UNIVERSITI PUTRA MALAYSIA

MOLECULAR CHARACTERISATION OF BETA THALASSAEMIA
IN PATIENTS FROM SABAH, MALAYSIA

TEH LAI KUAN

FPSK(p) 2014 13
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of university Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Doctor of Philosophy

MOLECULAR CHARACTERISATION OF BETA THALASSAEMIA IN PATIENTS FROM SABAH, MALAYSIA

By

TEH LAI KUAN

September 2014

Chairman : Professor Elizabeth George, PhD
Faculty : Medicine and Health Sciences

Sabah has the largest number of β-thalassaemia major (β-TM) patients in Malaysia with estimated over 1000 cases of transfusion dependent β-TM patients. However, complete molecular characterisation of thalassaemia major patients has not been done. The objective for this study is to characterise the molecular spectrum in Sabah population through β- and α-globin gene genotyping, identifying XmnI Gγ-polymorphism, haplotyping for β-globin gene cluster and to develop an ideal diagnostic algorithm and tools which is suitable for this population.

In this study, 252 β-TM patients (Group I) and 165 carriers (Group II) were recruited from ten different hospitals in Sabah. Filipino β0-deletion was the predominant mutation identified in the Kadazandusun, Rungus, Murut, Sungai and Bajau. A total of 219 (86.9%) β-TM patients were identified as homozygous Filipino β0-deletion. HbE and Hb Malay were found as the most common Hb variants to co-inherit with Filipino β0-deletion. Some common mutations in West Malaysia were found to co-exist with Filipino β0-deletion. This can be due to intermarriage between different ethnic groups. Carriers showed the frequency of Filipino β0-deletion at 95.2% (n=157). Only seven (4.2%) carriers were found with point mutations commonly seen in West Malaysia.

High frequency of co-inheritance of -α3.7 deletion was found in the Sabah β-thalassaemia population. Co-inheritance of heterozygous -α3.7 deletion was found in 67 (26.6%) β-TM patients and 42 (25.3%) carriers. Co-inheritance of homozygous -α3.7 deletion was found in seven (2.8%) β-TM patients and six (3.6%) carriers. This may be related to the natural selection and protection for survival from severe malaria (Plasmodium Falciparum). Only type I of -α3.7 deletion was observed in this study population, indicating that the population has a single origin.

XmnI Gγ polymorphism was reported with higher Gγ-globin gene expression. Clinical presentation will be ameliorated in homozygous states. In this study, XmnI (−/−) genotype was found in 237 (94%) β-TM patients and 156 (94.4%) carriers, indicating low existence of this polymorphism as an ameliorating factor.

In haplotyping analysis, seven haplotype patterns were inferred in 417 samples consisting of 252 β-TM patients and 165 carriers. Hp I (+ - - - -) was the predominant
pattern demonstrated in 98.14% of the population. This suggested a unicentric origin and an apparent single origin with low genetic diversity. This is the first report to demonstrate Hp I in the Sabah population with Filipino β^0-deletion.

Two new diagnostic tools, Taqman and HRM analysis were developed using real-time detection for Filipino β^0-deletion. Taqman analysis was found more ideal as a diagnostic tool by having high specificity and sensitivity although it is more expensive. An added advantage is that there is no requirement for post-PCR processing. Multiplex ligation-dependent probe amplification (MLPA) analysis is an efficient technique for the screening of large deletions which can be included in the diagnosis algorithm provided technical expertise and necessary funding are available.

This study reveals a notable regional specificity of the β- and α-thalassaemia mutations, which are Filipino β^0-deletion and $-\alpha^{3.7}$ deletion. $XmnI$ polymorphism is uncommon in this study population. From the haplotype analysis and type of $-\alpha^{3.7}$ deletion, the findings suggested that the Sabah population with β-thalassaemia may belong to the same stock with similar origin. Taqman analysis is more ideal as a diagnostic tool. The findings from this study are informative for molecular diagnosis in the Sabah population with β-thalassaemia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

ASAS MOLEKUL BAGI PESAKIT BETA TALASEMIA DARI SABAH, MALAYSIA

Oleh

TEH LAI KUAN

September 2014

Pengerusi : Profesor Elizabeth George, PhD
Fakulti : Perubatan dan Sains Kesihatan

