁ urine (2 ng/ml) [B] and spiked urine sample after TFA derivatization [C]. (Retention time of AFM₁ and AFM₂a is around 5.7 and 4.4 minutes repectively)</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>UHPLC chromatograms of urine samples analysed for the</td>
<td>83</td>
</tr>
</tbody>
</table>
occurrence of AFM$_1$

5.3 Distribution of urinary AFM$_1$ of 13 positive samples according to age 84

6.1 Flow chart of subjects’ progression in the intervention study 101

6.2 Comparison between HPLC chromatograph of the normal human serum, NHS [A], spiked NHS with 1 ng/ml AFB$_1$-lysine adduct [B] and sample with detectable level of AFB$_1$-lysine adduct. (Retention time for serum AFB$_1$-lysine adduct is around 13.1 min) 113

6.3 Median level of urinary AFM$_1$ during the 4-week intervention 119

6.4 Serum AFB$_1$-lysine adduct during 4-week intervention. Bar and error bar represent mean and standard error mean respectively. *p<0.05 120

7.1 Schematic representation of the in vitro digestion model. The model describes a three-step procedure simulating the digestive process in mouth, stomach and small intestine 131

7.2 Purified PCR products of both samples (cultured LcS and Yakult drink). M: Ladder; -ve: negative control; +ve: positive control of LcS. 133

7.3 Bioaccessibility of AFB$_1$ of spiked peanuts samples and the treatments. Bar and error bar indicate mean ± standard error mean of triplicate analyses (n=3) and value with different subscript letter shows significant different 135
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>Antibiotic-associated diarrhoea</td>
</tr>
<tr>
<td>AFB<sub>1</sub></td>
<td>Aflatoxin B<sub>1</sub></td>
</tr>
<tr>
<td>AFB<sub>1</sub>-NAC</td>
<td>Aflatoxin B<sub>1</sub> mercapturic acid</td>
</tr>
<tr>
<td>AFB<sub>2</sub></td>
<td>Aflatoxin B<sub>2</sub></td>
</tr>
<tr>
<td>AFG<sub>1</sub></td>
<td>Aflatoxin G<sub>1</sub></td>
</tr>
<tr>
<td>AFG<sub>2</sub></td>
<td>Aflatoxin G<sub>2</sub></td>
</tr>
<tr>
<td>AFL</td>
<td>Aflatoxicol</td>
</tr>
<tr>
<td>AFM<sub>1</sub></td>
<td>Aflatoxin M<sub>1</sub></td>
</tr>
<tr>
<td>AFM<sub>2a</sub></td>
<td>AFM<sub>1</sub> hemiacetal derivative</td>
</tr>
<tr>
<td>AFP<sub>1</sub></td>
<td>Aflatoxin P<sub>1</sub></td>
</tr>
<tr>
<td>AFQ<sub>1</sub></td>
<td>Aflatoxin Q<sub>1</sub></td>
</tr>
<tr>
<td>AFs</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Transaminase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of analytical communities</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Aminotransferase</td>
</tr>
<tr>
<td>ATA</td>
<td>Alimentary toxic aleukia</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood Urea Nitrogen</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variance</td>
</tr>
<tr>
<td>DIO</td>
<td>Diet-induced obesity</td>
</tr>
<tr>
<td>DMA</td>
<td>Data Medical Associates</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DON</td>
<td>Deoxynivalenol</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food frequency questionnaire</td>
</tr>
<tr>
<td>FUMB<sub>1</sub></td>
<td>Fumonisim B<sub>1</sub></td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma-glutamyl transpeptidase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-s-transferase</td>
</tr>
<tr>
<td>HBsAg<sup>−</sup></td>
<td>Non hepatitis B-positive or Hepatitis B-negative</td>
</tr>
<tr>
<td>HBsAg<sup>+</sup></td>
<td>Hepatitis B-positive</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IAC</td>
<td>Immunoaffinity column</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IBS</td>
<td>Irritable bowel syndrome</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-γ</td>
</tr>
<tr>
<td>IL-10</td>
<td>Interleukin 10</td>
</tr>
<tr>
<td>IL-12</td>
<td>Interleukin 12</td>
</tr>
</tbody>
</table>

