UNIVERSITI PUTRA MALAYSIA

ENHANCED ANTINOCICEPTIVE EFFECTS OF MITRAGYNINE IN COMBINATION WITH MORPHINE VIA OPIOID RECEPTORS ACTIVATION

SHAMIMA BINTI ABDUL RAHMAN

FPSK(p) 2014 14
ENHANCED ANTINOCICEPTIVE EFFECTS OF MITRAGYNINE IN COMBINATION WITH MORPHINE VIA OPIOID RECEPTORS ACTIVATION

By

SHAMIMA BINTI ABDUL RAHMAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the requirements for the degree of Doctor of Philosophy

June 2014
This thesis is specially dedicated to:

My husband:
Abang, Yudi Kurniawan Budi for his patience and stay by my side through all the day

My children:
Muhammad, Ibrahim, Maryam, Adam and Zulaikha for their love and understanding of ummi’s doing

My parents:
Mama, Bedah Musooh and Abah, Abdul Rahman Shamsuddin for being with me throughout the up’s and down’s, through happiness and sorrow...for all the du’a for my success and easinenest of my way
ENHANCED ANTINOCEPTIVE EFFECTS OF MITRAGYNINE IN COMBINATION WITH MORPHINE VIA OPIOID RECEPTORS ACTIVATION

By

SHAMIMA ABDUL RAHMAN

June 2014

Chairman : Assoc Prof Datin Sharida Fakurazi, PhD
Faculty : Medicine and Health Sciences

The management of chronic pain is one of the greatest challenges in modern medicine. Opiates such as morphine have been used to treat pain for centuries. However, the long term use of morphine is limited due to its side-effects. To date, a number of natural compounds have been detected to possess analgesic effects. One of these natural compound is mitragynine (MG) which is isolated from Mitragyna speciosa Korth. Mitragyna speciosa is popularly known as ‘ketum’ in Malaysia and ‘kratom’ in Thailand. Over 25 alkaloids are found in Mitragyna speciosa, MG being a major one. In this study, we investigated the action of MG as antinociceptive agent and the receptor selectivity effect. The nociceptive effect was estimated in a hot plate test (Ugo Basile model 7280; 50.0 °C). The latency time was estimated until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for every 15 minutes until 120 minutes. Male ICR mice (n=8/group) were administered intraperitoneally with single dosage of MG (3, 10, 15, 30, and 35 mg/kg), 15 minutes prior to pain induction. The control groups were given appropriate dose of vehicle. For the receptor selectivity test, the treated groups were administered naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist), norbinaltorpimine (κ-opioid antagonist) and AM251 (cannabinoid 1 antagonist) respectively prior to MG injection at the dosage of 35 mg/kg. The groups administered with MG showed an increased in latency time as compared to the control groups in a dose-dependent manner. Meanwhile, 35 mg/kg of MG was found to significantly increase the latency time. The results also showed that naloxone and naltrindole fully blocked the antinociceptive effect of MG, whilst norbinaltorpimine partially blocked the effect, but the antinociceptive effect of MG was not antagonized by AM251. These results demonstrated that MG acts through opioid receptor specifically on δ and κ receptor and not through the cannabinoid CB1 receptor. Later on, we investigated the enhancement of analgesic action of this compound when combined with morphine and the effect on the development of tolerance due to morphine acutely and chronically. Male ICR mice (n=7/group) were administered intraperitoneally with a single dose of MG either 15 mg/kg or 25 mg/kg combined with morphine (5 mg/kg) in the acute study, whilst the study was continued for 9 days for the chronic phase. The control groups were given the appropriate dose of a vehicle. The antinociceptive effect was estimated with a hot
plate test (Ugo Basile model 7280; 50.0 °C). The latency time was assessed until the mice showed a pain response such as shaking, licking or jumping. The expression of cAMP, cAMP response element binding (CREB) protein, ERK and c-fos were analyzed. Liver and kidney function test were also analyzed and compared between groups. In acute study, the administration of MG and morphine showed a significant latency period compared to the vehicle treated groups. The combination of MG and morphine has enhanced morphine-induced analgesia which shows synergism in analgesic action. In the chronic phase, the concurrent administration of MG and morphine showed a significant increase in the latency time when compared to morphine alone groups and the remarkable analgesic effects in the combination regimens were maintained from day 1 until day 9. The result was in contrast when compared to morphine alone groups, where the latency time were reduced from day 5 to day 9. For the protein expressions, there were a significant increment of the cAMP and CREB levels (p<0.001) in groups treated with 5 mg/kg morphine but there was no significant changes of cAMP and CREB expression for MG alone groups and groups combined with morphine. There were no significant changes in other proteins (ERK and c-fos) for all groups when compared with the control group. There was also no significant changes in the liver enzymes of the treated groups when compared to the control group except for the AST level. There were no significant changes in the excretion level of urea in all groups when compared to the control groups. Similar results were found for the excretion of creatinine. However, the creatinine excretion was significantly increased when the treatment was combined. This study indicates that MG has antinociceptive properties and act fully via the opioid system. It also indicates that concurrent administration of morphine and MG enhanced the analgesic effects. Following the inclusion of MG, tolerance due to repeated administration of morphine is delayed.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENINGKATAN KESAN ANTINOSISEPTIF GABUNGAN MITRAGYLINE
DAN MORFIN MELALUI PENGAKTIFAN RESEPTOR OPIAT