Dalam kajian ini, 252 pesakit β-TM (Kumpulan I) dan 165 pembawa (Kumpulan II) telah dikumpul dari sepuluh hospital yang lain di Sabah. Filipino β0-deletion adalah mutasi yang utama yang didapati dalam Kadazandusun, Rungus, Murut, Sungai dan Bajau. Seramai 219 (86.9%) pesakit β-TM telah dikenal pasti sebagai homozigus Filipino β0-deletion. HbE dan Hb Malay didapati sebagai Hb varian yang paling biasa bersama dengan Filipino β0-deletion. Sebahagian mutasi yang biasa di Semenanjung Malaysia telah didapati wujud bersama dengan Filipino β0-deletion. Ini disebabkan oleh perkahwinan campur antara kumpulan-kumpulan etnik yang berbeza. Pembawa menunjukkan Filipino β0-deletion dengan kekerapan sebanyak 95.2% (n = 157). Hanya tujuh (4.2%) pembawa ditemui dengan mutasi titik yang biasa dijumpai di Semenanjung Malaysia.

Kekerapan yang tinggi bersama warisan bagi -α3.7 deletion bagi penduduk β-talasemia di Sabah. Bersama warisan bagi heterozigot -α3.7 deletion didapati sebanyak 67 (26.6%) pesakit β-TM dan 42 (25.3%) pembawa. Bersama warisan bagi homozigus -α3.7 deletion didapati sebanyak tujuh (2.8%) pesakit β-TM dan enam (3.6%) pembawa. Ini mungkin berkaitan dengan pemilihan semula jadi dan perlindungan daripada penyakit malaria (Plasmodium falciparum). Hanya -α3.7 deletion bentuk I didapati dalam populasi kajian ini, ini menunjukkan bahawa penduduk mempunyai asal usul yang tunggal.

XmnI Gγ polymorphism dilaporkan dengan ekspresi Gγ-globin gen yang lebih tinggi. Persembahan klinikal akan dikurangkan apabila dalam bentuk homozigus Dalam kajian ini, XmnI (-/-) genotip didapati dalam 237 (94%) pesakit β-TM dan 156
(94.4%) pembawa, menunjukkan kewujudan polymorphism ini sebagai faktor pembaiki adalah rendah.

Dalam analisis haplotyping, tujuh corak haplotaip telah disimpulkan dalam 417 sampel yang terdiri daripada 252 pesakit β-TM dan 165 pembawa. Hp I (+ - - - -) adalah corak yang utama ditunjukkan dalam 98,14% daripada penduduk. Ini mencadangkan asal usul yang tunggal dan jelas dengan dengan kepelbagaian genetik yang rendah. Ini adalah laporan pertama menunjukkan Hp I bagi penduduk Sabah dengan Filipino βº-deletion.

Dua diagnostik alat baru, Taqman dan HRM analisis telah dicipta dengan menggunakan pengesanan real-time untuk Filipino βº-deletion. Analisis Taqman didapati lebih sesuai sebagai alat diagnostik dengan mempunyai kekhususan dan sensitif walaupun ia lebih mahal. Selain itu, ia tidak memerlukan pemprosesan pasca PCR. Analisis Multiplex ligation-dependent probe amplification (MLPA) adalah teknik berkesan untuk tayangan pemotongan besar yang boleh dimasukkan dalam algoritma diagnosis kalau mempunyai kepakaran teknikal dan pembiayaan yang cukup.

ACKNOWLEDGEMENTS

First of all, I am truly indebted to Prof. Dr. Elizabeth George, my supervisor, for her consistent coaching, guidance, experience-sharing and funding. Her thoughtfulness towards the educational welfare of her students has inspired me tremendously. Moreover, her patience and countless contribution in finishing this project were greatly appreciated.

Secondly, my heartfelt thanks to my co-supervisor, Dr. Lai Mei I and Prof. Patimah, for their assistance, expertise and suggestions to improve this research. Many thanks to Dr. Lily Wong from Hospital Queen Elizabeth, Sabah, for her assistance in providing me the patients and carriers samples that ensured the research went smoothly. Their generosity will not be forgotten. Next, I would like to acknowledge the supporting staffs, Mr. Fahmi, Mrs. Amrina, Mrs Saidatul and others in Haematology Department, Faculty of Medicine and Health Sciences for assisting me a lot throughout this project.

My utmost gratitude to my colleague, Wai Feng and Tze Yan, and also my seniors, Chan Soon Choy and others for their knowledge and assistance which has been very helpful in completing this research. Not to be forgotten, I deeply acknowledged a bunch of my best friends, your kind understandings, encouragements and assistance throughout my study. We had shared many good and bad times; being there to support, comfort and cheer each other at times we were really stresses up throughout the study.