xviii
IL-2 Interleukin 2
IL-6 Interleukin 6
ITT Insulin tolerance test
ITT Intention to treat
JECFA The Joint FAO/WHO Expert Committee on Food Additives
KMO Kaiser-Meyer-Olkin
LAB Lactic acid bacteria
LBP Lipopolysaccharide-binding protein
LcS *Lactobacillus casei* Shirota strain
LGG *Lactobacillus rhamnosus* strain GG
LIT Limit of detection
LOQ Limit of quantification
M Molar
mEH Microsomal epoxide hydrolase
MeOH Methanol
MOH Ministry of Health
MRA Multiple regression analysis
MRS de Man, Rogosa and Sharpe
NCBI National Centre for Biotechnology Information
ND Not determined
NHS Normal human serum
NIV Nivalenol
NK Natural killer
NMRR National Medical Research Registry
NS Not stated
OA Ovalbumin
OCH₃ Oxy-methyl
-OH Hydroxyl
OR Odds ratio
OTA Ochratoxin A
PBS Phosphate buffer saline
PCR Polymerase chain reaction
PI Phase 1
PII Phase 2
PS Polysaccharide
QC Quality control
RNA Ribonucleic acid
ROS Reactive oxygen species
rRNA Ribosomal ribonucleic acid
RSM Response surface methodology
SAR Seasonal allergic rhinitis
SCFA Short chain fatty acid
SCT Socio Cognitive Theory
SD Standard deviation
SDpooled Pooled standard deviation
SDS Sodium dedocyl sulphate
SDw Within subject variance
SPE Solid phase extraction
TSAW *Trichinella spiralis* adult worms
UHPLC Ultra high performance liquid chromatography
UK United Kingdom
UPM Universiti Putra Malaysia
URTI Upper respiratory-tract infection
USA United States of America
UV Ultraviolet
WHO World Health Organization
CHAPTER 1
INTRODUCTION

1.1. Background of the study

All living lives require sustainable food supply for survival in the upcoming and challenging world where the food resources could be limited and contaminated. Moreover, the emergence of new diseases for the past decades and the discovery of a wide range of diseases associated with the diets show how vulnerable humans are (Keesing et al., 2010; Giraud et al., 2010; Newell et al., 2010). Even so, these phenomena can be avoided if humans can maintain and achieve maximum health benefits through the healthy and nutritious diets and safe foods. On the other hand, it is also believed that not everyone is particular on the importance of healthy food eating and food safety (Steeves et al., 2012; Newell et al., 2010). In one of many instances, people’s awareness on food safety is still below par as evident by many cases of food-borne illnesses and poisonings that happened around the globe (Newell et al., 2010). It is indeed a top priority issue and certainly a public concern as the incidences are not only detrimental to the human well-being, but economically affect many nations especially among the developing countries such as in Asia and Africa (Negedu et al., 2011).

Malaysia, is one the countries that is facing the same dilemma. It is apparent by the publication of reports and articles on the occurrence of contaminants and toxicants in the diets and their impacts to humans and animals. In fact, one of the evidences that can be seen in Malaysia is the aflatoxicosis case that occurred in Perak in 1988, which has led to thirteen deaths of children (Lye et al., 1995). The occurrence of aflatoxin, one of the mycotoxin produced by fungi is one of many toxicants that are commonly found in the human food resources and the significant impact of this food-borne illness should not be taken for granted. As in Malaysia, there are studies reported the contamination of aflatoxin in the foodstuffs (Leong et al., 2010; Arzandeh et al., 2010; Sulaiman et al., 2007). For example, a recent study by Samsudin and Abdullah (2013) measured aflatoxin contamination level ranged from 0.61 to 77.3 μg/kg in red rice and 35 of 50 samples analysed had levels higher than the Malaysian and European standard of 5 and 4 μg/kg respectively.

The example is one of many mycotoxicosis cases that happened around the world due to fungal infections. In the tenth century, the infection of fungi in the diets caused the outbreak of disease known as St. Anthony’s or Holy Fire in many European countries due to the contamination of rye by ergot alkaloid, produced by Claviceps purpurea (Paterson & Lima, 2010a). Since then, many cases have been reported and the discovery of “Turkey X” disease caused by aflatoxin, in 1950s and early 1960s had opened new prospectus on the scientific research on the aetiology of mycotoxicosis and preventive strategies in foods, animals and humans (Kensler
et al., 2011). Kensler et al. (2011) described the epidemic disease as the major cause of death of numerous poultry animals including ducklings and chicks due to the consumption of diet containing contaminated peanuts and exposed to *Aspergillus flavus*, a pathogenic fungus. It was found that extracts from the culture of the fungus isolated from the meal were found to have the capability to induce the “Turkey X” syndromes (Kensler et al., 2011). Due to this, most of the reported cases on mycotoxicosis focused on the specific species of fungi and four major species of fungi have been discovered belonging to the species of *Aspergillus, Fusarium, Penicillium* and *Claviceps* that produced some major mycotoxins such as aflatoxin, ochratoxin A, fumonisim and zearalenone (Paterson & Lima, 2010a). Of these four mycotoxins, research on aflatoxin has been extensively conducted (Paterson & Lima, 2010a; Patterson & Lima, 2010b; Kensler et al., 2011).