Oleh

SHAMIMA ABDUL RAHMAN

Jun 2014

Pengerusi : Prof Madya Datin Sharida Fakurazi, PhD
Fakulti : Perubatan dan Sains Kesihatan

Dalam kajian ini, kami mengkaji kesan MG sebagai ejen antinosiseptif dan kesan pemilihan reseptor. Kesan nosiseptif dikenalpasti menggunakan ujian plat panas (Ugo Basile model 7280; 50.0 ºC). Masa laten dianggarkan sehingga tikus menunjukkan tindak balas kesakitan seperti menggigit, menjilat atau melompat dan tempoh laten diukur bagi setiap 15 minit sehingga 120 minit. Tikus jantan ICR (n = 8/group) telah disuntik secara intraperitoneal dengan dos tunggal MG (3, 10, 15, 30, dan 35 mg / kg), 15 minit sebelum induksi kesakitan. Kumpulan kawalan diberi dos kenderaan yang sesuai. Bagi ujian pemilihan reseptor, kumpulan yang dirawat telah diberikan naloxone (antagonis opioid tidak terpilih), naltrindole (antagonis δ - opioid), norbinaltorpimine (κ - opioid agonist) dan AM251 (cannabinoid 1 antagonist) masing-masing sebelum suntikan MG pada dos 35mg/kg. Kumpulan yang diberi MG menunjukkan peningkatan dalam masa laten berbanding dengan kumpulan kawalan dan kesannya adalah bergantung kepada dos. Sementara itu, 35 mg/kg MG didapati meningkatkan masa laten secara signifikan. Keputusan juga menunjukkan bahawa naloxone dan naltrindole menyebabkan peningkatan kesan antinosiseptif MG, manakala norbinaltorpimine menyebabkan peningkatan kesannya, tetapi kesan antinosiseptif MG tidak dihalang oleh AM251. Keputusan ini menunjukkan bahawa MG bertindak melalui reseptor opioid khusus pada δ dan κ reseptor dan bukan melalui reseptor cannabinoid CB1. Kemudian, kami menyiasat peningkatan tindakan analgesik sebatian ini apabila digabungkan dengan morfin dan kesan ke atas ketahanan terhadap morfin secara akut dan kronik. Tikus jantan ICR (n = 7/group) telah disuntik secara intraperitoneal dengan dos tunggal MG sama ada 15mg/kg atau 25 mg/kg digabungkan dengan morfin (5mg/kg) dalam kajian akut, manakala kajian diteruskan selama 9 hari untuk fasa kronik. Kumpulan kawalan diberi dos kenderaan yang sesuai. Kesan antinosiseptif dikenalpasti dengan ujian plat panas (Ugo Basile model 7280; 50.0 ºC). Masa laten dikira sehingga tikus...
menunjukkan tindak balas kesakitan seperti menggigit, menjilat atau melompat. Protein cAMP, unsur tindak balas CAMP mengikat (CREB) protein, ERK dan c-fos telah dianalisis. Ujian fungsi hati dan buah pinggang juga ditentukan dan dibandingkan diantara semua kumpulan. Dalam kajian akut, penggunaan MG dan morfin menunjukkan tempoh laten yang ketara berbanding dengan kumpulan kenderaan dirawat. Gabungan MG dan morfin telah meningkatkan kesan analgesik morfin yang menunjukkan sinergi dalam tindakan analgesik. Dalam fasa kronik, suntikan serentak MG dan morfin menunjukkan peningkatan yang ketara pada masa laten berbanding kumpulan morfin sahaja dan kesan analgesik yang luar biasa dalam rejimen gabungan dikekalkan dari hari 1 hingga hari 9. Hasilnya adalah berbeza apabila dibandingkan dengan kumpulan morfin sahaja, di mana masa laten dikurangkan dari hari ke 5 ke hari ke 9. Bagi analisis protein, terdapat kenaikan yang ketara daripada cAMP dan tahap CREB (p < 0.001) dalam kumpulan yang dirawat dengan 5 mg/kg morfin tetapi tidak terdapat sebarang perubahan signifikan terhadap cAMP dan CREB protein untuk kumpulan MG sahaja dan kumpulan digabungkan dengan morfin. Tidak ada perubahan ketara dalam protein lain (ERK dan c-fos) untuk semua kumpulan berbanding dengan kumpulan kawalan. Tiada sebarang perubahan penting dalam enzim hati kumpulan yang dirawat berbanding dengan kumpulan kawalan kecuali bacaan AST. Tiada perubahan ketara dalam tahap perkumuhan urea dalam semua kumpulan apabila dibandingkan dengan kumpulan kawalan. Keputusan yang sama diperolehi untuk perkumuhan kreatinin. Walau bagaimanapun, perkumuhan kreatinin telah meningkat dengan ketara apabila rawatan digabungkan. Kajian ini menunjukkan bahawa MG mempunyai ciri-ciri antinosiseptif dan bertindak sepenuhnya melalui sistem opioid. Ia juga menunjukkan bahawa suntikan serentak morfin dan MG meningkatkan kesan analgesik. Kombinasi MG bersama morfin melewatkkan toleransi terhadap penggunaan morfin yang berlanjutan.
ACKNOWLEDGEMENTS

In the name of Allah the most Gracious and the most Merciful, peace upon Muhammad SAW the last prophet. Alhamdulillah, with Allah’s will, I have finally completed my PhD study and thesis writing.