And last but not least, there is no words can be expressing my deepest gratitude to my beloved parents and family members, because of you I am here today. Your endless supports, contributions and sacrifices would never be forgotten.
I certify that a Thesis Examination Committee has met on 29 September 2014 to conduct the final examination of Teh Lai Kuan on her thesis entitled "Molecular Characterisation of Beta Thalassaemia in Patients from Sabah, Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Sharmili Vidyadaran, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Rozita binti Rosli, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Internal Examiner)

Rajesh a/l Ramasamy, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Samuel S. Chong, PhD
Associate Professor
National University of Singapore
Singapore
(External Examiner)

\[\text{Signature}\]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 October 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the doctor of Philosophy. The members of the Supervisory Committee were as follows:

Elizabeth George, MD, MBBS, FRCPA, FRCPE.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Lai Mei I, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

__

BUJANG BIN KIMHUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: 18th November 2014

Name and Matric No: TEH LAI KUAN (GS 28592)
Declaration by members of supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature :_____________________ Signature: _____________________
Name of Chairman of Supervisory Committee : ____________________
Name of Member of Supervisory Committee: ____________________

Signature :_____________________ Signature: _____________________
Name of Chairman of Supervisory Committee : ____________________
Name of Member of Supervisory Committee: ____________________

Signature :_____________________ Signature: _____________________
Name of Chairman of Supervisory Committee : ____________________
Name of Member of Supervisory Committee: ____________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Research background
1.2 General objective
1.3 Specific objectives
1.4 Significance of study

CHAPTER 2

LITERATURE REVIEW

2.1 Thalassaemia
2.1.1 Beta thalassaemia
2.1.2 Alpha thalassaemia
2.2 Beta globin gene
2.3 Distribution of β-thalassaemia
2.4 Molecular basis of β-thalassaemia
2.4.1 Molecular basis of β-thalassaemia in Malaysia
2.4.2 Molecular basis of β-thalassaemia in Sabah
2.5 Alpha globin gene
2.6 Molecular basis of α-thalassaemia
2.6.1 Deletional α-thalassaemia
2.6.2 Nondeletional α-thalassaemia
2.7 Diagnosis of thalassaemia
2.8 Definitive diagnosis of thalassaemia
2.9 Genetic modifiers of thalassaemia
2.10 Genetic association study

CHAPTER 3

MATERIALS AND METHODS

3.1 Ethics Approval
3.2 Sample collection
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Experimental flow</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Genomic DNA extraction</td>
<td>27</td>
</tr>
<tr>
<td>3.5</td>
<td>Analysis of genomic DNA</td>
<td>27</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Agarose gel electrophoresis for DNA quality analysis</td>
<td>28</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Spectrophotometric determination of DNA concentration</td>
<td>28</td>
</tr>
<tr>
<td>3.6</td>
<td>Genotyping of beta globin gene</td>
<td>29</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Multiplex ligation-dependent probe amplification (MLPA) analysis for HBB gene (β-globin gene cluster)</td>
<td>29</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Gap-PCR: Filipino β⁰-deletion</td>
<td>30</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Amplification refractory mutation system (ARMS-PCR): 11 β-thalassaemia point mutations</td>
<td>32</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Reverse dot blot hybridisation (RDBH): 22 β-thalassaemia point mutations</td>
<td>36</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Beta globin gene sequencing</td>
<td>37</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Purification of PCR products</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Genotyping of alpha globin gene</td>
<td>39</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Multiplex Gap-PCR: seven deletional α-thalassaemia point mutations</td>
<td>39</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Multiplex ARMS-PCR: six α-thalassaemia point mutations</td>
<td>43</td>
</tr>
<tr>
<td>3.7.3</td>
<td>MLPA analysis for HBA globin gene (α-globin gene cluster)</td>
<td>46</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Alpha globin gene sequencing</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Characterisation for −α³⁶⁷ types</td>
<td>48</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Restriction mapping for −α³⁶⁷ types</td>
<td>48</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Alpha globin gene sequencing for −α³⁶⁷ types</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Genotyping of XmnI polymorphism site at αγ-globin gene</td>
<td>53</td>
</tr>
<tr>
<td>3.10</td>
<td>Beta globin gene cluster haplotyping</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>Analysis of β-globin gene cluster haplotyping</td>
<td>60</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Hardy Weinberg (HW) equilibrium test</td>
<td>60</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Linkage disequilibrium (LD)</td>
<td>60</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Haplotype frequency estimation</td>
<td>60</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Marker tagger</td>
<td>61</td>
</tr>
<tr>
<td>3.12</td>
<td>Development of new diagnostic tool: Real-time analysis</td>
<td>61</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Taqman analysis</td>
<td>61</td>
</tr>
<tr>
<td>3.12.2</td>
<td>High resolution melting curve (HRM) analysis</td>
<td>63</td>
</tr>
</tbody>
</table>