At the beginning of investigation, aflatoxin quantification was facilitated by their intense fluorescence under the ultraviolet (UV) light (Groopman et al., 2005). Later the isolation of purified aflatoxin metabolites with identical physical and chemical properties (Kensler et al., 2011) formed the core to the scientific research on aflatoxin to assess the possible hazards arising from the contamination of human food sources and finally to minimize the exposure through various preventive measures. In fact, the development of analytical methods of detecting and quantifying aflatoxin in the foods and feeds is significant, stimulated by the extensive research and collaborations (Kensler et al., 2011). As such, epidemiological and observational studies were possible to conduct to determine the association of aflatoxin ingestion with diseases in human population, especially with the incidence of hepatocellular carcinoma (HCC). Moreover, a better understanding on the mechanistic studies of aflatoxin toxicology and metabolism can be achieved from the development of methods for structural characterization and synthesis of the major aflatoxin metabolites (Groopman et al., 2005; Paterson & Lima, 2010a; Kensler et al., 2011). For instance, the isolation of aflatoxin biomarkers in human biological samples such as AFB1-DNA adduct, serum AFB1-lysine adduct and other metabolites of AFB1 in urine and faeces (Wang et al., 1999; Mykkänen et al., 2005; Polychronaki et al., 2008) provide the tools to evaluate the molecular epidemiology of aflatoxin exposure of individuals within human population.

Having said that, the technology could be meaningless if human populations are still exposed to aflatoxin and there are no attempts to prevent the occurrence from continuing to happen. There are various measures developed for the control of aflatoxin contamination, which can range from physical, chemical and biological ways (El-Nezami et al., 1998). Although these approaches could possibly prevent the “flow” of aflatoxin in the food chain, it is believed that humans are still at risk of being exposed as some contaminated foods might “escape” and persist in the food chain. This incessant event could potentially pose serious impact on human as aflatoxin is a dangerous toxicant and linked to the development of HCC (IARC, 1993; IARC 2002). People might recognize the appearance of fungus in the foodstuffs but aflatoxin is hardly recognisable by visual inspection as it is odourless, colourless, tasteless and invisible through the naked eyes.
Therefore, one of the preventive strategies is by minimizing and/or limiting humans’ exposure to aflatoxins. The use of non-nutritional adsorbents such as activated carbon, hydrated sodium calcium alumino silicate, zeolite, bentonite and certain clays has shown to be beneficial in preventing absorption of aflatoxin in the gastrointestinal tract based on in vitro and in vivo experiments (Deli & Okan, 2006; Thieu & Pettersson, 2008; Gallo et al., 2010). As an example, a clinical study using NovaSil clay was found to be an effective adsorbent of aflatoxin (Wang et al., 2008). Regardless of the findings, their application for human intervention study is questionable as some could be dangerous and pose unwanted side effects to human health. Besides, increasing concern and demand by consumers for safe and high-quality foods have prompted research to find a better alternative.

Predicated upon that, the use of probiotic bacteria recently has been studied as one of the potential adsorbents of aflatoxin in the gastrointestinal tract. There are various studies from in vitro and animal which found the potential of certain probiotic lactic acid bacteria in reducing the bioavailability of aflatoxin (El-Nezami et al., 1998; Hernandez-Mendoza et al., 2009b; Peltonen et al., 2000; Lahtinen et al., 2004; Gratz et al., 2006; Haskard et al., 2000). In fact, probiotic bacteria have many beneficial health effects (Oelschlaeger, 2010), thus its use to counteract the toxicity of aflatoxin could be further examined as one the preventive strategies.