I would like to thank those who have supported me and contributed in the completion of my thesis. Firstly, I would like to express my deep appreciation to my main supervisor, Assoc Prof Dr Sharida Fakurazi for her guidance, patience, support and advice throughout my study. This was priceless, without her, this project will not be completed and successful. Special thanks are dedicated to all my co-supervisors Prof Dr Hairuszah Ithnin, Dr Mohamad Aris Mohd Moklas and Dr Mohamad Taufik Hidayat Baharuldin. Their suggestion, advice and outstanding attention have contributed much to the success of this project.

I also would like to convey my thanks to the laboratory staff of Department of Human Anatomy of Faculty of Medicine and Health Sciences, UPM especially to Puan Noridah Md Top, Encik Shahidan Sulaiman, Puan Farhatani Mahmud and others for their help and guidance throughout my research. I would like to acknowledge the support of my labmates and friends, Fatin Nadzirah, Muhammad Khairulasyraf Muhammad Yusuf, Syazana Akmal Sharifudin, Nurul Raudzah Adib Ridzuan, Farah Nasir and Noor Azuin Suliman who had always given their hand to help me. Also to my friends that encourage me in submitting my thesis, Semira Abdi Beshir and Waheedah Abdul Hakeem.

I also would like to thank the staff of Immunology Laboratory; Puan Norazren Ismail and Encik Zulkhairi Zainol and Pathology Laboratory, Department of Biomedical Sciences; Puan Normah Ibrahim and Puan Juita Chupri, for helping me and allowing me to use their equipments and services.

Last but not least, my deepest appreciation to my beloved husband, Yudi Kurniawan Budi and my children, Muhammad, Ibrahim, Maryam, Adam and Zulaikha for their support, understanding and unconditional love. Their love and support become my inspiration, and I am so blessed to have such a caring and supporting family.

Finally to my family that has been the source of my strength, always giving me encouragement and support to finished my study especially my mother, Bedah Musooh, my father, Abdul Rahman Shamsudin and my siblings. Thank you very much for being there for me and making my life full of love and care.

May Allah bless you all…ameen.

vii
I certify that an Examination Committee met on 2012 to conduct the final examination of Shamima Abdul Rahman on her Doctor of Philosophy entitled ‘Enhanced antinociceptive effects of mitragynine in combination with morphine via opioid receptors activation’ in accordance with Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Sabrina Sukardi, Ph.D
Associate Professor, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia
(Chairman)

Arifah Abdul Kadir, Ph.D
Associate Professor, Faculty of Veterinary Medicine, Universiti Putra Malaysia
(Member)

Hamidon Basri, Ph.D
Professor, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia
(Member)

Mustafa Culha, Ph.D
Professor, Faculty of Engineering and Architecture, Yeditepe University, Atasehir, Turkey
(Member)

__

Bujang B. K. Huat
Professor and Dean, School of Graduate Studies
Universiti Putra Malaysia

Date :
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree. The members of the Supervisory Committee are as follows:

Sharida Fakurazi, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Hairuzsah Ithnin, MD, MPATH, FAMM
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohamad Aris Mohd Moklas, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohamad Taufik Hidayat Baharuldin, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date :
DECLARATION

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature : _________________________ Date : ____________________

Name and Matric No : Shamima Abdul Rahman (GS 19562)
DECLARATION

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Sharida Fakurazi, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairperson)

Hairuzsah Ithnin, MD, MPATH, FAMM
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohamad Aris Mohd Moklas, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Mohamad Taufik Hidayat Baharuldin, Ph.D
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION OF SUPERVISORY COMMITTEE</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of Study 1

1.2 Problem Statement 2

1.3 Significance of Study 3

1.4 Conceptual framework of the study 5

1.5 Study hypotheses 6

1.6 Objectives of the Study 7

1.6.1 General objectives 7

1.6.2 Specific objectives 7

2 LITERATURE REVIEW

2.1 Introduction of pain 8

2.1.1 Definition of pain 8

2.1.2 Classification of pain 8

2.2 Pain pathways 9

2.2.1 Activation of nociceptors 9

2.2.2 Transmission of pain information 12

2.2.3 Descending pathways for pain modulation 13

2.3 Management of pain 14

2.4 Opioid Systems 16

2.4.1 Opioid receptors 16

2.4.2 Endogenous opioids 17

2.4.3 Opioid analgesic drugs 18

2.4.4 Opioid antagonist 19

2.5 Cannabinoid Systems 20

2.5.1 Cannabinoid receptors 20

2.5.2 Endogenous cannabinoids 20

2.5.3 Cannabinoid antagonist 21

2.5.4 Role of cannabinoid system in pain 21

2.6 Morphine 21

2.6.1 Mechanism of action of morphine 22

2.7 Tolerance 24

2.7.1 Early adaptation in tolerance 26

2.7.2 Long term adaptation in tolerance 27
2.8 Brain gene expression of opioid tolerance
 2.8.1 cAMP
 2.8.2 CREB protein
 2.8.3 ERK1/2
 2.8.4 c-fos gene