4 RESULTS | 65 |
4.1	Beta globin gene analysis	66
4.1.1	MLPA analysis for HBB gene (β-globin gene cluster)	69
4.1.2	Gap-PCR in detection of Filipino β⁰-deletion	75
4.1.3	ARMS-PCR for 11 β-thalassaemia point mutations	76
4.1.4 RDBH for 22 β-thalassaemia mutations 81
4.1.5 Sequencing of β-globin gene 84
4.2 Alpha globin gene analysis 87
 4.2.1 Multiplex Gap-PCR: seven deletional α-thalassaemia 90
 4.2.2 Multiplex ARMS-PCR: six α-thalassaemia point mutations 90
 4.2.3 MLPA of HBA gene (α-globin gene cluster) 92
 4.2.4 Sequencing of α-globin gene 105
4.3 Characterisation of –α^{3.7} types 106
 4.3.1 Restriction mapping for –α^{3.7} types 106
 4.3.2 Alpha globin gene sequencing for –α^{3.7} types 109
4.4 Characterisation of β-globin genotypes with ethnicity 111
4.5 Characterisation of co-inheritance of α-globin genotypes 116
4.6 Genotyping of XmnI polymorphism at Gγ-globin gene 119
4.7 Beta globin gene cluster haplotyping: PCR-RFLP 123
4.8 Analaysis of β-globin gene cluster haplotyping 125
 4.8.1 Hardy-Weinberg Equilibrium test 125
 4.8.2 Linkage Equilibrium 127
 4.8.3 Haplotype frequency estimation 128
 4.8.4 Marker Tagger 133
4.9 Development of new diagnostic method for Filipino β°-deletion 133
 4.9.1 Taqman analysis 133
 4.9.2 HRM analysis 134

5 DISCUSSION 143
5.1 Detection of molecular defects in Sabah with different techniques 143
5.2 Characterisation of β-globin genotypes in Sabah with ethnicity 147
5.3 Characterisation of co-inheritance α-globin genotypes in Sabah 150
 5.3.1 α°-thalassaemia in Sabah, a malaria endemic region 152
 5.3.2 Characterisation Type of –α^{3.7} deletion 153
5.4 Genotyping of XmnI polymorphism site at Gγ-globin gene 154
5.5 Haplotype with population origin 156
5.6 Haplotype with β-thalassaemia mutations 157
5.7 Development of new diagnostic tool for the detection of Filipino β°-deletion 159
 5.7.1 Taqman and HRM analysis for Filipino β°-deletion 159
5.8 Development of a diagnostic algorithm for thalassaemia detection in Sabah 162
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Clinical phenotype categorisation of Beta thalassaemia</td>
</tr>
<tr>
<td>2.2</td>
<td>Novel deletions in β-globin gene cluster since year 2000 until 2012</td>
</tr>
<tr>
<td>2.3</td>
<td>Application of real-time PCR in detection of thalassaemia</td>
</tr>
<tr>
<td>2.4</td>
<td>Genetic modifiers of β-thalassaemia</td>
</tr>
<tr>
<td>3.1</td>
<td>MLPA analysis using dosage quotients (DQ) in identification of copy number status</td>
</tr>
<tr>
<td>3.2</td>
<td>Gap-PCR detection for Filipino β°-deletion</td>
</tr>
<tr>
<td>3.3</td>
<td>ARMS-PCR for β-globin gene mutations detection</td>
</tr>
<tr>
<td>3.4</td>
<td>Beta globin gene sequencing</td>
</tr>
<tr>
<td>3.5</td>
<td>Multiplex Gap-PCR detection for seven deletional α-thalassaemia</td>
</tr>
<tr>
<td>3.6</td>
<td>Multiplex ARMS-PCR detection for six α-thalassaemia point mutations</td>
</tr>
<tr>
<td>3.7</td>
<td>Alpha globin gene amplification for sequencing</td>
</tr>
<tr>
<td>3.8</td>
<td>Recognition sequence showed the digestion site for the restriction enzymes</td>
</tr>
<tr>
<td>3.9</td>
<td>Restriction mapping for –ω3.7 types</td>
</tr>
<tr>
<td>3.10</td>
<td>Alpha globin gene sequencing for –ω3.7 types</td>
</tr>
<tr>
<td>3.11</td>
<td>Genotyping of XmnI polymorphism site at 3γ-globin gene</td>
</tr>
<tr>
<td>3.12</td>
<td>Recognition sequence for the restriction enzymes in β-globin gene haplotyping</td>
</tr>
<tr>
<td>3.13</td>
<td>Primer locations, sequences and its product sizes used for amplification of β-globin gene cluster</td>
</tr>
<tr>
<td>3.14</td>
<td>PCR-RFLP analysis for β-globin gene cluster haplotyping</td>
</tr>
<tr>
<td>3.15</td>
<td>Taqman analysis for Filipino β°-deletion</td>
</tr>
<tr>
<td>3.16</td>
<td>HRM analysis for detection of Filipino β°-deletion</td>
</tr>
<tr>
<td>4.1</td>
<td>Number and percentage of samples collected from different hospitals</td>
</tr>
</tbody>
</table>
4.2 Characterisation of β-thalassaemia mutations using different molecular techniques