1.2. Problem statement

Humans are vulnerable to many harmful exposures through ingestion, inhalation or even by contact (Paterson & Lima, 2010a). The contamination of human food resources by toxins, especially aflatoxins has become a burden to the public as people are not aware of this phenomenon. Due to that, many scientific studies have been conducted to find the roots of this epidemic problem. In one of many instances, Kensler et al. (2011) provided evidences on aflatoxin through extensive literature reviews and highlighted the pervasiveness of human exposure to aflatoxin particularly in Africa and Asia, where the prevalence of aflatoxin contamination in the food and agricultural products is higher. For example in Kenya, 55% of 658 maize products had aflatoxin level greater than the Kenyan regulatory limit of 2 ppb, 35% had levels >100 ppb and 7% had levels > 1000 ppb (Kensler et al., 2011)

Malaysia has tropical climate that can favour the growth of fungi in the crops and many agricultural commodities. It is one of the several factors that contribute to the occurrence of aflatoxin. With poor food processing, storage and handling along with high temperature and humidity environments, the growth of aflatoxin-producing fungi on stored grains is favoured (Paterson & Lima, 2010b) and led to the production of aflatoxin. Even though fungal infection can be detected by visual inspection, aflatoxin is hardly detectable. As a result of the manifestation, research on aflatoxin has been studied extensively in Malaysia in order to extrapolate the extent of human exposure to this food contaminant. Besides, there are many articles
published in the literatures on the prevalence of aflatoxin contamination in many foodstuffs and agricultural commodities in Malaysia (Abdullah et al., 1998; Sulaiman et al., 2007; Arzandeh et al., 2010; Reddy & Salleh, 2010). For instance, Reddy et al. (2011) indicated that of 95 foods normally consumed by Malaysians, 69 (72.6%) were found positive for AFB$_1$ ranging from 0.53 to 15.33μg/kg.

Malaysia is reported to have high aflatoxin exposure ranging from 15 to 140 ng/kg body weight/day compared to other Southeast Asian countries such as Indonesia, Thailand and Philippines (Liu & Wu, 2010). This statistic is not something to be proud off as aflatoxin cases have been detected since 1980s [aflatoxicosis case in Perak (Lye et al., 1995)] and a study by Zulhabri et al. (2009) found that Malaysian HCC patients had significantly high AFB$_1$-albumin adduct compared to the control subjects. In fact, these findings show how vulnerable humans to aflatoxin as some of the contaminated foods are detected with high aflatoxin levels. Sulaiman et al. (2007) revealed in accordance to the Malaysian Food Regulation 1985, the maximum permissible level of all mycological contaminants (aflatoxin and other mycotoxins) in all types of food is 35μg/kg. Moreover, Leong et al. (2010) added that a limit of 15μ/kg of total aflatoxins in groundnuts for processing have been established by the Malaysian Food Act 1983 and Food Regulations 1985.

One of the recent findings is the occurrence of aflatoxin in nuts, cereals, spices and herbs in Malaysia (Leong et al., 2010; Arzandeh et al., 2010; Sulaiman et al., 2007). Aflatoxin exposure is harmful as this food contaminant poses serious health impact to humans as it is an integral for the pathogenesis of liver cancer (IARC, 2002). To date, many prevention strategies have been developed as seen through the in vitro and animal studies but its application in humans is very limited (Liu & Wu, 2010). Moreover, there is no direct approach to prevent human exposure to aflatoxin in the diets. Nonetheless, the use of adsorbents such as clay, activated carbon as well as certain probiotic bacteria can minimize the exposure rate in humans as they prevent aflatoxin absorption in the intestine (Kabak et al., 2009; Hernandez-Mendoza et al., El-Nezami et al., 1998).

1.3. Significance of the study

Mycotoxins, especially aflatoxins have adverse effects on animals and humans; hence this research investigates the effectiveness of Lactobacillus casei Shirota (LcS) as a aflatoxin potential adsorbent to prevent aflatoxin absorption in the gastrointestinal tract. Even though there are many researches in Malaysia that found and/or detected aflatoxin in the foodstuffs, little is known about the extent of human exposure to aflatoxin. Generally, exposure assessment by measuring aflatoxin in food samples and extrapolating to calculate average intakes at the population level is of low reliability. The use of aflatoxin biomarkers such as serum AFB$_1$-lysine adduct and urinary AFM$_1$ is beneficial as the formation of these biomarkers indicate a direct evidence of human oral ingestion to aflatoxin.
The detection of serum AFB$_1$-lysine adduct indicates aflatoxin exposure for the past 2 to 3 months, whereas for recent exposure (24 hours to 3-4 days), the urinary AFM$_1$ biomarker is used for the assessment (Williams et al., 2004). Kensler et al. (2011) further explained that serum AFB$_1$-lysine adduct has been shown to correlate with AFB$_1$-DNA adduct (AFB$_1$-N7-guanine adduct), a promutagenic aflatoxin biomarker. It is a significant finding as formation of these adducts lies on the causal pathway of aflatoxin-induced hepatocellular carcinoma (Kensler et al., 2011). Besides that, Zhu et al. (1987) have shown a positive correlation between dietary AFB$_1$ with the amount of AFM$_1$ detected in urine samples. Thus, with the available data on the occurrence of aflatoxin in the food and agricultural products, the expansion of metabolomic study through the research on aflatoxin biomarkers could be the bridge to establish a validated data for assessing human exposure to aflatoxin among individuals within a population. In fact, to my best knowledge, research on aflatoxin biomarkers in Malaysia is limited and still in its infancy stage and findings from this study could be used for a reference in the future.