2.9 *Mitragyna speciosa* Korth
 2.9.1 Botanical origin
 2.9.2 Mitragynine and other analogues
 2.9.3 Medical uses of *Mitragyna speciosa*

2.10 Combination treatment

2.11 Toxicity
 2.11.1 Liver
 2.11.1.1 Liver Function Tests
 2.11.2 Kidney
 2.11.2.1 Kidney Function Tests

3 ISOLATION OF MITRAGYNINE FROM *MITRAGYNA SPECIOSA KORTH*
 3.1 Introduction
 3.2 Materials and methods
 3.2.1 Plants
 3.2.2 Chemical and reagents
 3.2.3 Equipments
 3.3 Isolation of mitragynine from *Mitragyna speciosa*
 3.3.1 Crude methanolic extraction
 3.3.2 Alkaloid extraction
 3.3.3 Isolation, purification and identification of mitragynine compound
 3.4 Results
 3.4.1 Crude methanolic extract and crude alkaloids extract
 3.4.2 Isolation, purification and identification of mitragynine
 3.5 Discussion

4 ANTINOCICEPTIVE ACTIVITY OF MITRAGYNINE AND RECEPTOR SELECTIVITY STUDY
 4.1 Introduction
 4.2 Materials and methods
 4.2.1 Animals
 4.2.2 Drugs
 4.2.3 Mitragynine compound
 4.2.4 Equipments and materials
 4.2.5 Chemical reagents
 4.2.6 Hot plate test
 4.2.7 Antinociceptive study and the determination of ED$_{50}$
 4.2.8 The determination on the effect of MG following the administration of opioid antagonists
4.2.9 The determination on the effect of MG following the administration of cannabinoid antagonists
4.2.10 Statistical analysis
4.3 Results
4.3.1 Antinociceptive study and the determination of ED50
4.3.2 The effect of mitragynine following the administration of opioid antagonist
4.3.2.1 The effect of MG in the presence of naloxone antagonist
4.3.2.2 The effect of MG in the presence of naltrindole antagonist
4.3.2.3 The effect of MG in the presence of naloxonazine antagonist
4.3.2.4 The effect of MG in the presence of norBNI antagonist
4.3.3 The effect of mitragynine following the administration of cannabinoid CB₁ receptor antagonist
4.4 Discussion

5 ANTINOCICEPTIVE EFFECTS ON COMBINATION TREATMENT OF MITRAGYNNINE AND MORPHINE IN HOT PLATE TEST
5.1 Introduction
5.2 Materials and Methods
5.2.1 Plant
5.2.2 Isolation of mitragynine from *Mitragyna speciosa*
5.2.3 Animals
5.2.4 Drugs
5.2.5 HPT
5.2.6 Experimental design
5.2.6.1 Acute Study
5.2.6.2 Chronic Study
5.2.7 Statistical analysis
5.3 Results
5.3.1 Acute Study
5.3.2 Chronic Study
5.4 Discussion

6 EFFECTS OF COMBINATION TREATMENT OF MITRAGYNNINE AND MORPHINE ON PROTEIN EXPRESSION AND TOXICOLOGY PROFILE
6.1 Introduction
6.2 Materials and methods
6.2.1 Chemicals
6.2.2 Antibody
6.2.3 Equipments
6.2.4 Experimental design 96
6.2.5 Brain sample 96
 6.2.5.1 Determination of protein concentration of whole brain 96
 6.2.5.2 cAMP measurement from cortex and thalamus 97
 6.2.5.3 Expression of CREB, ERK and c-fos 98
6.2.6 Serum analysis for LFT and KFT 103
 6.2.6.1 Liver function test 103
6.2.7 Histopathological examination 104
6.2.8 Scoring 105
6.3 Results
6.3.1 cAMP 107
6.3.2 CREB 109
6.3.3 ERK1/2 110
6.3.4 c-fos 111
6.3.5 The effect of mitragynine and morphine on liver weight 111
6.3.6 The effect of mitragynine and morphine on kidney weight 112
6.3.7 The effect of mitragynine and morphine on liver enzymes 113
6.3.8 The effect of mitragynine and morphine on kidney enzymes 117
6.3.9 Histological result of liver 119
6.3.10 Histological result of kidney 124
6.4 Discussion 129