4.3 Comparison of the mean dosage quotient (DQ) ratio for 252 β-TM patients

4.4 Amplicon size for detection of 11 point mutations using ARMS-PCR

4.5 Characterisation of α-thalassaemia mutations using different molecular techniques

4.6 Dosage quotient for four samples with 3.7 kb deletion and an additional deletion

4.7 MLPA analysis of HBA gene

4.8 Detection of $\alpha^{3.7}$ types using two techniques

4.9 Distribution of β-thalassaemia alleles for β-TM patients in Sabah population

4.10 Distribution of β-thalassaemia alleles for β-thalassaemia carriers in Sabah population

4.11 Molecular characterisation of co-inheritance α-globin gene mutations

4.12 Frequency of $\gamma^\gamma-XmnI$ alleles in β-TM patients and carriers

4.13 Frequency of the $\gamma^\gamma-XmnI$ genotypes associated with the β- and α-globin gene defects

4.14 Percentage of HbF levels in β-thalassaemia carriers with different XmnI genotype

4.15 PCR-RFLP for β-globin gene cluster haplotyping

4.16 Genotype, allele frequencies and HW equilibrium (p-value) using exact test for RFLP markers in Sabah population

4.17 Linkage Disequilibrium for RFLP markers

4.18 Haplotyping of β-globin gene cluster with β- and α-thalassaemia mutations

4.19 Haplotype frequencies estimation with RFLP markers in β-globin gene cluster

4.20 HRM analysis for Filipino β°-deletion in samples
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic diagram shows β-globin gene cluster</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of β-thalassaemia</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Alpha globin gene cluster</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Algorithm illustrates screening for thalassaemia and Hb variants</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental flow chart for molecular analysis</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Gap-PCR in detection of Filipino βº-deletion</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Location of primers for β-globin gene sequencing using three set of primers</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Multiplex Gap-PCR detection for seven deletional α-thalassaemia</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Multiplex ARMS-PCR detection for six α-thalassaemia point mutations</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Crossover of –α³/γ types in HBA2 (α₂) and HBA1 (α₁) gene</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Restriction mapping for –α³/γ types</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Alpha globin gene sequencing for –α³/γ types</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Beta globin gene haplotyping</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Location and percentage of samples collected from ten different hospitals in Sabah</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Methods used in detection of β-thalassaemia mutations</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic diagram shows the location of the breakpoint in β-globin gene cluster for β-TM patients identified by MLPA analysis.</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>MLPA analysis for HBB gene in chromatogram</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>MLPA analysis for HBB gene in DQ ratio</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Gap-PCR in detection of Filipino βº-deletion</td>
<td>75</td>
</tr>
<tr>
<td>4.7</td>
<td>ARMS analysis for point mutations detection in β-thalassaemia</td>
<td>78-80</td>
</tr>
<tr>
<td>4.8</td>
<td>Amplification of biotinylated primers</td>
<td>81</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>RDBH analysis for 22 mutations in β-thalassaemia</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Electrophoresis for PCR products of Set A, B and C encompassing the whole β-globin gene</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Beta globin gene sequencing</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Methods used in detection of α-thalassaemia mutations</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Detection of α-thalassaemia mutations</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Schematic diagram shows the location of the breakpoint in α-globin gene cluster identified by MLPA analysis</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>MLPA analysis for HBA gene</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>MLPA analysis for HBA gene in F187 and F220</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>MLPA analysis for HBA gene in F162 and S249</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Amplification of α1 and α2-gene for sequencing</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Restriction mapping of −α3.7 types by restriction endonucleases digestion with MseI and ApaI</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Amplification of α-globin gene using AT-C9c and AT-C7 primers</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Pattern of −α3.7 types in α-globin gene sequencing</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>PCR-RFLP analysis for 5'γ-region using XmnI restriction enzyme</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Linkage Disequilibrium plot (LD plot)</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>Taqman Analysis for Filipino β°-deletion</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Taqman Analysis for Filipino β°-deletion in different DNA concentrations</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>HRM Analysis for Filipino β°-deletion</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>HRM Analysis for Filipino β°-deletion in three samples with different clusters</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Sequencing analysis of wild type allele (F31:F33; 482 bp)</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>HRM analysis for Filpion β°-deletion in different DNA concentrations</td>
<td></td>
</tr>
</tbody>
</table>