As for the preventive measure for limiting/preventing human exposure to aflatoxin, several non-nutritional adsorbent such as activated carbon and clay have shown to be a good barrier for preventing aflatoxin absorption in small intestine. It is evident by Wang et al. (2008) as an intervention using clay reduces aflatoxin biomarkers in a population with high rate of aflatoxin contamination in the foodstuffs. Nevertheless, more alternative measures should be carried out and the use probiotic bacteria were found to be beneficial. Several in vitro and animal studies showed the ability of probiotic bacteria to adsorb aflatoxin molecules to their bacterial cell wall, thereby prevent aflatoxin absorption in the small intestine (El-Nezami et al., 1998; Hernandez-Mendoza et al., 2009b; Peltonen et al., 2000; Lahtinen et al., 2004; Gratz et al., 2006; Haskard et al., 2000). Of great significance is probiotic bacteria have many beneficial health effects as they can enhance immunity system, nourish intestinal microflora and improve gut-barrier function (Isolauri, 2001; Oelschlager, 2010). In fact, this research can add new knowledge on the potential ability of probiotic bacteria as an adsorbent of aflatoxin.

1.4. Hypothesis

This thesis comprised of two hypotheses. The main hypothesis is *Lactobacillus casei* Shirota strain (LcS) reduces the excretion and circulation of aflatoxin metabolites in urine and blood, whereas the working hypothesis is adults lack of knowledge on food contamination with fungi and aflatoxins.

1.5. Objective

1.5.1. General objective

To investigate the level of aflatoxin biomarkers in human blood and urine samples and to study the effectiveness of *Lactobacillus casei* Shirota strain (LcS) as a potential adsorbent of aflatoxin.
1.5.2. Specific objectives

i. To determine the determinant of adults’ knowledge of fungal and aflatoxin contamination in the diets among the subjects recruited during the screening stage.

ii. To determine the level of aflatoxin M₁ (AFM₁) in urine samples and its association with food consumption.

iii. To validate the UHPLC method for quantification of urinary AFM₁.

iv. To determine the effectiveness of fermented milk containing LcS in reducing the level of aflatoxin biomarkers in human blood and urine samples among the subjects exposed to aflatoxin.

v. To simulate human digestion in order to assess aflatoxin binding activity of LcS based on the bioaccessibility of aflatoxin.

1.6. Flow chart of the study

A screening study involved 160 subjects from a faculty in UPM

Subjects received a questionnaire to assess their knowledge on fungal and aflatoxin contamination in the diets. The determinants of subjects’ knowledge were also investigated based on the socio-demographic characteristic (Chapter 3)

Subjects also provided morning urine sample for the analysis of urinary AFM₁ using ELISA and to find its association with food consumption gathered from 37-food items FFQ. Risk assessment of aflatoxin was also assessed (Chapter 4)

Seventy-one subjects (n=71) were recruited based on the criteria assessed during the screening stage for an intervention study. An optimized UHPLC method was used to analyse urinary AFM₁ (Chapter 5 and 6)

A 4-week intervention study was carried out to investigate the effectiveness of fermented milk drink containing LcS in reducing aflatoxin biomarkers namely serum AFB₁-lysine adduct and urinary AFM₁ (Chapter 6)

An *in vitro* simulation of human digestion under fed condition was carried out to investigate LcS as a potential aflatoxin adsorbent (cultured LcS and probiotic drink used during the fermentation) in reducing AFB₁ bioaccessibility in AFB₁-spiked peanut samples (Chapter 7)
REFERENCES

Adejumo, O., Atanda, O., Raiola, A., Somorin, Y., Bandyopadhyay, R., & Ritieni, A. (2013). Correlation between aflatoxin M₁ content of breast milk, dietary exposure to aflatoxin B₁ and socioeconomic status of lactating mother in Ogun State, Nigeria. Food Chemical and Toxicology, 56, 171-177.

Soleimany, F., Jinap, S., Faridah, A., Khatib, A. (2012). A UPLC-MS/MS for simultaneous determination of aflatoxins, ochatoxin A, zearenone, DON,