7 GENERAL DISCUSSION AND CONCLUSION 133

REFERENCES 136
APPENDICES 154
BIODATA OF STUDENT 160
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Stimuli that activate nociceptors</td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristic of primary afferent fibers</td>
</tr>
<tr>
<td>2.3</td>
<td>Important chemicals involved in nociception</td>
</tr>
<tr>
<td>2.4</td>
<td>Principle Endogenous Opioid peptides</td>
</tr>
<tr>
<td>2.5</td>
<td>Main adverse effects of opioid therapy in various systems</td>
</tr>
<tr>
<td>2.6</td>
<td>The characteristic of MG</td>
</tr>
<tr>
<td>3.1</td>
<td>Type of extracts, appearance and their weight</td>
</tr>
<tr>
<td>3.2</td>
<td>The weight of MG isolated samples, Rf value and TLC plate appearance</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of each group and its respective treatment</td>
</tr>
<tr>
<td>4.2</td>
<td>Illustration of each group and its respective treatment with opioid antagonist</td>
</tr>
<tr>
<td>4.3</td>
<td>Illustration of each group and its respective treatment with cannabinoid antagonist</td>
</tr>
<tr>
<td>5.1</td>
<td>Examples of combination analgesics and their advantages</td>
</tr>
<tr>
<td>5.2</td>
<td>Illustrations of groups in acute study</td>
</tr>
<tr>
<td>5.3</td>
<td>Illustrations of groups in chronic study</td>
</tr>
<tr>
<td>6.1</td>
<td>Stacking and resolving gel for the CREB, ERK 1/2 and c-fos</td>
</tr>
<tr>
<td>6.2</td>
<td>Antibody concentration for the CREB, ERK 1/2 and c-fos</td>
</tr>
<tr>
<td>6.3</td>
<td>The scoring liver in histopathological study</td>
</tr>
<tr>
<td>6.4</td>
<td>The scoring kidney in histopathological study</td>
</tr>
<tr>
<td>6.5</td>
<td>Mean ± SEM of liver for chronic combination study</td>
</tr>
<tr>
<td>6.6</td>
<td>Mean ± SEM of kidney for chronic combination study</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Market shares of major drug classes in pain market of US</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Conceptual framework of the study</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of pain pathway and chemicals involved</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The WHO analgesic ladder provides a guide to initiating for pain of different intensities</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>The chemical structure of morphine</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of mechanism of action of opiate (morphine) and NSAIDs as pain relief</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Shift in a dose-response curve with tolerance</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Gene expression in pain pathway</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Mature leaves of Mitragyna speciosa</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Compound found in MS and their percentage</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of indole alkaloid with nitrogen molecule</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of isolation process of Mitragyna speciosa</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>H-NMR chromatogram of the isolated MG from Mitragyna speciosa leaves in deuterium chloroform</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>C-NMR chromatogram of the isolated MG from Mitragyna speciosa leaves in deuterium chloroform</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Chemical structure of MG</td>
<td>52</td>
</tr>
<tr>
<td>4.3.1a</td>
<td>The effects of MG, morphine and controls on latency time in hot plate test (HPT) for 120 minutes</td>
<td>63</td>
</tr>
<tr>
<td>4.3.1b</td>
<td>The determination of effective dose 50 (ED_{50}) of MG</td>
<td>64</td>
</tr>
<tr>
<td>4.3.2a</td>
<td>Effects of µ-opioid antagonist naloxone on MG-induced antinociception</td>
<td>65</td>
</tr>
<tr>
<td>4.3.2b</td>
<td>Effects of δ-opioid antagonist naloxone on MG-induced antinociception</td>
<td>66</td>
</tr>
<tr>
<td>4.3.2c</td>
<td>Effects of µ1-opioid antagonist naloxone on MG-induced antinociception</td>
<td>67</td>
</tr>
<tr>
<td>4.3.2d</td>
<td>Effects of κ-opioid antagonist naloxone on MG-induced antinociception</td>
<td>68</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effects of CB1 antagonist AM251 on MG-induced antinociception</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Mechanism of action of morphine as analgesic agent</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Flow chart of acute and chronic combination treatment of morphine and MG</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>The effects of control groups, MG, morphine and controls on latency time in hot plate test (HPT) of single dosage</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>The effects of control groups, MG, morphine and controls on latency time in hot plate test (HPT) for 9 days of treatments</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Relationship of cAMP and CREB proteins. The activation of intracellular cAMP which leads to the activation of CREB proteins that later on promotes the synthesis of various genes</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Brain mouse anatomy. Thalamus and cortex part was separated from the whole brain and used for CREB protein determination</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>The flow chart in Western blotting procedure</td>
<td>102</td>
</tr>
<tr>
<td>6.4a</td>
<td>The expression of cAMP protein in thalamus of controls groups</td>
<td>107</td>
</tr>
</tbody>
</table>
(Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg MG; 5 mg/kg Mor + 25 mg/kg MG) in 9 days of treatment.

6.4b The expression of cAMP protein in cortex of control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg MG; 5 mg/kg Mor + 25 mg/kg MG) in 9 days of treatment.

6.4c The expression of CREB protein of control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg MG; 5 mg/kg Mor + 25 mg/kg MG) in 9 days of treatment.

6.4d The expression of ERK 1/2 protein of control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg MG; 5 mg/kg Mor + 25 mg/kg MG) in 9 days of treatment.

6.4e The expression of c-fos protein of control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg MG; 5 mg/kg Mor + 25 mg/kg MG) in 9 days of treatment.

6.5a The liver weight in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.5b The kidney weight in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.6a The activities of alanine aminotransferase (ALT) in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.6b The activities of aspartate aminotransferase (AST) in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.6c The activities of gamma-glutamyltransferase (GGT) in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.7a The levels of urea in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).