xvii
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>MLPA analysis for diagnosis of β-TM patients</td>
<td>146</td>
</tr>
<tr>
<td>5.2</td>
<td>Simplified molecular diagnostic algorithm for β-thalassaemia patients in Sabah population in community with low resource.</td>
<td>164</td>
</tr>
<tr>
<td>5.3</td>
<td>Simplified molecular diagnostic algorithm for β-thalassaemia patients in Sabah population.</td>
<td>166</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

3.1 Approval from Medical Ethics Committee of Faculty of Medicine and Health Sciences, UPM 189

3.2 Approval from Ministry of Health Medical Research Ethics Committee (MREC) 190

3.3 Information sheet 191, 192

3.4 Consent form 193, 194

3.5 Protocol: Purification of DNA from whole blood using the QIAamp Blood Midi Kit (Spin Protocol) 195-197

3.6 Protocol: MRC-Holland Multiplex ligation-dependent Probe Amplification (MLPA) 198

3.7 SALSA MLPA P102-B2 HBB probe mix and its chromosomal location 199, 200

3.8 GAP-PCR primer flank to haemoglobin subunit for detection of Filipino β°-deletion 201

3.9 ARMS primer flank to the haemoglobin subunit 202, 203

3.10 Protocol: β-globin Strip Assay SEATM Assay procedure 204, 205

3.11 Beta globin gene sequencing primer flank to the hemoglobin subunit 206, 207

3.12 Protocol: QIAquick PCR purification kit (spin protocol) 208, 209

3.13 Alpha globin gene ARMS-PCR primer flank to the hemoglobin subunit 210

3.14 SALSA MLPA P140-B4 HBA probe mix and its chromosomal location 211, 212

3.15 Alpha globin gene primer flank to the hemoglobin subunit 213, 214

3.16 Taqman probe and primer flank to haemoglobin subunit for detection of Filipino β°-deletion 215

4.1 PCR-RFLP analysis for 5′ε-region using HincII restriction enzyme 216

4.2 PCR-RFLP analysis for γ-region using HindIII restriction enzyme 217

xix
4.3 PCR-RFLP analysis for 5'αγ-region using TaqI restriction enzyme 218

4.4 PCR-RFLP analysis for αγ-region using HindIII restriction enzyme 219

4.5 PCR-RFLP analysis for 5'ψβ-region using HincII restriction enzyme 220

4.6 PCR-RFLP analysis for 3'ψβ-region using HincII restriction enzyme 221

4.7 PCR-RFLP analysis for β-region using AvaII restriction enzyme 222

4.8 PCR-RFLP analysis for β-region using Hinfl restriction enzyme 223

4.9 PCR-RFLP analysis for 3'β-region using BamHI restriction enzyme 224
LIST OF ABBREVIATIONS

α alpha
β beta
δ delta
ε epsilon
γ gamma
ζ zeta
ψ pseudo
μ micro
μl microlitre
μg microgram
nm namometer
ml mililitre
bp base pair
kb kilobase
Hb haemoglobin
RBC red blood cell
LCR locus control region
HS hypersensitive site
MCV mean corpuscular volume
MCH mean corpuscular haemoglobin
RDW red cell distribution width
DNA deoxyribonucleic acid
TAE tris-acetate- ethylenediaminetetraacetic acid
TM thalassaemia major
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMS</td>
<td>amplification refractory mutations system</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RDBH</td>
<td>reverse dot blot hybridisation</td>
</tr>
<tr>
<td>MLPA</td>
<td>multiplex ligation-dependent probe amplification</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RE</td>
<td>restriction enzyme</td>
</tr>
<tr>
<td>HRM</td>
<td>high resolution melting</td>
</tr>
<tr>
<td>DQ</td>
<td>dosage quotient</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>Het</td>
<td>heterozygous</td>
</tr>
<tr>
<td>Hom</td>
<td>homozygous</td>
</tr>
<tr>
<td>Cd</td>
<td>codon</td>
</tr>
<tr>
<td>IVS</td>
<td>intervening</td>
</tr>
<tr>
<td>HW</td>
<td>Hardy-Weinberg</td>
</tr>
<tr>
<td>LD</td>
<td>Linkage disequilibrium</td>
</tr>
<tr>
<td>FAM</td>
<td>6-carboxyfluorescein</td>
</tr>
<tr>
<td>VIC</td>