6.7b The levels of creatinine in control groups (Normal saline, 2% T80), mitragynine (15 mg/kg, 25 mg/kg), morphine (5 mg/kg) and combination groups (5 mg/kg Mor + 15 mg/kg; 5 mg/kg Mor + 25 mg/kg).
6.8a-g The figure shows the images of liver for chronic combination treatment

6.9a-g The figure shows the images of kidney for chronic combination treatment
LIST OF ABBREVIATIONS

HPT Hot plate test
MG mitragynine
MS *Mitragyna speciosa*
min minute
$ Dollar US
h hour
sec second
°C degree Celsius
Rf retention factor
ED₅₀ effective dose at 50 percent
µ mu
δ delta
κ kappa
MOR mu opioid receptor
DOR delta opioid receptor
KOR kappa opioid receptor
CB₁ cannabinoid type 1 receptor
CB₂ cannabinoid type 2 receptor
norBNI norbinaltorphimine
NS normal saline
T80 Tween 80
AM251 1 – (2,4-dichlorophenyl) – 5 – (4-iodophenyl) – 4 – methyl – N
 – 1 – piperidinyl – 1H – pyrazole 3 carboxamide
CNS central nervous system
% percentage
MRI mean relative intensity
LFT Liver function test
KFT Kidney function test
c-fos gene
CREB cAMP response element binding
PKA cAMP-dependent protein kinase
MAPK mitogen-activated protein kinase
ATF-1 activating transcription factor-1
cAMP cyclic adenosine monophosphate
CREM cAMP response element modulator
ERK extracellular signal-regulated kinases
ALT Alkaline phosphatase
AST Aspartate transaminase
GGT Gamma-glutamyltransferase
NSAIDs non-steroidal anti-inflammatory drugs
WHO World Health Organization
RVM rostral ventromedial medulla
PAG periaqueductal grey
GPCRs G-protein-coupled receptor
SEM standard error mean
ELISA enzyme-linked immunosorbant assay
BSA bovine serum albumin
ANOVA One-way analysis variance
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>i/p</td>
<td>intraperitoneal injection</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>mg</td>
<td>miligram</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Nal</td>
<td>Naloxone</td>
</tr>
<tr>
<td>NTI</td>
<td>Naltrindole</td>
</tr>
<tr>
<td>COX-2</td>
<td>cyclooxygenase 2 pathway</td>
</tr>
<tr>
<td>mL</td>
<td>milimeter</td>
</tr>
<tr>
<td>&</td>
<td>and</td>
</tr>
<tr>
<td>b.wt</td>
<td>body weight</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Pain, both acute and chronic, remains a significant health problem despite tremendous progress in understanding its basic mechanism (Gregory et al., 2013). The International Association for the Study of Pain (IASP) defines pain as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (American Pain Society, 2003). Relief from pain has been the paramount objectives of the medical profession throughout history (Dureja, 2010) and nowadays, the management of chronic pain is one of the greatest challenges in medicine. Pain as a whole, is a very active area for pharmaceutical research and development, not only as the cause of frequent mistreatment, but also of unacceptable side effects associated with older and still widely used compounds (Bruehl, 2013).

Plants or plant parts have been used as a source of medicine since prehistoric times (Smith-Hall, 2012). Until now, plants are an important source of chemical compounds that are developed into drugs. Between 1983 and 1994, of the 520 new prescription drugs approved, 39% were derived from plants or animals or natural sources, with 60% to 80% of those comprised of antimicrobials and anticancer drugs (Wecker, 2010). Drugs from plants continue to be a great source of revenue in the United States, with the annual sales of $10 billion in the year 2000. More than 200 organizations worldwide are investigating new uses of plant-derived drugs, especially in the fight against AIDS, cancer, diabetes and cardiovascular diseases (Khan, 2011). Nowadays, drugs are also processed using a synthetic version of the active chemical found in the plant. Besides all these, plants have become the main component of the ever-growing alternative therapy development (Khan, 2011).

The source for opium is the opium poppy plant, *Papaver somniferum*. Morphine was isolated from crude opium in 1806 by Serturner, who named the substance after the Greek god of dreams, Morpheus (Wecker, 2010). Not long after its isolation, morphine was introduced into the medical practice. Subsequent to medicinal properties of opium poppy, many new plants were introduced and studied to increase the discovery of natural plant products as antinociceptive agents (Hajhashemi et al., 2011; Chen et al., 2011).

A number of natural compounds have been detected to have analgesic effect such as *Papaver somniferum*, *Cannabis sativa*, *Clematis sanitora* and *Plantanus orientalis*
One of the most used compound is mitragynine (MG), which has been isolated from Mitragyna speciosa (MS) Korth. MS is a plant that is abundantly found in Thailand and Malaysia which is popularly known as ‘kratom’ in Thailand and ‘ketum’ in Malaysia. Over 25 alkaloids have been isolated from this plant (Houghton & Said, 1991), where MG was analysed as the major constituent (66.2%) together with its other analogues, paynantheine (8.6%), speciogynine (6.6%), 7-hydroxymitragynine (2.0%) and speciociliatine (0.8%) (Takayama, 2004). MG constitutes an indole structure, with its fourth position is substituted by the methoxy group. The molecular structure is 9-methoxy-corynantheidine (C$_{23}$H$_{30}$N$_{2}$O$_{4}$) with molecular weight of 398.5 (Chee et al., 2008).

Studies have indicated that MG plays a role as an antinociceptive agent and acts via opioid receptors (Yamamoto et al., 1999; Takayama et al., 2002; Takayama, 2004; Matsumoto et al., 2006).

Opioids analgesic drugs such as morphine continue to be the mainstream therapy available for the management of acute and chronic pain (Bruehl, 2013). Up till now, morphine is the most important and powerful analgesic. It has long and widely been used to alleviate various types of severe pain, including acute postoperative and chronic cancer pain.

1.2 Problem Statement

No single analgesic is perfect and no single analgesic can treat all types of pain. Each agent has distinct advantages and disadvantages compared to others. A combination is most effective when the individual agents act through different analgesic mechanisms and act synergistically. Combination analgesic can provide more effective pain relief for a broader spectrum of pain, and might also reduce adverse drug reactions (Raffa, 2001). Many combinations analgesic are available and are commonly prescribed for pain. Combination of acetaminophen and codeine, codeine and ibuprofen, and acetaminophen and oxycodone was found to be a safe and effective analgesic (Palangio et al., 2000).

Opiates such as morphine have been used to treat pain for centuries. However, the long term use of morphine is limited due to its side-effects, which include nausea, vomiting, being in a state of euphoria and mental detachment (Macadante et al., 2006). Among other side-effects of morphine, development of tolerance and dependence are the most difficult to overcome.

Active compounds such as MG have been shown to have analgesic properties (Matsumoto et al., 1996, 1998; Takayama et al., 2002; Takayama et al., 2004; Horie et al., 2005; Matsumoto et al., 2006). Many studies have been conducted and revealed that MG can give antinociceptive activity without developing toxicity effects (Macko et al.,
1972; Janchawee et al., 2007; Reanmongkol et al., 2007). Besides, MG is reported to be comparable to codeine as an analgesic (Macko et al., 1972; Jansen & Prast, 1988). Eventhough MS have been regarded as an unsafe plant under the Dangerous Drug Act 1953 if it is used repeatedly until the development of addiction by Malaysian government, perhaps the combination of potent morphine and MG will reduce the side effect of morphine (Raffa, 2001).

1.3 Significance of Study

According to the American Pain Society, prevalence of chronic pain in the United States is estimated to be 35.5% or equivalent to 105 million people (Datamonitor, 2009). This costs more than US$100 billion per year in direct health care expenditure and the loss of work productivity time. Current pain management relies heavily on agents that have analgesic properties. Non-narcotic analgesics (acetaminophen and aspirin), narcotic analgesics (opioids), non-steroidal anti-inflammatory drugs (NSAIDs), and thermal agents continue to be the mainstays of pain management. More recently, other medicines have been added, such as antidepressants, anticonvulsants and selective cyclooxygenase 2 (COX-2) inhibitors (Katzung, 2010).

The global pain market in 2009 was valued at over US$50 billion in seven major countries namely United States (US), Japan, France, Germany, Italy, Spain and United Kingdom. In US alone, the expenditure is US$27 billion out of the US$50 billion. Figure 1.1 shows the US market share of major drug classes of pain agents. Strong opioid such as morphine become the biggest contributor in the shares (US$7.83). From this chart, it can be deduced that pain killer was the most costly among major drug classes in pain market.

![Figure 1.1: Market shares of major drug classes in pain market of US (Sources: Datamonitor, IMS Health, Decision Resources, 2009)](image-url)
In Malaysia, the Malaysia Statistic of Medicine (2007) reported that strong opioids such as morphine have been used tremendously even though it is costly and induced many side effects. The total opioid consumption in Malaysia in 2007 was 0.4184 defined daily dose (DDD)/1000 population/day. Strong opioids have been widely consumed compared to weak opioid such as tramadol. In reducing the use of morphine, the medical cost in Malaysia will be much reduced as well. Thus, in finding an alternative source to pain treatment from natural products, the side effects and high cost of morphine may be reduced as well.

Previous findings have suggested that the combinations of opioid analgesics and other analgesics can be used to control pain (Lauretti et al., 2003; Miranda et al., 2006; Smith et al., 2007). The use of several combinations of potent opioids were suggested to reduce the toxic effects of opioid treatment, to improve analgesia and to reduce opioid tolerance (Lauretti et al., 2003; Morita et al., 2003; Mercandante et al., 2004). Combination of opioids with other classes of analgesics can also help to reduce sensitization processes and optimize pain therapy, as opioids such as morphine will keep their central role in postoperative, traumatic or tumor pain therapy (Wolfang, 2007). Thus, the combinations of medications that offer analgesic synergism should allow a reduction in required dosage which gives the maximum analgesic effects and a decrease in the incidence of adverse effects.

The leaf of MS has been used in Thailand and Malaysia for its opium-like effect (Burkill, 1935). It is also commonly abused due to its stimulant ability to combat fatigue (Grewal, 1932; Suwanlert, 1975). Besides, the Thailand people use the leaf to alleviate pain, coughing and diarrhea (Suwanlert, 1975). Mitragynine is the major indole alkaloid in MS (Takayama, 2004). A study by Matsumoto et al. in 2006 has found that this compound has shown some opioid activities.