<td>2’-chloro-7’-phenyl-1,4-dichloro-6-carboxyfluorescein</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Malaysia has a huge diversity and multiracial population of over 28.3 million, which approximately 80% are from peninsular Malaysia and 20% from Sabah and Sarawak (Population by Age Group, Department of Statistics Malaysia, 2010). In East Malaysia, 70% of Sabah’s and 50% of Sarawak’s population are indigenous. In Sabah, the population was 3,117,405 in the year 2010 (Population Distribution and Basic Demographic Characteristic Report 2010) and divided into 35 officially recognised ethnic groups. The racial groups are heterogenous. The biggest indigenous ethnic group in Sabah is Kadazandusun, followed by Bajau and Murut.

Beta thalassaemia is the commonest inherited disease in Malaysia that affects about 4.5% of the Malaysian population (George et al., 1992; Tan et al., 2004). Whereas, in Sabah, the estimated prevalence rate of β-thalassaemia can be up to 10% (Malaysian Thalassaemia Registry, 2009 August). In β-thalassaemia patients, there is reduced production or absence of β-chains from the β-globin gene on chromosome 11. The resulting imbalanced globin chain production lead to reduced haemoglobin synthesis and anaemia, while the severity depends on the affected genes by different mutations or different combination of mutations inherited (Bowden, 2001). Partners who are β-thalassaemia carriers have 25% risk of getting a baby with β-thalassaemia major (β-TM) in each pregnancy which is transfusion dependent and requires iron chelation for life (George, 2001; Bowden, 2001).

There are over 250 mutations that result in β-thalassaemia (Thein, 2005b). Each ethnic group has four to five common mutations that form more than 95% of the mutations seen (George, 2001). In the last 15 years, the molecular epidemiology of β-globin mutations has been well documented in the main racial groups in Peninsular Malaysia (West Malaysia) (Malays by George et al., 1992 and Chinese by George-Kodiseri et al., 1990 and George et al., 1993). In Sabah, there are estimated over 1000 cases of transfusion dependent β-TM. Hitherto, the spectrum of β-thalassaemia mutations in the various indigenous populations in East Malaysia is still not clear with only three studies done by Thong et al. in year 1999 and 2005; Tan et al. in year 2010 and the main mutation noted was the Filipino β0-deletion.

Besides high prevalence of β-thalassaemia among indigenous population in Sabah, Tan et al. (2010) found high prevalence of α-thalassaemia among the Kadazandusun in Sabah, especially the single α-globin gene deletion (-α3.7), in 33.6% (42/125). In West Malaysia, studies about co-inheritance of α-thalassaemia with β-thalassaemia or HbE patients have been carried out by Wee et al. (2008), Tan et al. (2009) and Teh et al. (2009). Variable clinical heterogeneity was demonstrated depending on the involved co-inheritance
mutations (Wee et al., 2008; Tan et al., 2009 and Teh et al., 2009). It is essential to characterise the molecular basis of thalassaemia in this region to provide better healthcare for the indigenous population of Sabah.

XmnI \(G_\gamma\)-polymorphism (rs782144) with transition of C to T at the -158 bp from cap site 5\(^{-}\)G\(\gamma\)-globin gene is correlated with higher \(G_\gamma\)-globin gene expression and results in elevation of HbF level, especially under erythropoietic stress. It has been found as an ameliorating factor for the phenotype of \(\beta\)-thalassaemia patients when in homozygous state (Thein, 2005a). Therefore, it is important to identify this polymorphism to provide more information to explain patient’s clinical phenotype.