Since it has been proven to have antinociceptive effects (Yamamoto et al., 1999; Takayama et al., 2002; Takayama, 2004; Matsumoto et al., 2006) MG could be a potential pain relief alternative to morphine. Thus, a combination of this compound and morphine is predicted to minimize tolerance by reducing the dosage requirement of morphine. Furthermore, the combination might have synergistic effect probably by acting at the same site of action.

Apart from that, the existence of an endogenous cannabinoid system, comprising of cannabinoid CB₁ and CB₂ receptor subtypes together with their signaling pathways and endogenous ligands, is now well recognized (Martin et al., 2004). Cannabinoids have been shown to exert a broad pharmacological action, including the central and peripheral effects through receptor-mediated mechanisms (Howlett et al., 2002). Pharmacological and molecular biological studies have identified at least two types of cannabinoid receptors, cannabinoid type 1 (CB₁) receptor and cannabinoid type 2 (CB₂)
receptor both coupled to the G-protein (Takayuki et al., 2006). The cannabinoid CB_1 receptor is predominantly found in the central nervous system. To date, cannabinoid CB_1 receptor has been shown to play a role in managing pain. However, the study on the effects of MG on opioid receptors especially CB_1 which are involved in pain management has still not been explored.

1.4 Conceptual Framework of the Study

This study consists of several phases of experiment related to one another. Figure 1.2 shows the conceptual framework of this study. Briefly, the first phase was the isolation of pure compounds which is MG from MS Korth (CHAPTER 3). The second phase was to determine the antinociceptive action of MG together with the receptor selectivity (CHAPTER 4). In this phase, opioid receptors as well as the CB_1 receptor have been selected for the determination of action. In Chapter 4, morphine was used as a positive control drug.

The third phase was to determine the effects of MG counteracting the tolerance effect of analgesic morphine. For chapter 5, the analgesic used was morphine. In CHAPTER 5, acute and chronic study has been conducted. In acute study, the combination regimen (MG + morphine) was given once whilst in chronic study, the combination regimen (MG + morphine) was carried out for 9 days. This was to confirm and to evaluate the development of tolerance to morphine, the analgesic of choice throughout the study.

The changes of protein expression in relation to tolerance was analysed and carried out for the groups that received 9 days of combination treatment (CHAPTER 6). Finally, in the final chapter (CHAPTER 7), the liver and kidneys were analysed for determination of toxicological changes to the metabolic and excretory organs respectively.
PHASE 1

Isolation of MG from *Mitragyna speciosa*

PHASE 2

Antinociceptive effects of MG on opioid and cannabinoid type 1 (CB₁) receptor

PHASE 3

Combination treatment of MG and morphine

Acute study (single treatment) Chronic study (9 days treatments)

Brain
Protein analysis (cAMP, CREB, c-fos, ERK 1/2,pERK 1/2)

Liver & Kidney
Biochemical and histopathological analysis

Figure 1.2: Conceptual framework of the study

1.5 Study Hypotheses

1. Mitragynine (MG) isolated from *Mitragyna speciosa* (MS) will have antinociceptive effect on opioids and cannabinoid receptor.

2. The combination treatment of morphine and MG will give synergistic antinociceptive effect.

3. There are no pathological changes in liver and kidney following the combination treatment.
1.6 Objectives of the Study

1.6.1 General objectives

1. To investigate the antinociceptive activities of MG isolated from local MS on opioid and cannabinoid receptors.

2. To determine the antinociceptive activity of MG and morphine as a potential combination to reduce tolerance.

3. To investigate any pathological changes in liver and kidney following combination treatment of MG and morphine.

1.6.2 Specific Objectives

1. To isolate MG from MS leaves obtained from North Peninsular Malaysia.

2. To investigate the effective dose at 50 percent (ED\textsubscript{50}) of MG with the hot plate test.

3. To determine the antinociceptive effects of MG on opioids (\(\mu, \kappa, \delta\)) and cannabinoid (CB\textsubscript{1}) receptor.

4. To evaluate the antinociceptive effects of MG in combination with morphine in acute and chronic study by using hot plate test.

5. To assess changes on cAMP, CREB, c-fos and ERK 1/2 protein expression following combination treatments.

6. To investigate the effect of the combination therapy on liver function test (LFT) and kidney function test (KFT).

7. To conduct histopathology analysis of liver and kidney following combination treatments.
REFERENCES

James., L.P Mayeux P.R., Hinson J.A, Acetaminophen-induced hepatotoxicity, Drug Metabolism Dispos.,2003; 31(12), 1499-1506.

Paul A. Smith, Dana E. Selley, Laura J. Sim-Selley and Sandra P. Welch. Low dose combination of morphine and ∆9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors, Eur J Pharmacology; 2007 1; 571 (2-3): 129-137

S. Z. Idid, L.B. Saad, H. Yaacob and M.M. Shahimi, ASEAN Review of Biodiversity and Environmental Conservation (ARBEC)

Smith et al (1998) The enhancement of morphine antinocicpetion in mice by r9-tetrahydrocannabinol, Pharm Biochem and Behaviour, 60(2), 559-566

Takayama, H.; Aimi, N.; Sakai, S.: Chemical studies on the analgesic indole alkaloids from the traditional medicine (Miragyna speciosa) used for opium substitute. Yakugaku Zasshi 120, 959–967 (2000).

Tham et al (2005) British J Pharmacol 144(6) 875-884