The origin and migration pattern of \(\beta\)-thalassaemia patients has not been identified in the indigenous population. It can be determined through haplotyping. Haplotype is the combination of allelic states lying along a chromosome constructed from a set of SNPs or linked markers that are genetically stable and inherited as a group. According to Lee et al. (2002), haplotyping can elucidate the molecular background of the \(\beta\)-globin gene clusters by comparing the haplotypes among the \(\beta\)-thalassaemia patients or by family linkage study. According to Gupta et al. (2008), analysis of polymorphic markers are important in haplotype-genotype and phenotype association for \(\beta\)-thalassaemia. Falchi et al. (2005) and Gupta et al. (2008) also found haplotype analysis as an important tool for tracing the spread of \(\beta\)-thalassaemia mutations to different regions and its origin. Haplotyping study is included in this study as a valuable tool to relate human genetic variation to \(\beta\)-thalassaemia and for understanding human evolutionary history.

PCR techniques [amplification refractory mutation system (ARMS-PCR), reverse dot blot hybridisation (RDBH) and Gap-PCR] used in thalassaemia mutation detection allow only end point detection and post PCR-processing procedures such as gel electrophoresis, gel labelling or colour development are required. All these techniques are labour-intensive, time consuming and tedious when a few mutations are needed to be identified for each patient. Therefore, it is essential to develop a new, sensitive, quick and accurate technique to overcome this problem. In this study, a real-time platform will be utilised in development new methods, which allow monitoring the PCR amplification progress in real-time by the fluorescence signals in each amplification reaction cycle.

1.2 General Objective

Beta thalassaemia is common in Sabah with the estimated prevalence rate up to 10%. However, there is limited information of the complete spectrum of thalassaemia mutations in Sabah population with the molecular epidemiology of the mutations not well documented. The general objective in this study was:

- To determine the molecular basis of thalassaemia mutations in transfusion dependent beta thalassaemia in Sabah
1.3 Specific Objectives

Co-inheritance of α-thalassaemia and XmnI polymorphism as an ameliorating factor in β-TM patients has been commonly reported in West Malaysia. However, there is no study done before in Sabah to identify co-inheritance of α-thalassaemia and XmnI polymorphism. The following was carried out to meet these objectives:

1. To characterise the spectrum of β-thalassaemia mutations and co-inheritance of α-thalassaemia in β-thalassaemia major patients and carriers.

2. To identify XmnI Gγ-polymorphism in β-thalassaemia major patients and carriers.

In Sabah, a specific mutation, Filipino β⁰-deletion has been reported. Therefore, to relate the human genetic variation and the evolutionary history to this specific β-thalassaemia mutation, haplotyping was carried out. The following was carried out to meet this objective:

3. To determine the haplotype of the β-globin gene and its origin of the mutations identified.

Conventional methods used in detection of β-thalassaemia mutation are tedious which allowed only end-point analysis and required post PCR-processing. It is also not sensitive in low DNA concentration detection. Therefore, a new diagnostic tool without post-PCR processing and sensitive in low DNA concentration detection was developed for clinical diagnosis purposes. The following was carried out to meet this objective:

4. To develop a novel diagnostic tool and to design a simple and accurate algorithm incorporating PCR approach to identify β-thalassaemia mutations in Sabah population.
1.4 Significance of study

The molecular basis of β-thalassaemia patients among Sabah population was characterised in this study. Co-inheritance of α-thalassaemia mutations and XmnI G_γ-polymorphism among Sabah population were delineated in this study. The information from this study will lead to the development of informative diagnostic protocol. The origin and historical background of these mutations were identified through the association of β-globin gene cluster haplotypes with β-thalassaemia mutations among population of indigenous people in Sabah. This study generated a platform to design an algorithm for molecular diagnosis, which is feasible and accurate in a laboratory to be set up in Sabah where thalassaemia is a public health problem.
REFERENCES

George, E., Teh, L. K., Tan, J., Lai, M.I., & Wong, L. (2013). HbA2 levels in β-thalassaemia carriers with the Filipino β0-deletion: are the levels higher than what is found with non-deletional forms of β0-thalassaemia? *Pathology-Journal of the RCPA, 45*(1), 62-65.

Li, R., Liao, C., Li, D., & Li, J. (2010). High-resolution melting analysis of the three common nondeletional α-thalassemia mutations in the Chinese population: Hbs Constant Spring, Quong Sze and Westmead. *Hemoglobin, 34*(6), 587-593.

